首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
N-Methyl-D-aspartate (NMDA)-evoked release of [3H]acetylcholine (ACh) from slices of rat brain medial septum/vertical limb of the diagonal band (ms/vdB) was examined. NMDA increased the release of tritium in a concentration-dependent manner and the specific non-competitive NMDA antagonist, MK-801, and the competitive NMDA antagonist kynurenic acid inhibited this release. Tetrodotoxin inhibited the NMDA-evoked release suggesting the [3H]ACh released arises from collaterals of the cholinergic septohippocampal neurons. Basal release of tritium was significantly increased by glycine alone and strychnine inhibited this response while having no effect on NMDA-evoked release. However, glycine, although not affecting the NMDA-evoked release, did enhance release of tritium in the presence of NMDA and blocking concentrations of Kynurenic acid. Together, these findings suggest that under the conditions of these experiments sufficient concentrations of glycine permit the full expression of NMDA-evoked modulation of [3H]ACh release, and that the predominant actions of glycine were mediated by a specific, strychnine-sensitive receptor.  相似文献   

2.
This study sought to establish whether cholinergic neurons in the medial septum/vertical limb of the diagonal band (ms/vdB) release endogenous acetylcholine (ACh) locally, and whether the release was modulated by presynaptic feedback mechanisms. Release of ACh from slices of the ms/vdB was assessed by gas chromatography-mass spectrometry (GC-MS). Potassium depolarization resulted in a 20- to 25-fold increase in ACh release above spontaneous levels. Omission of Ca2+ from the incubation medium decreased this release by 91%. In the presence of 4 microM atropine, potassium-induced ACh release was enhanced by 48%. These results indicate that ACh is released in the ms/vdB by a Ca2+-dependent and atropine-sensitive process.  相似文献   

3.
4.
Henderson Z  Jones GA 《Neuroscience》2005,132(3):789-800
GABA(B) receptors are believed to play a role in rhythmic activity in the mammalian brain. The aim of our study was to examine the presynaptic and postsynaptic locations of these receptors in the medial septal diagonal band area (MS/DB), an area known to pace the hippocampus theta rhythm. Whole-cell patch recordings were made from parasagittal MS/DB slices obtained from the 16-25 day rat. Neurons were classified into GABAergic and cholinergic subtypes according to previous electrophysiological criteria. Bath application of the GABA(B) receptor agonist baclofen in the presence of tetrodotoxin, and brief tetanic fiber stimulation in the presence of ionotropic receptor antagonists, provided evidence for the presence of postsynaptic GABA(B) receptor transmission to GABAergic but not cholinergic neurons. Bath application of baclofen, at concentrations too low to elicit postsynaptic activity in MS/DB neurons, significantly reduced the amplitudes of stimulus-evoked ionotropic receptor inhibitory postsynaptic potentials (IPSPs) and excitatory postsynaptic potentials (EPSPs) and the paired pulse depression of these evoked potentials. Baclofen also significantly reduced the frequencies but not the amplitudes of miniature inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs), indicating the presence of presynaptic GABA(B) receptors on GABAergic and glutamatergic terminals in the MS/DB. Baclofen, also at a concentration too low to elicit postsynaptic activity, reduced the frequencies and amplitudes of spontaneous IPSCs and EPSCs recorded in the presence of 200-400 nM kainate. Rhythmic compound IPSCs at theta frequencies were recorded under these conditions in some neurons, and these rhythmic compound IPSCs were disrupted by the activation but not by the inhibition of GABA(B) receptors. These results suggest that GABA(B) receptors modulate rather than generate rhythmic activity in the MS/DB, and that this modulatory effect occurs via receptors located on presynaptic terminals.  相似文献   

