首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 759 毫秒
1.
2.
功能磁共振对脑卒中患者拇指运动时大脑活动的初步研究   总被引:2,自引:0,他引:2  
目的:观察偏瘫患者拇指在不同运动形式下,大脑半球相关区域血氧水平的变化情况。方法:让患者分别进行健侧和患者拇指被动运动、主动运动和加阻力下的主动运动。在患运运动时行功能磁共振(F-MRI)检查,观察上述不同运动形式下大脑半球相关区域血氧水平的变化。结果:在健侧分别进行主动、被动及加阻力的主动运动时,皮层信号区均集中于中央前回第一运动区和中央后回本体感觉附近,重复性强。而当患侧行上述3种动作模式时,在其病变区信号活动明显增强,而且可见大 皮层及皮层下其他部位有兴奋性信号出现。结论:在脑卒中恢复期,大脑半球其他部位对其运动功能的改善发挥了作用,而且不同的运动模式其参与的部位也不同,运动疗法中的各种手法确实能引起脑组织内的某些信号变化,对大脑半球的功能重组产生了积极的作用。  相似文献   

3.
We investigated the organization of frontoparietal cortex in the common marmoset (Callithrix jacchus) by using intracortical microstimulation and an architectonic analysis. Primary motor cortex (M1) was identified as an area that evoked visible movements at low levels of electric current and had a full body representation of the contralateral musculature. Primary motor cortex represented the contralateral body from hindlimb to face in a mediolateral sequence, with individual movements such as jaw and wrist represented in multiple nearby locations. Primary motor cortex was coextensive with an agranular area of cortex marked by a distinct layer V of large pyramidal cells that gradually decreased in size toward the rostral portion of the area and was more homogenous in appearance than other New World primates. In addition to M1, stimulation also evoked movements from several other areas of frontoparietal cortex. Caudal to primary motor cortex, area 3a was identified as a thin strip of cortex where movements could be evoked at thresholds similar to those in M1. Rostral to primary motor cortex, supplementary motor cortex and premotor areas responded to higher stimulation currents and had smaller layer V pyramidal cells. Other areas evoking movements included primary somatosensory cortex (area 3b), two lateral somatosensory areas (areas PV and S2), and a caudal somatosensory area. Our results suggest that frontoparietal cortex in marmosets is organized in a similar fashion to that of other New World primates.  相似文献   

4.
This study describes the pattern of interhemispheric connections of the ventral premotor cortex (PMv) distal forelimb representation (DFL) in squirrel monkeys. Our objectives were to describe qualitatively and quantitatively the connections of PMv with contralateral cortical areas. Intracortical microstimulation techniques (ICMS) guided the injection of the neuronal tract tracers biotinylated dextran amine or Fast blue into PMv DFL. We classified the interhemispheric connections of PMv into three groups. Major connections were found in the contralateral PMv and supplementary motor area (SMA). Intermediate interhemispheric connections were found in the rostral portion of the primary motor cortex, the frontal area immediately rostral and ventral to PMv (FR), cingulate motor areas (CMAs), and dorsal premotor cortex (PMd). Minor connections were found inconsistently across cases in the anterior operculum (AO), posterior operculum/inferior parietal cortex (PO/IP), and posterior parietal cortex (PP), areas that consistently show connections with PMv in the ipsilateral hemisphere. Within-case comparisons revealed that the percentage of PMv connections with contralateral SMA and PMd are higher than the percentage of PMv connections with these areas in the ipsilateral hemisphere; percentages of PMv connections with contralateral M1 rostral, FR, AO, and the primary somatosensory cortex are lower than percentages of PMv connections with these areas in the ipsilateral hemisphere. These studies increase our knowledge of the pattern of interhemispheric connection of PMv. They help to provide an anatomical foundation for understanding PMv's role in motor control of the hand and interhemispheric interactions that may underlie the coordination of bimanual movements.  相似文献   

