首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the purines, adenosine 5'-triphosphate (ATP) and guanosine 5'-triphosphate (GTP), and the pyrimidines, uridine 5'-triphosphate (UTP), cytidine 5'-triphosphate (CTP), and thymidine 5'-triphosphate (TTP), on vascular resistance were investigated in the rat mesenteric arterial bed. In preparations at basal tone, these agents produced dose-related vasoconstriction with a potency order of ATP greater than CTP greater than UTP much greater than TTP = GTP. When tone was raised with norepinephrine (30 microM), these agents caused dose-related vasodilatation with the potency order of UTP = ATP greater than TTP = GTP. CTP did not elicit vasodilatation. Removal of the endothelium with sodium deoxycholate resulted in an increased responsiveness of the mesenteric bed preparation to the vasoconstrictor effects of each of the purines and pyrimidines tested. The selective P2 X-purinoceptor-desensitizing agent alpha,beta-methylene ATP inhibited vasoconstrictor responses to ATP and to CTP but had no effect on vasoconstrictor responses elicited by UTP, TTP, and GTP. In raised-tone preparations, vasodilator responses to ATP, UTP, TTP, and GTP were abolished after removal of the endothelium with sodium deoxycholate. Responses to acetylcholine were also abolished; those to sodium nitroprusside were unimpaired. An inhibitor of the formation of nitric oxide from L-arginine, N omega-nitro-L-arginine methyl ester (30 microM), which antagonizes responses mediated by endothelium-derived relaxing factor (nitric oxide), attenuated vasodilatation to ATP, UTP, and acetylcholine but not to sodium nitroprusside.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To study the effects of hydroxyl radicals on the sensitivity of the ATP-sensitive K+ (K+ ATP) channel to tolbutamide, we used patch clamp and microfluorometric techniques in pancreatic beta-cells isolated from rats. cell-attached membrane patches, exposure of the cells to 0.3 mM H2O2 increased the probability of opening of K+ATP channels in the presence of 2.8 mM glucose. Tolbutamide dose-dependently inhibited the K+ATP channel with half-maximal inhibition (IC50) at 0.8 microM before and immediately after exposure to H2O2. After prolonged exposure (>20 min) to H2O2, the IC50 was increased to 15 microM. The presence of both ATP and ADP at concentrations ranging from 0.01 to 0.1 mM in the inside-out bath solution significantly enhanced the inhibition of the channels by 10 microM tolbutamide. Addition of 0.3 mM H2O2 induced a transient minute increase in the cytoplasmic Ca2+ concentration ([Ca2+]i) within 10 min, followed by a sustained pronounced increase in [Ca2]i. After more than 20 min of exposure of cells to 0.3mM H2O2, [Ca2]i was increased to above 2 microM. Treatment of the cytoplasmic face of inside-out membrane patches with 1 microM Ca2+ attenuated the tolbutamide-sensitivity of the K+ATP channel, but not the ATP-sensitivity of the channel. These findings indicate that H2O2 reduces tolbutamide sensitivity by inducing a sustained increase in [Ca2+]i.  相似文献   

3.
4.
5.
In the present study, the effects of the bioflavonoid chrysin (5,7-dihydroxyflavone) were analyzed on the perfusion pressure of isolated mesenteric vascular bed. The vasorelaxant effects of chrysin were more potent on intact endothelium than on denuded vessels. This endothelium-dependent response induced by chrysin was inhibited in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME), KCl, tetraethylammonium (TEA), BaCl(2), TEA plus L-NAME, and ouabain plus BaCl(2), while incubations with indomethacin and glibenclamide did not modify the response induced by this bioflavonoid. Neither gap junction inhibition with carbenoxolone nor epoxyeicosatrieconic acid synthesis inhibition with sulfaphenazole (selective CYP 2C/3A inhibitor) or 7-ethoxyresorufin (selective CYP 1A inhibitor) inhibited the chrysin-induced relaxation. Moreover, chrysin increased L-NAME-sensitive cGMP accumulation in intact vascular mesenteric preparation. In conclusion, chrysin shows vasodilator effects on resistance vessels, which depend partially on the functional endothelium and appear to be related to the NO/cGMP pathway and, possibly to the release of endothelium-derived hyperpolarizing factor.  相似文献   