5.
The medial septum/vertical limb of diagonal band complex (MS/vDB) consists of cholinergic, GABAergic, and glutamatergic neurons that project to the hippocampus and functionally regulate attention, memory, and cognitive processes. Using tyrosine hydroxlase (TH) immunocytochemistry and dark-field light microscopy, we found that the MS/vDB is innervated by a sparse network of TH-immunoreactive (putative catecholaminergic) terminals. MS/vDB neurons are known to fire in rhythmic theta burst frequency of 3-7 Hz to pace hippocampal theta rhythm. Extracellular single-unit recording in theta and non-theta firing MS/vDB neurons and antidromically identified MS/vDB-hippocampal neurons were made in urethan-anesthetized rats. Tail-pinch noxious stimuli and ventral tegmental area (VTA) stimulation (20 Hz) evoked spontaneous theta burst firing in MS/vDB neurons. Systemic D1/5 antagonists SCH23390 or SCH39166 (0.1 mg/kg iv) alone suppressed the spontaneous theta bursts, suggesting a tonic facilitatory endogenous dopamine D1 "tone" that modulates theta bursts in vivo. Activation of D1/5 receptor by dihydrexidine (10 mg/kg iv) led to an increase in mean firing rate in 60% of all theta and non-theta MS/vDB neurons with an increase in the number of theta bursts and spikes/burst in theta cells. In strong theta firing MS/vDB neurons, D1/5 receptor stimulation suppressed the occurrence of theta burst firing, whereas the overall increase in spontaneous mean firing rate remained. In low baseline theta MS/vDB neurons D1/5 receptor stimulation increases the occurrence of theta bursts along with a net increase in mean firing rate. Atropine injection consistently disrupts theta burst pattern and reduced the time spent in theta firing. Collectively, these data suggest that dopamine D1/5 stimulation enhances the mean firing rate of most MS/vDB neurons and also provides a state-dependent bidirectional modulation of theta burst occurrence. Some of these MS/vDB neurons may be cholinergic or GABAergic that may indirectly regulate theta rhythm in the hippocampus.  相似文献   

6.
R T Matthews  W L Lee 《Neuroscience》1991,42(2):451-462
Firing patterns, action potential characteristics and some active membrane properties of guinea-pig medial septum/diagonal band neurons were studied in an in vitro slice preparation. A comparison was made between several types of cells classified according to either extracellularly recorded (n = 130) or intracellularly recorded (n = 30) electrophysiological characteristics. Using multi-barrel extracellular electrodes, three principal cell types were distinguished: slow rhythmic firing cells (29%), fast rhythmic firing cells (65%) and burst-firing cells (6%). Most slow firing cells could also be distinguished from other cell types by their relatively longer action potential duration and a characteristic cadmium-sensitive "hump" in the repolarization phase of the action potential. These characteristics of slow firing cells matched well with the characteristics of cholinergic, slow afterhyperpolarization cells previously identified with intracellular recordings. The action potential shape, firing rate and firing pattern characteristics of about 60% of extracellularly recorded fast rhythmic firing cells matched those of previously identified non-cholinergic fast afterhyperpolarization cells. The remaining extracellularly recorded, rhythmic firing cells (about 10% of slow firing and 40% of fast firing cells) had a mixture of characteristics which precluded unequivocal classification as to cholinergic or non-cholinergic cell type. Using intracellular recording, the bee venom toxin, apamin, was shown to attenuate the characteristic post spike slow afterhyperpolarization of cholinergic cells and greatly enhanced their firing rate to depolarizing pulses. Apamin often attenuated a smaller and more transient afterhyperpolarization found in identified non-cholinergic cells, but firing rate was increased only slightly. Extracellular recordings from slow and fast rhythmic firing cells in the presence of apamin showed that excitability of slow firing cells was enhanced significantly more than fast firing cells. The apamin data support the hypothesis that extracellularly recorded slow firing cells are cholinergic. We conclude that extracellularly recorded medial septum/diagonal band cells characterized by broad action potentials, slow rhythmic firing under microiontophoresed glutamate and a signature "hump" in the falling phase of the action potential are cholinergic cells. Extracellularly recorded fast rhythmic firing cells with a narrow action potential and no "hump" in the action potential are likely to be non-cholinergic cells. This extracellular electrophysiological "fingerprint" for cholinergic medial septum/diagonal band cells in vitro may now be extended to studies in vivo where controversy remains as to the neurochemical identity of basal forebrain cells involved in control of hippocampal slow rhythmic activity.  相似文献   