5.
Brain plasticity is an important mechanism for functional recovery from a cerebral lesion. The authors aimed to visualize plasticity in adult rats with a neonatal freeze lesion in the somatosensory cortex using functional magnetic resonance imaging (fMRI), and hypothesized activation outside the primary projection area. A freeze lesion was induced in the right somatosensory cortex of newborn Wistar rats (n = 12). Sham-operated animals (n = 7) served as controls. After 6 or 7 months, a neurologic examination was followed by recording of somatosensory evoked potentials (SSEPs) and magnetic resonance experiments (anatomical images, fMRI with blood oxygen level-dependent contrast and perfusion-weighted imaging) with electrical forepaw stimulation under alpha-chloralose anesthesia. Lesioned animals had no obvious neurologic deficits. Anatomical magnetic resonance images showed a malformed cortex or hyperintense areas (cysts) in the lesioned hemisphere. SSEPs were distorted and smaller in amplitude, and fMRI activation was significantly weaker in the lesioned hemisphere. Only in a few animals were cortical areas outside the primary sensory cortex activated. The results are discussed in respect to an apparent absence of plasticity, loss of excitable tissue, the excitability of the lesioned hemisphere, altered connectivity, and a disturbed coupling of increased neuronal activity to the hemodynamic response.  相似文献   

6.
Current evidence indicates reorganization of motor cortex in association with motor behavior. To investigate the molecular basis for these changes rats were fitted with limb-restricting vests which forced the use of one forelimb for 10 days. Using cDNA macroarrays, expression profiles of the corresponding motor cortices connected to the overused and immobilized limbs were analyzed. In the overused motor cortex up-regulations were observed exclusively, including genes coding for voltage-gated ion channels, trafficking and targeting proteins, and intracellular kinase network members (10 genes). In the contralateral immobilized cortex changes were restricted to down-regulation, mainly involving genes pertaining to DNA-binding, translation, neuronal signaling and metabolic pathways (9 genes). At least some of these changes are likely to represent the molecular substrate of use-dependent plasticity.  相似文献   

7.
The present study aimed to assess the molecular bases of cortical compensatory mechanisms following spinal cord injury in primates. To accomplish this, comprehensive changes in gene expression were investigated in the bilateral primary motor cortex (M1), dorsal premotor cortex (PMd), and ventral premotor cortex (PMv) after a unilateral lesion of the lateral corticospinal tract (l‐CST). At 2 weeks after the lesion, a large number of genes exhibited altered expression levels in the contralesional M1, which is directly linked to the lesioned l‐CST. Gene ontology and network analyses indicated that these changes in gene expression are involved in the atrophy and plasticity changes observed in neurons. Orchestrated gene expression changes were present when behavioral recovery was attained 3 months after the lesion, particularly among the bilateral premotor areas, and a large number of these genes are involved in plasticity. Moreover, several genes abundantly expressed in M1 of intact monkeys were upregulated in both the PMd and PMv after the l‐CST lesion. These area‐specific and time‐dependent changes in gene expression may underlie the molecular mechanisms of functional recovery following a lesion of the l‐CST.  相似文献   

8.
Some previous functional magnetic resonance imaging (fMRI) studies have revealed increased activation in amyotrophic lateral sclerosis (ALS) patients but longitudinal data on such activation changes are lacking. To assess the time course of changes in fMRI patterns and their potential contribution to the understanding of ALS pathophysiology, we, therefore, investigated a total of 22 patients with ALS and matched control participants while they performed a blocked motor task. Patients were assigned to three groups according to whether they had no (MRC grade 5), mild (MRC 4), or marked (MRC 3) weakness of the examined right hand. Significant activations were seen in primary motor and premotor cortex, somatosensory cortex, supplementary motor area and subcortical areas in all groups. The size of the activated area in the contralateral sensorimotor cortex was increased to a similar degree in all three ALS groups compared to control participants irrespective of weakness on clinical examination. Whereas movement related signal change and beta weights extracted from the activated cluster were unchanged relative to controls in ALS patients with no weakness, a marked decrease of these parameters was seen in patients with weakness. Two distinct stages of neuroplastic changes could be identified in ALS (first: increase of the activated area in contralateral sensorimotor cortex; second: reduction of signal change and beta weights with increasing weakness). We interpret the increase of the activated area as a result of decreased intracortical inhibition and the reduction of movement related signal change and beta weights as a consequence of loss of upper motor neurons. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
We investigated axonal plasticity in the bilateral motor cortices in rats after unilateral stroke and bone marrow stromal cell (BMSC) treatment. Rats were subjected to permanent right middle cerebral artery occlusion followed by intravenous administration of phosphate-buffered saline or BMSCs 1 day later. Adhesive-removal test and modified neurologic severity score were performed weekly to monitor limb functional deficit and recovery. Anterograde tracing with biotinylated dextran amine injected into the right motor cortex was used to assess axonal sprouting in the contralateral motor cortex and ipsilateral rostral forelimb area. Animals were killed 28 days after stroke. Progressive functional recovery was significantly enhanced by BMSCs. Compared with normal animals, axonal density in both contralateral motor cortex and ipsilateral rostral forelimb area significantly increased after stroke. Bone marrow stromal cells markedly enhanced such interhemispheric and intracortical connections. However, labeled transcallosal axons in the corpus callosum were not altered with either stroke or treatment. Both interhemispheric and intracortical axonal sprouting were significantly and highly correlated with behavioral outcome after stroke. This study suggests that, after stroke, cortical neurons surviving in the peri-infarct motor cortex undergo axonal sprouting to restore connections between different cerebral areas. Bone marrow stromal cells enhance axonal plasticity, which may underlie neurologic functional improvement.  相似文献   