6.
Oxidative stress markedly alters protein function through redox modification of sulfhydryl groups present in cysteine residues. To explore the role of redox state in modulating cardiac K+ channels, this study examined the effects of sulfhydryl modifiers on the repolarizing transient outward current (Ito) in voltage-clamped myocytes from rat ventricle. Oxidized glutathione (GSSG; 5mM), an endogenous disulfide that specifically reacts with protein sulfhydryls, decreased maximum Ito amplitude from baseline by 49% when added to the external solution (P<0.05) and by 27% during internal dialysis (P<0.05). The membrane-impermeable disulfide, 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) did not alter Ito when added to the external solution, but it decreased current amplitude by 31% during internal dialysis (P<0.05). GSSG-mediated Ito inhibition varied in a frequency- and voltage-dependent manner, consistent with a state-dependent blocking mechanism. This phenomenon was also observed in myocytes internally dialyzed with DTNB or Cd2+, which also covalently binds to free sulfhydryls. Inhibition of Ito by GSSG was not reversed by washout alone, consistent with the stable nature of covalently-modified sulfhydryl groups. However, when myocytes pretreated with GSSG were dialyzed with the reducing agent dithiothreitol, Ito amplitude increased significantly by 42% (P<0.05). These data suggest that alpha-subunits underlying Ito, or associated proteins, have one or more sulfhydryl groups within the cytoplasmic domain that directly modulate channel activity in response to changes in cell redox state. Redox modulation of Ito channels may be an important post-translational mechanism contributing to acute changes in cardiac repolarization under conditions of oxidative stress, such as ischemia and reperfusion.  相似文献   

7.
8.
目的探讨二十二碳六烯酸(DHA)对大鼠冠状动脉平滑肌细胞(CASMCs)上大电导钙激活性钾通道(BKCa)的影响。方法采用酶消化法获得大鼠CASMCs,用膜片钳技术分别记录0,10,20,40,60和80μmol/LDHA对大鼠CASMCs上BKCa通道动力学的影响。结果在不同浓度DHA作用下,IBKCa和BKCa尾电流均呈浓度依赖性增加。IBKCa和BKCa尾电流I-V曲线均上移,对IBKCa稳态激活曲线无影响。在指令电压+150 mV,不同浓度DHA作用下,IBKCa电流密度分别为68.24±22.75,72.40±24.49,120.44±37.96,237.48±53.22,323.60±74.83和370.61±88.16pA/pF(P<0.05,n=20)。DHA对IBKCa激活的药物半效浓度为36.22±2.17μmol/L。在测试电压+90 mV,不同浓度DHA作用下,BKCa尾电流密度分别为91.02±13.52,100.23±17.34,224.02±38.76,369.19±65.39,511.39±82.77和700.14±96.64 pA/pF(P<0.05,n=20)。结论 DHA对全细胞BKCa有激活作用,对稳态激活曲线无影响。DHA对BKCa通道的激活作用可能是其舒张血管机制之一。  相似文献   

9.
Pharmacological modulation of [K+]o accumulation and action potential changes during acute myocardial ischemia is under evaluation as a promising new antiarrhythmic and cardioprotective strategy during myocardial ischemia and reperfusion. We studied the effects of cromakalim, a K+ channel opener that activates ATP-sensitive K+ channels, in isolated arterially perfused rabbit interventricular septa subjected to ischemia and reperfusion and, through use of the patch clamp technique, in inside-out membrane patches excised from guinea pig ventricular myocytes. During aerobic perfusion, 5 microM cromakalim shortened action potential duration (APD) from 217 +/- 7 to 201 +/- 10 msec, had no effect on [K+]o, and reduced tension by 17 +/- 3% (n = 11). During ischemia, pretreatment with 5 microM cromakalim resulted in 1) more rapid APD shortening (71 +/- 9 versus 166 +/- 7 msec at 10 minutes and 63 +/- 12 versus 122 +/- 8 msec at 30 minutes), 2) similar [K+]o accumulation after 10 minutes (8.9 +/- 0.3 versus 9.6 +/- 0.5 mM) but a trend toward increased [K+]o accumulation after 30 minutes (11.0 +/- 1.7 versus 9.6 +/- 1.0 mM), and 3) similar times for tension to decline to 50% of control (2.14 +/- 0.16 versus 2.14 +/- 0.19 minutes) but shorter time to fall to 20% of control (4.34 +/- 0.33 versus 4.90 +/- 0.22 minutes; p = 0.003). After 60 minutes of reperfusion following 30 minutes of ischemia, recovery of function was similar, with a trend toward better recovery of developed tension (to 58 +/- 9% versus 39 +/- 10% of control; p = 0.18) and tissue ATP levels in cromakalim-treated hearts but no differences in APD or rest tension. Thus, 5 microM cromakalim had mild effects in normal heart but greatly accelerated APD shortening during ischemia without markedly increasing [K+]o accumulation, possibly because the more rapid APD shortening reduced the time-averaged driving force for K+ efflux through ATP-sensitive K+ channels. A significant cardioprotective effect during 30 minutes of ischemia plus 60 minutes of reperfusion could not be demonstrated in this model. In excised membrane patches studied at room temperature, the ability of cromakalim to activate ATP-sensitive K+ channels was significantly potentiated by 100 microM but not 15 microM cytosolic ADP, suggesting that in addition to the modest fall in cytosolic ATP during early ischemia, the rapid increases in cytosolic ADP may further sensitize cardiac ATP-sensitive K+ channels to activation by cromakalim.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
11.
The distribution of functionally active, inwardly rectifying K (K(IR)) channels was investigated in the rat small mesenteric artery using both freshly isolated smooth muscle and endothelial cells and small arterial segments. In Ca(2+)-free solution, endothelial cells displayed a K(IR) current with a maximum amplitude of 190 +/- 16 pA at -150 mV and sensitivity to block with 30 microM Ba(2+) (n = 7). In smooth muscle cells, outward K current was activated at around -47 +/- 3 mV, but there was no evidence of K(IR) current (n = 6). Furthermore, raising extracellular [K(+)] to either 60 or 140 mM, or applying the alpha(1)-adrenoceptor agonist phenylephrine (PE; 30 microM), failed to reveal an inwardly rectifying current in the smooth muscle cells, although PE did stimulate an iberiotoxin-sensitive outward K current (n = 4). Exogenous K(+) (10.8-16.8 mM) both relaxed and repolarized endothelium-denuded segments of the mesenteric artery contracted with PE. These effects were depressed by 100 microM ouabain but unaffected by either 30 microM BaCl(2) or 3 microM glibenclamide. These data suggest that functional, inwardly rectifying Ba(2+)-sensitive channels are restricted to the endothelial cell layer in the rat small mesenteric artery.  相似文献   