7.
Activation of 5-HT1A receptors results in a variety of physiological responses, depending on their localization on neurons with different phenotypes in the brain. This study investigated the localization of 5-HT1A receptor mRNA and 5-HT1A receptor immunoreactivity in cell bodies of the rat septal complex using in situ hybridization and immunohistochemistry. In adjacent sections of the medial septum/diagonal band of Broca (MSDB), the distribution of cell bodies expressing 5-HT1A receptor mRNA was closely related to cells labeled with oligonucleotide probes to GAD (glutamic acid decarboxylase), VAChT (vesicular acetylcholine transporter) or parvalbumin mRNA. Using antiserum to GAD and antibodies to GABA, 5-HT1A receptor immunoreactivity was demonstrated in a majority of GABAergic cells in the MSDB. 5-HT1A receptor-immunoreactive GABAergic cells in the MSDB were also demonstrated to contain the calcium-binding protein parvalbumin, a marker for septohippocampal projecting GABAergic neurons. In the lateral septum, 5-HT1A receptor immunoreactivity was colocalized with the calcium-binding protein calbindin D-28k, a marker for septal GABAergic somatospiny neurons. 5-HT1A receptor immunoreactivity was also detected in a subpopulation of VAChT-containing cholinergic neurons of the MSDB. In MSDB neurons, colocalization of 5-HT1A and 5-HT2A receptor immunoreactivities was demonstrated. These observations suggest that serotonin via 5-HT1A receptors may represent an important modulator of hippocampal transmission important for cognitive and emotional functions through actions on both GABAergic and cholinergic neurons of the rat septal complex. In addition, 5-HT may exert its effects in the MSDB via cells expressing both 5-HT1A and 5-HT2A receptors.  相似文献   

8.
The medial septum diagonal band complex (MS/DB) projects via cholinergic and GABAergic pathways to the hippocampus and plays a key role in the hippocampal theta rhythm. In the MS/DB we have previously described a population of fast spiking GABAergic neurons that contain parvalbumin and mediate theta frequency activity in vitro. The Kv3.1 potassium channel is a delayed rectifier channel that plays a major role in fast spiking neurons in the CNS, and has previously been localized in the MS/DB. To determine which cell types in the MS/DB express the Kv3.1b ion channel subunit, transgenic mice in which the expression of GABAergic and glutamate markers are associated with the expression of green fluorescent protein (GFP; GAD67-GFP and VGluT2-GFP mice, respectively) were used for immunofluorescence and axonal tract tracing. Electrophysiological studies were also carried out on rat MS/DB slices to examine the role of the Kv3.1 channel in theta frequency oscillations. The results for the MS/DB were as follows: (1) cholinergic cells did not express GFP in either GAD67-GFP or VGluT2-GFP mice, and there was GAD67 immunoreactivity in GFP-positive neurons in GAD67-GFP mice and in a small proportion (6%) of GFP-positive neurons in VGluT2-GFP mice. (2) Kv3.1b immunofluorescence was associated with the somata of GABAergic neurons, especially those that contained parvalbumin, and with a minority of glutamatergic neurons, but not with cholinergic neurons, and with GABAergic axonal terminal-like processes around certain GABAergic neurons. (3) Both Kv3.1b-positive and -negative GABAergic neurons were septo-hippocampal, and there was a minor projection to hippocampus from VGluT2-GFP neurons. (4) Kainate-induced theta oscillations in the MS/DB slice were potentiated rather than inhibited by the Kv3.1 blocker 4-aminopyridine, and this agent on its own produced theta frequency oscillations in MS/DB slices that were reduced by ionotropic glutamate and GABA receptor antagonists and abolished by low extracellular calcium. These studies confirm the presence of heterogeneous populations of septo-hippocampal neurons in the MS/DB, and suggest that presence of Kv3.1 in the GABAergic neurons does not contribute to theta activity through fast spiking properties, but possibly by the regulation of transmitter release from axonal terminals.  相似文献   