10.
Motor recovery after stroke requires continuous interaction of motor and somatosensory systems. Integration of somatosensory feedback with motor programs is needed for the automatic adjustment of the speed, range, and strength of the movement. We recorded somatosensory evoked fields (SEFs) to tactile finger stimulation with whole-scalp magnetoencephalography in 23 acute stroke patients at 1 week, 1 month, and 3 months after stroke to investigate how deficits in the somatosensory cortical network affect motor recovery. SEFs were generated in the contralateral primary somatosensory cortex (SI) and in the bilateral parietal opercula (PO) in controls and patients. In the patients, SI amplitude or latency did not correlate with any of the functional outcome measures used. In contrast, the contralateral PO (cPO) amplitude to the affected hand stimuli correlated significantly with hand function in the acute phase and during recovery; the weaker the PO activation, the clumsier the hand was. At 1 and 3 months, enhancement of the cPO activation paralleled the improvement of the hand function. Whole-scalp magnetoencephalography measurements revealed that dysfunction of somatosensory cortical areas distant from the ischemic lesion may affect the motor recovery. Activation strength of the PO paralleled motor recovery after stroke, suggesting that the PO area is an important hub in mediating modulatory afferent input to motor cortex.  相似文献   

11.
Sensorimotor organization in double cortex syndrome   总被引:1,自引:0,他引:1  
Subcortical band heterotopia is a diffuse malformation of cortical development related to pharmacologically intractable epilepsy. On magnetic resonance imaging (MRI), patients with "double cortex" syndrome (DCS) present with a band of heterotopic gray matter separated from the overlying cortex by a layer of white matter. The function and connectivity of the subcortical heterotopic band in humans is only partially understood. We studied six DCS patients with bilateral subcortical band heterotopias and six healthy controls using functional MRI (fMRI). In controls, simple motor task elicited contralateral activation of the primary motor cortex (M1) and ipsilateral activation of the cerebellum and left supplementary motor area (SMA). All DCS patients showed task-related contralateral activation of both M1 and the underlying heterotopic band. Ipsilateral motor activation was seen in 4/6 DCS patients. Furthermore, there were additional activations of nonprimary normotopic cortical areas. The sensory stimulus resulted in activation of the contralateral primary sensory cortex (SI) and the thalamus in all healthy subjects. The left sensory task also induced a contralateral activation of the insular cortex. Sensory activation of the contralateral SI was seen in all DCS patients and secondary somatosensory areas in 5/6. The heterotopic band beneath SI became activated in 3/6 DCS patients. Activations were also seen in subcortical structures for both paradigms. In DCS, motor and sensory tasks induce an activation of the subcortical heterotopic band. The recruitment of bilateral primary areas and higher-order association normotopic cortices indicates the need for a widespread network to perform simple tasks.  相似文献   