9.
The medial septum/diagonal band complex (MSDB) controls hippocampal excitability, rhythms and plastic processes. Medial septal neuronal populations display heterogeneous firing patterns. In addition, some of these populations degenerate during age-related disorders (e.g. cholinergic neurons). Thus, it is particularly important to examine the intrinsic properties of theses neurons in order to create new agents that effectively modulate hippocampal excitability and enhance memory processes. Here, we have examined the properties of voltage-gated, K(+) currents in electrophysiologically-identified neurons. These neurons were taken from young rat brain slices containing the MS/DB complex. Whole-cell, patch recordings of outward currents were obtained from slow firing, fast-spiking, regular-firing and burst-firing neurons. Slow firing neurons showed depolarization-activated K(+) current peaks and densities larger than in other neuronal subtypes. Slow firing total current exhibited an inactivating A-type current component that activates at subthreshold depolarization and was reliably blocked by high concentrations of 4-AP. In addition, slow firing neurons expressed a low-threshold delayed rectifier K(+) current component with slow inactivation and intermediate sensitivity to tetraethylammonium. Fast-spiking neurons exhibited the smaller I(K) and I(A) current densities. Burst and regular firing neurons displayed an intermediate firing phenotype with I(K) and I(A) current densities that were larger than the ones observed in fast-spiking neurons but smaller than the ones observed in slow-firing neurons. In addition, the prevalence of each current differed among electrophysiological groups with slow firing and regular firing neurons expressing mostly I(A) and fast spiking and bursting neurons exhibiting mostly delayer rectifier K(+) currents with only minimal contributions of the I(A). The pharmacological or genetic modulations of these currents constitute an important target for the treatment of age-related disorders.  相似文献   

10.
The medial septum/diagonal band complex is composed predominantly of cholinergic and GABAergic neurons, and it projects to the hippocampal formation. A proportion of the GABAergic neurons contain parvalbumin, a calcium-binding protein that has previously been localized in fast-spiking, non-accommodating GABAergic neurons in the cerebral cortex and neostriatum. The aim of the present study was to determine whether parvalbumin is localized preferentially in a similar electrophysiological class of neuron in the medial septum/diagonal band complex. The study was carried out using in vitro intracellular recording, intracellular biocytin filling and parvalbumin immunocytochemistry. Three main classes of neurons were identified according to standard criteria: burst-firing, slow-firing and fast-firing neuronal populations. The fast-firing neurons were subdivided into two subpopulations based on whether or not they displayed accommodation. The fast-spiking, non-accommodating cells were furthermore found to be spontaneously active at resting potentials, and to possess action potentials of significantly (P < 0.05) shorter duration (half width: 0.61 +/- 0.12 ms) than those of the regular-spiking, accommodating neurons (1.0 +/- 0.34 ms). Of the neurons that were successfully filled with biocytin and processed for parvalbumin immunoreactivity, 82% of the fast-spiking, non-accommodating cells possessed parvalbumin immunoreactivity, while none of the regular-spiking, accommodating neurons were found to be immunoreactive for parvalbumin. The slow-firing neurons, shown previously to be cholinergic, did not stain for parvalbumin immunoreactivity, in agreement with studies showing parvalbumin to be localized solely in GABAergic neurons in the medial septum/diagonal band complex. In conclusion, these findings suggest the presence of a previously uncharacterized population of neurons in the medial septum/diagonal band complex that generate high-frequency, non-adaptive discharge. This property correlates with the localization of parvalbumin in these neurons, which suggests that parvalbumin fulfils the same role in the medial septum/diagonal band complex that it does in other parts of the brain. The fast-spiking neurons in the medial septum/diagonal band complex may play an essential role in the GABAergic influence of the septum on the hippocampal formation.  相似文献   

11.
Nuclei of the medial septum/diagonal band region of the mammalian forebrain contain neurons that give rise to the septohippocampal pathway, which has separate cholinergic and GABAergic components. This pathway is known to influence hippocampal-dependent memory and learning processes, but the precise role of each component is unclear. In this study, we tested the hypothesis that fast-firing, non-bursting medial septum/diagonal band neurons are GABAergic. We used brain slice preparations from young adult guinea-pigs and rats, or from weanling rats, to perform current-clamp recordings from medial septum/diagonal band neurons. Recorded neurons were injected with biocytin for subsequent visualization with fluorescent avidin, and then hybridized with a 35S-labeled riboprobe for glutamate decarboxylase-67 messenger RNA. As a positive control, guinea-pig cerebellar Purkinje cells were labeled and hybridized with the riboprobe. As expected, labeled Purkinje cells were glutamate decarboxylase-67 messenger RNA positive. Slow-firing, cholinergic (choline acetyltransferase-positive) guinea-pig medial septum/diagonal band neurons were glutamate decarboxylase-67 messenger RNA negative. Contrary to our hypothesis, of the guinea-pig neurons, only three of 11 fast-firing neurons were glutamate decarboxylase-67 positive. Of the rat medial septum/diagonal band neurons, three of four were positive for glutamate decarboxylase-67 messenger RNA.These data suggest that fast-firing, non-bursting neurons of the medial septum/diagonal band, as sampled by sharp-electrode intracellular recordings in brain slices, may be a heterogeneous group of neurons, some of which are GABAergic. Together with recent data demonstrating the presence of another GABAergic marker, parvalbumin, in fast-firing septal neurons, we conclude that GABAergic septohippocampal neurons include a population of fast-firing, non-bursting neurons. The influence of these neurons on the hippocampus is likely to occur on a shorter time-scale and over a wider range of firing frequencies as compared to slowly firing cholinergic septohippocampal neurons.  相似文献   

12.
The morphology, ultrastructure and synaptic relationships of the cholinergic and non-cholinergic neurons in the medial septal nucleus (MS) and vertical limb of the diagonal band of Broca (VDB) in the basal forebrain of the rat were studied at the light and electron microscopic levels. The cholinergic neurons were localized immunocytochemically using a monoclonal antibody against choline acetyltransferase (ChAT). Morphometric and statistical analyses showed that ChAT-labelled cells presented a predominantly oval morphology in both nuclei. The sizes of the neurons were significantly larger in the VDB nucleus. Within the two nuclei, two populations of cholinergic neurons were differentiated. One of the large immunolabelled neurons presented deep indentations and prominent nucleoli in their non-immunoreactive nuclei. Their cytoplasm contained a well-organized endomembrane system composed of short cisternae of rough endoplasmic reticulum (RER). One or two lamellar bodies with a peculiar ultrastructure were frequently found intercalated in this system. The Golgi areas presented numerous coated vesicles, sequestration and multivesicular bodies, which was indicative of an intense metabolic activity in these cells. The second population of small immunolabelled neurons exhibited reduced cytoplasm with a poorly developed endomembrane system and apparent absence of lamellar bodies. The neighbouring non-immunolabelled neurons presented a different type of organization of the endomembrane system which was composed of scattered and loosely arranged elongated cisternae of RER and infrequent lamellar bodies, with a structure different from that seen in the large cholinergic neurons. We propose that the structural differences in composition of the endomembrane system and lamellar bodies observed in the three types of neurons in this study indicate different metabolic activities. Symmetrical and asymmetrical synaptic contacts were observed on somata and dendrites of labelled neurons, the latter being more frequent. ChAT-labelled axon boutons were never seen. The absence of immunolabelled axon terminals and the presence of immunolabelled myelinated axons leads us to suggest that the majority of neurons in these areas are of the long projecting type.  相似文献   