12.
Previous studies demonstrated functional abnormalities in the somatosensory system, including a distorted functional organization of the somatosensory cortex (S1) in patients with writer's cramp. We tested the hypothesis that these functional alterations render S1 of these patients more susceptible to the "inhibitory" effects of subthreshold 1 Hz repetitive transcranial magnetic stimulation (rTMS) given to S1. Seven patients with writer's cramp and eight healthy subjects were studied. Patients also received rTMS to the motor cortex hand area (M1). As an outcome measure, short-latency afferent inhibition (SAI) was tested. SAI was studied in the relaxed first dorsal interosseous muscle using conditioning electrical stimulation of the index finger and TMS pulses over the contralateral M1. Baseline SAI did not differ between groups. S1 but not M1 rTMS reduced SAI in patients. rTMS had no effects on SAI in healthy subjects. Because SAI is mediated predominantly at a cortical level in the sensorimotor cortex, we conclude that there is an abnormal responsiveness of this area to 1 Hz rTMS in writer's cramp, which may represent a trait toward maladaptive plasticity in the sensorimotor system in these patients.  相似文献   

13.
Eight monkeys (Macaca mulatta) were taught to squeeze and release a handgrip. The movement simulated the brisk squeeze of a hand dynamometer performed by 7 human subjects. Monkey. During the performance of the voluntary movements, slow cortical potentials (motor potentials or MPs) were studied with monopolar, surface bipolar, transcortical and intracortical recordings. A survey of the dorsal expanse of cerebral cortex showed that the contralateral motor hand area, somatosensory hand area and area 6 adjacent to the supplementary motor area became active with movement. MPs also were seen in the motor and somatosensory cortex medial to the hand area, but we concluded that those potentials were probably related to adventitious movements in the arm and leg. That area 6 became active with movement was further verified with extracellular unit recording; the behavior of area 6 units was compared with that recorded from units in the motor hand area. Using simultaneous transcortical recordings a sequence of cortical activation was observed in those areas generating an MP. The motor hand area became active first, followed in turn by area 6 and the somatosensory hand area. The monosynaptic cortico-cortical connections of the motor hand area were studied with autoradiographic and horseradish peroxidase techniques and compared to the distribution of the MP. The hand area demonstrated reciprocal connectivity with portions of the somatosensory hand area, the supplementary motor area in area 6 and the cortex adjacent to the intraparietal sulcus. The distribution of the MPs correlated with the connectivity to the supplementary motor and somatosensory areas. Our physiologic studies did not adequately investigate the area adjacent to the intraparietal sulcus. Man. Motor potentials were studied using surface bipolar recordings with closely spaced electrodes (inter-electrode distances 1 cm or 2 cm). Recordings were made directly from the cortex in one subject studied under local anesthesia during an operation for epilepsy, and epidurally in 6 subjects in whom epidural electrode arrays had been inserted for the purpose of localizing an epileptogenic focus. Similar to the findings in the animals, MPs were recorded from the contralateral motor and somatosensory hand area with activity in motor cortex appearing first; area 6 just anterior to the motor hand area probably also generated a response. In addition, a locally generated potential not seen in monkey was recorded anterior to area 6. This difference in response distribution is viewed as possibly relating to the different significance which the seemingly comparable hand movements have for the animal and human subjects. No response was seen in motor and somatosensory hand area with ipsilateral movements. We have no information for the anteriorly recorded response with ipsilateral movement.  相似文献   

14.
Recently, much discussion has been centered on the brain networks of recall, memory, and execution. This study utilized functional magnetic resonance imaging to compare activation between a simple sequential finger movement (real task) and recalling the same task (imagery task) in 15 right-handed normal subjects. The results demonstrated a greater activation in the contralateral motor and somatosensory cortex during the real task, and a higher activation in the contralateral inferior frontal cortex, ipsilateral motor, somatosensory cortex, and midbrain during the imagery task. These real task-specific areas and imagery-specific areas, including the ipsilateral motor and somatosensory cortex, are consistent with recent studies. However, this is the first report to demonstrate that the imagery-specific regions involve the ipsilateral inferior frontal cortex and midbrain. Directly comparing the activation between real and imagery tasks demonstrated the inferior frontal cortex and midbrain to therefore play important roles in cognitive feedback.  相似文献   