13.
Summary The anatomical organization of projections from the medial septal nucleus (MS), and the vertical (VDB) and horizontal limb (HDB) of the diagonal band of Broca to the dorsal raphe nucleus (NRD) and the central superior raphe nucleus (RCS) of the rat were studied by anterograde [3H]-leucine, and True Blue and Fluoro Gold fluorescent retrograde tracing. Projections from the MS were found to enter the basal mesencephalon at the rostro-medial aspect of the pontine nuclei, curve dorsally and terminate throughout the RCS and in the caudal portion of the NRD. Fibers from the VDB were found to enter these raphe nuclei by two separate routes; some fibers reached the basal mesencephalon, curved dorsally and terminated in the RCS and NRD. Other fibers entered the pedunculopontine nucleus, curved medially and reached the NRD. Presumed terminal labelling was found overlaying the RCS and NRD throughout their rostro-caudal extensions. The brain stem projections from HDB entered the mesencephalon by the same routes as those from VDB, but the labelling over RCS was sparse, and the NRD labelling was preferentially distributed to the rostral portion of the nucleus. The present data indicate a crude topographic organization of the projections from the septal region to the NRD and RCS. In general, the distribution of presumed terminal labelling appeared to be more closely associated with the distribution of NRD and RCS 5-HT immunoreactive cell bodies, than with the cytoarchitectonically defined extensions of these raphe nuclei. By sequential evaluation of the distribution of retrogradely labelled and acetylcholine esterase-stained cells on the same section, and by selective tracing with radiolabelled choline, it appears that the vast majority, if not all, of the neurons in MS and diagonal band which project to the rostral raphe are non-cholinergic.Abbreviations CLi caudal linear raphe nucleus - DTg dorsal tegmental nucleus - flm medial longitudinal fasciculus - HDB horizontal limb of the diagonal band of Broca - IP interpeduncular nucleus - MS medial septal nucleus - NRD dorsal raphe nucleus - PAG periaqueductal gray - Pn pontine nucleus - R red nucleus - RCS central superior raphe nucleus - RMg raphe magnus nucleus - RPn pontine raphe nucleus - SN substantia nigra - VDB vertical limb of the diagonal band of Broca - VTg ventral tegmental nucleus - 5 trigeminal motor nucleus  相似文献   

14.
The septohippocampal pathway, which is mostly composed of cholinergic and GABAergic projections between the medial septum/diagonal band (MS/DB) and the hippocampus, has an established role in learning, memory and disorders of cognition. In Wernicke-Korsakoff's syndrome (WKS) and the animal model of the disorder, pyrithiamine-induced thiamine deficiency (PTD), there is both diencephalic damage and basal forebrain cell loss that could contribute to the amnesic state. In the current experiment, we used the PTD animal model to access both cholinergic (choline acetyltransferase [ChAT] immunopositive) and GABAergic (parvalbumin [PV]; calbindin [CaBP]) neuronal loss in the MS/DB in relationship to midline-thalamic pathology. In addition, to gain an understanding about the role of such neuropathology in behavioral dysfunction, animals were tested on a non-rewarded spontaneous alternation task and behavioral performance was correlated to neuropathology. Unbiased stereological assessment of neuronal populations revealed that ChAT-positive neurons were significantly reduced in PTD rats, relative to control pair-fed rats, and thalamic mass and behavioral performance correlated with ChAT neuronal estimates. In contrast, both the PV- and CaBP-positive neurons in the MS/DB were not affected by PTD treatment. These results support an interactive role of both thalamic pathology and cholinergic cell loss in diencephalic amnesia.  相似文献   

15.
The authors examined visual-spatial conditional learning with automated touchscreen tasks in male Long-Evans rats with selective lesions of medial septal/vertical limb of diagonal band (MS/VDB) cholinergic neurons produced by 192 IgG-saporin. Performance on a conditional task, in which 1 of 2 centrally displayed stimuli directed the rat to respond to an illuminated panel on the left or right, depended on training history: Control rats with experience on other visual tasks performed better than MS/VDB-lesioned rats with similar training histories, whereas this effect was reversed in naive rats. This difference appears to reflect transfer effects present in the control rats that are absent in the MS/VDB-lesioned rats. These findings may suggest that MS/VDB cholinergic neurons play a particular role in the transfer of behavioral experience and flexibility of application of behavioral rules in memory, rather than a role in conditional learning per se.  相似文献   

16.
In the septal complex, both parvalbumin and calbindin neurons cocontain GABA. In the same area, a large number of GABA-GABA synaptic connections can be observed. In order to further characterize their neurochemical nature, as well as the extrinsic and/or intrinsic origin of these GABA terminals, the following experiments were performed: (1) correlated light- and electronmicroscopic double immunostaining for calbindin and parvalbumin on septal sections of control rats; (2) light microscopic parvalbumin immunostaining of septal sections after surgical isolation (5 days) of the septum from its telencephalic or (3) hypothalamic afferents; and (4) parvalbumin immunostaining of sections prepared from the entire brain 2 days following horseradish peroxidase injection into the border between the lateral and medial septum. The results demonstrated that: (1) in a well-circumscribed, vertically longitudinal area located between the lateral and medial septum, 0.1–0.6 mm anterior to the bregma, a group of calbindin-containing, nonsomatospiny neurons are surrounded by parvalbumin-immunoreactive baskets; (2) these basket-forming axon terminals establish symmetric synaptic contacts with their targets; and (3) their cells of origin are not in the medial septum, but in the angular porition of the vertical limb. These observations indicate that a portion of the septal complex GABA-GABA synaptic connections represent functional interaction between two different types of GABAergic neurons. The presynaptic GABAergic neurons contain parvalbumin, and the postsynaptic GABAergic cells are immunoreactive for calbindin. Furthermore, a population of the medial septum/diagonal band parvalbumin neurons promect only to the hippocampus, while others, which may also send axons to the hippocampus, terminate on lateral septum calbindin cells as well.  相似文献   

17.
Slow firing septal neurons modulate hippocampal and neocortical functions. Electrophysiologically, it is unclear whether slow firing neurons belong to a homogeneous neuronal population. To address this issue, whole-cell patch recordings and neuronal reconstructions were performed on rat brain slices containing the medial septum/diagonal band complex (MS/DB). Slow firing neurons were identified by their low firing rate at threshold (<5 Hz) and lack of time-dependent inward rectification (Ih). Unsupervised cluster analysis was used to investigate whether slow firing neurons could be further classified into different subtypes. The parameters used for the cluster analysis included latency for first spike, slow after-hyperpolarizing potential, maximal frequency and action potential (AP) decay slope. Neurons were grouped into three major subtypes. The majority of neurons (55%) were grouped as cluster I. Cluster II (17% of neurons) exhibited longer latency for generation of the first action potential (246.5+/-20.1 ms). Cluster III (28% of neurons) exhibited higher maximal firing frequency (25.3+/-1.7 Hz) when compared with cluster I (12.3+/-0.9 Hz) and cluster II (11.8+/-1.1 Hz) neurons. Additionally, cluster III neurons exhibited faster action potentials at suprathreshold. Interestingly, cluster II neurons were frequently located in the medial septum whereas neurons in cluster I and III appeared scattered throughout all MS/DB regions. Sholl's analysis revealed a more complex dendritic arborization in cluster III neurons. Cluster I and II neurons exhibited characteristics of "true" slow firing neurons whereas cluster III neurons exhibited higher frequency firing patterns. Several neurons were labeled with a cholinergic marker, Cy3-conjugated 192 IgG (p75NTR), and cholinergic neurons were found to be distributed among the three clusters. Our findings indicate that slow firing medial septal neurons are heterogeneous and that soma location is an important determinant of their electrophysiological properties. Thus, slow firing neurons from different septal regions have distinct functional properties, most likely related to their diverse connectivity.  相似文献   

18.
Neurons in the septum (SEP) and vertical limb of the diagonal band (vDB) of 6-day-old rats were dissociated and cultured for 3 days. Cells with high affinity uptake mechanism for gamma-aminobutyric acid (GABA) were identified autoradiographically using 16 nM [3H]GABA. Cells that expressed nerve growth factor (NGF) receptor immunoreactivity were identified immunocytochemically using MC192, a monoclonal antibody against NGF receptor. Double labeling experiments combining [3H]GABA uptake with immunostaining for NGF receptor showed that 46% of the NGF receptor-immunoreactive cells accumulated [3H]GABA. The result was discussed in relation to a possible involvement of the developing septal GABAergic neurons in NGF-induced neuronal survival.  相似文献   