15.
The present study examines patterns of connectivity between the primary somatosensory cortex of the rat (SI) and surrounding cortical areas also implicated in the processing of somatosensory information. The impetus for the study was the recent reports of major differences in the organization of cortex lateral and caudal to the SI in two other rodent species; the mouse (Carvell and Simons, '86: Somatosens. Res. 3:213-237; '87: J. Comp. Neurol. 265:409-427) and the grey squirrel (Krubitzer et al., '86: J. Comp. Neurol 250: 403-430). Corticocortical connections between the somatosensory areas of the rat parietal cortex were examined by using the combined retrograde and anterograde transport of horseradish peroxidase as well as the retrograde transport of fluorescent tracers. Tracer injections were made into different locations within SI and dysgranular cortex as well as into more lateral regions of parietal cortex. The tangential patterns of distribution both of callosal connections and of cytochrome oxidase activity together provided points of reference in determining the relation between injection sites and the resultant patterns of label. The results indicate that two distinct somatosensory areas, SI and the dysgranular cortex, are interconnected with a further lateral somatosensory area referred to as the second somatosensory area (SII). These projections are organized in a topographic fashion, which we interpret as evidence for a single representation of the body surface in SII. The three somatosensory areas each exhibit unique laminar patterns of ipsilateral corticocortical projection neurons and terminations. In SI, projection neurons are found mainly in layers II, III, and Va, and terminations are largely restricted to the infragranular layers. In the dysgranular cortex, projection neurons and terminations are found in all layers except layer I in which only terminal label is detectable and layer Vb in which notably fewer neurons are labelled. In SII, projection neurons and terminations are found in all layers except layer I and are particularly dense in lower layer III and layer IV. Further, whereas the laminar and areal distributions of ipsilateral and contralateral corticocortical projections largely overlap in both SI and the dysgranular cortex, in SII they tend to be areally segregated. Neurons projecting bilaterally to both ipsilateral and contralateral somatosensory cortex were equally rare in all three somatosensory areas. These results are discussed in relation to the organization of SII in other rodent species, and it is concluded that in the rat, like the mouse, cortex lateral and caudal to SI contains a single representation of the body surface.  相似文献   

16.
To gain insight into how cortical fields process somatic inputs and ultimately contribute to complex abilities such as tactile object perception, we examined the pattern of connections of two areas in the lateral sulcus of macaque monkeys: the second somatosensory area (S2), and the parietal ventral area (PV). Neuroanatomical tracers were injected into electrophysiologically and/or architectonically defined locations, and labeled cell bodies were identified in cortex ipsilateral and contralateral to the injection site. Transported tracer was related to architectonically defined boundaries so that the full complement of connections of S2 and PV could be appreciated. Our results indicate that S2 is densely interconnected with the primary somatosensory area (3b), PV, and area 7b of the ipsilateral hemisphere, and with S2, 7b, and 3b in the opposite hemisphere. PV is interconnected with areas 3b and 7b, with the parietal rostroventral area, premotor cortex, posterior parietal cortex, and with the medial auditory belt areas. Contralateral connections were restricted to PV in the opposite hemisphere. These data indicate that S2 and PV have unique and overlapping patterns of connections, and that they comprise part of a network that processes both cutaneous and proprioceptive inputs necessary for tactile discrimination and recognition. Although more data are needed, these patterns of interconnections of cortical fields and thalamic nuclei suggest that the somatosensory system may not be segregated into two separate streams of information processing, as has been hypothesized for the visual system. Rather, some fields may be involved in a variety of functions that require motor and sensory integration.  相似文献   

17.
One approach to examining how higher sensory, motor, and cognitive faculties emerge in the neocortex is to elucidate the underlying wiring principles of the brain during development. The mammalian neocortex is a layered structure generated from a sheet of proliferating ventricular cells that progressively divide to form specific functional areas, such as the primary somatosensory (S1) and motor (M1) cortices. The basic wiring pattern in each of these functional areas is based on a similar framework, but is distinct in detail. Functional specialization in each area derives from a combination of molecular cues within the cortex and neuronal activity-dependent cues provided by innervating axons from the thalamus. One salient feature of neocortical development is the establishment of topographic maps in which neighboring neurons receive input relayed from neighboring sensory afferents. Barrels, which are prominent sensory units in the somatosensory cortex of rodents, have been examined in detail, and data suggest that the initial, gross formation of the barrel map relies on molecular cues, but the refinement of this topography depends on neuronal activity. Several excellent reviews have been published on the patterning and plasticity of the barrel cortex and the precise targeting of ventrobasal thalamic axons. In this review, the authors will focus on the formation and functional maturation of synapses between thalamocortical axons and cortical neurons, an event that coincides with the formation of the barrel map. They will briefly review cortical patterning and the initial targeting of thalamic axons, with an emphasis on recent findings. The rest of the review will be devoted to summarizing their understanding of the cellular and molecular mechanisms underlying thalamocortical synapse maturation and its role in barrel map formation.  相似文献   