19.
We have examined the distribution pattern and the density of various neuropeptide, neurotransmitter and enzyme containing neurons in the rat medial septum and the nucleus of the diagonal band of Broca to assess their possible involvement in the septohippocampal, septocortical and septobulbar pathways. Immunohistochemical methods were combined with the retrograde transport of a protein-gold complex injected in the hippocampus, the cingulate cortex or the olfactory bulb. Cholinergic neurons were the most numerous. Galanin-positive neurons were about two or three times less numerous than cholinergic cells. Both these cell types had a similar location though the choline acetyl transferase-like immunoreactive cells extended more caudally in the horizontal limb of the nucleus of the diagonal band of Broca. Immunoreactive cells for other neuroactive substances were few (calcitonin gene-related peptide, luteinizing hormone releasing hormone. [Met]enkephalin-arg-gly-leu) or occasional (dynorphin B, vasoactive intestinal polypeptide, somatostatin, neurotensin, cholecystokinin, neuropeptide Y and substance P). No immunoreactive cells for bombesin, alpha atrial natriuretic factor, corticotropin releasing factor, 5-hydroxytryptamine, melanocyte stimulating hormone, oxytocin, prolactin, tyrosine hydroxylase or arg-vasopressin were present. Choline acetyltransferase- and galanin-like immunoreactive cells densely participate to septal efferents. Cholinergic neurons constituted the bulk of septal efferent neurons. Galanin-positive cells were 22% of septohippocampal, 8% of septocortical, and 9% of septobulbar neurons. Galanin containing septohippocampal neurons were found in the medial septum and the nucleus of the diagonal band of Broca; galanin-positive septobulbar and septocortical cells were limited to the nucleus of the diagonal band of Broca. Occasional double-labellings were noticed with some peptides other than galanin. Luteinizing hormone-releasing hormone, calcitonin gene-related peptide and enkephalin were the most often observed; some other projecting cells stained for vasoactive intestinal polypeptide or dynorphin B. Luteinizing hormone-releasing hormone, calcitonin gene-related peptide and enkephalin were observed in septohippocampal neurons; luteinizing hormone-releasing hormone and vasoactive intestinal peptide were observed in septocortical neurons and calcitonin gene-related peptide, luteinizing hormone-releasing hormone and dynorphin B were observed in septo-bulbar cells. These results show that, in addition to acetylcholine, galanin is a major cellular neuroactive substance in septal projections to the hippocampus, the cingulate cortex and the olfactory bulb. The presence of septal projecting neurons immunoreactive for other peptides shows that a variety of distinct peptides may also participate, but in a smaller number, to septal efferent pathways.  相似文献   

20.
Recent investigations in the rat have implicated a noradrenergic innervation to the horizontal nucleus of the diagonal band of Broca as a critical link in a neural circuit that conveys baroreceptor information centrally to inhibit the firing of vasopressin-secreting neurons in the hypothalamic supraoptic nucleus. In this study we used small intra-diagonal band injections of a retrograde tracer, rhodamine latex microspheres, in combination with tyrosine hydroxylase histochemistry to identify brainstem noradrenergic cells contributing to this innervation. In three cases where tracer injections were limited to the horizontal limb of the diagonal band, we observed 20-50 double-labelled neurons ipsilaterally in the dorsal part of the locus coeruleus (A6) and the caudal nucleus tractus solitarius (A2), and bilaterally in the caudal ventrolateral medulla (A1). Double-labelled neurons were also noted in the ventral tegmental area (dopaminergic A10 cell group). Although all major brainstem noradrenergic cell groups contribute fibers to the horizontal limb of the nucleus of diagonal band, data from physiological studies suggest that the noradrenergic A2 neurons in the nucleus tractus solitarius are the most likely pathway through which it receives this baroreceptor information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号