18.
In the macaque monkey area 3a of the cerebral cortex separates area 4, a primary motor cortical field, from somatosensory area 3b, which has a subcortical input mainly from cutaneous mechanoreceptive neurons. That each of these cortical areas has a unique thalamic input was illustrated in the preceding paper. In the present experiments the cortical afferent projections to these 3 areas of the sensorimotor cortex monkey were visualized and compared, using 4 differentiable fluorescent dyes as axonal retrogradely transported labels. The cortical projection patterns to areas 3a, 3b, and 4 were similar in that they each consisted of (a) a “halo” of input from the immediately surrounding cortex, and (b) discrete projections from one or more remote cortical areas. However, the pattern of remote inputs from precentral, mesial, and posterior parietal cortex was different for each of the 3 cortical target areas. The cortical input configuration was least complex for area 3b, its remote input projecting mainly from insular cortex. The pattern of discrete cortical inputs to the motor area 4, however, was more complex, with projections from the cingulate motor area (24c/d), the supplementary motor area, postarcuate cortex, insular cortex, and postcentral areas 2/5. Area 3a, in addition to the proximal projections from the immediately surrounding cortex, also received input from the supplementary motor area, cingulate motor cortex, insular cortex, and areas 2/5. Thus, this pattern of cortical input to area 3a resembled more closely that of the adjacent motor rather than that of the somatosensory area 3b. Contrasting with this, however, the thalamic input to area 3a was largely from somatosensory VPLc (abbreviations from Olszewski [1952] The Thalamus of the Macaca mulatta. Basel: Karger) and not from VPLo (with input from cerebellum, and projecting to precentral motor areas). © 1993 Wiley-Liss, Inc.  相似文献   

19.
Changes in activated areas of the brain during ankle active dorsiflexion and ankle active plantar flexion were observed in six healthy subjects using functional magnetic resonance imaging. Excited areas of ankle active dorsiflexion involved the bilateral primary motor area and the primary somatosensory area, as well as the bilateral supplementary sensory area, the primary visual area, the right second visual area, and the vermis of cerebellum. Excited areas of ankle active plantar flexion included the ipsilateral supplementary motor area, the limbic system, and the contralateral corpus striatum. Fine movements of the cerebral cortex control the function of the ankle dorsiflexion to a larger extent than ankle plate flexion, and the function of ankle plate flexion is more controlled by the subcortical area.  相似文献   

20.
It has been proposed that the auditory cortex of deaf subjects may provide an example of cross-modal compensatory plasticity. We investigated whether sensory stimulation could elicit responses from auditory areas of a congenitally deaf subject. Neuromagnetic fields were recorded using a 37-channel biomagnetometer under conditions of: 1) visual stimulation; 2) somatosensory stimulation; and 3) a simple motor task. Visual items were reversing checkerboards and single light spots, presented in various portions of the visual field; somatosensory stimuli were pneumatic taps delivered to individual digit-segments and the lip; the motor task was self-paced finger tapping. In addition, functional magnetic resonance imaging was used to observe the activation elicited by full-field checkerboard and sign language stimuli. No responses to passively presented visual or somatosensory stimuli were observed in the auditory cortex. In contrast, somatosensory, motor, and visual cortices revealed evoked magnetic responses comparable to those from control subjects, indicating canonical anatomic and physiological organization in these areas. These data suggest that primary projection areas do not reveal obvious plastic effects. We suggest that in the human auditory cortex compensatory plasticity emerges primarily as a property of non-primary areas and is best observed under attentionally demanding conditions. Hum. Brain Mapping 5:437–444, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号