12.
Vascular K+ channel openers such as cromakalim, nicorandil, and pinacidil potently stimulate 86Rb+ efflux from slices of substantia nigra. This 86Rb+ efflux is blocked by antidiabetic sulfonylureas, which are known to be potent and specific blockers of ATP-regulated K+ channels in pancreatic beta cells, cardiac cells, and smooth muscle cells. K0.5, the half-maximal effect of the enantiomer (-)-cromakalim, is as low as 10 nM, whereas K0.5 for nicorandil is 100 nM. These two compounds appear to have a much higher affinity for nerve cells than for smooth muscle cells. Openers of sulfonylurea-sensitive K+ channels lead to inhibition of gamma-aminobutyric acid release. There is an excellent relationship between potency to activate 86Rb+ efflux and potency to inhibit neurotransmitter release.  相似文献   

13.
The concept that aging results in an impairment of mitochondrial biochemistry has been tested on organelles isolated from the liver of 3-4-month-old and 24-month-old rats of the Wistar strain. Our data suggest that aging results in significant decreases in succinate-supported respiration, ATP levels and calcium uptake. When theophylline was added to the incubation mixture, both respiration and calcium uptake were depressed in approximately the same proportion in the mitochondria from old rats, although the mitochondrial ATP of young animals was significantly decreased by this substance.  相似文献   

14.
The adenohypophysis contains high-affinity binding sites for antidiabetic sulfonylureas that are specific blockers of ATP-sensitive K+ channels. The binding protein has a M(r) of 145,000 +/- 5000. The presence of ATP-sensitive K+ channels (26 pS) has been demonstrated by electrophysiological techniques. Intracellular perfusion of adenohypophysis cells with an ATP-free medium to activate ATP-sensitive K+ channels induces a large hyperpolarization (approximately 30 mV) that is antagonized by antidiabetic sulfonylureas. Diazoxide opens ATP-sensitive K+ channels in adenohypophysis cells as it does in pancreatic beta cells and also induces a hyperpolarization (approximately 30 mV) that is also suppressed by antidiabetic sulfonylureas. As in pancreatic beta cells, glucose and antidiabetic sulfonylureas depolarize the adenohypophysis cells and thereby indirectly increase Ca2+ influx through L-type Ca2+ channels. The K+ channel opener diazoxide has an opposite effect. Opening ATP-sensitive K+ channels inhibits growth hormone secretion and this inhibition is eliminated by antidiabetic sulfonylureas.  相似文献   

15.
AIMS/HYPOTHESIS: Although cells expressing insulin are detected early in human fetal development, islets isolated from fetal pancreases show poor insulin secretory responses to glucose, which may be the result of deficient glucose sensing. We have used dual and triple immunolabelling of human fetal and adult pancreas sections to investigate the presence of proteins that participate in glucose sensing in the pancreatic beta cell, namely glucose transporter 1 (GLUT 1, also known as SLC2A1), glucose transporter 2 (GLUT2, also known as SLC2A2), glucokinase (GCK) and inwardly rectifying K+ channel (KIR6.2, also known as KCNJ11) and sulphonylurea receptor 1 (SUR1, also known as ABCC8) subunits of ATP-sensitive K+ channels (K+(ATP) channels). MATERIALS AND METHODS: Pancreases obtained with ethical approval from human fetuses from 11 to 36 weeks of gestation, from infants and from adults were formalin-fixed and embedded in paraffin. Sections were labelled with antibodies to proteins of interest. Co-production of antigens was examined by dual and triple immunolabelling. RESULTS: GLUT2 and K+(ATP) channel labelling was detected in the 11-week pancreas, but largely within the pancreatic epithelium, whereas no labelling for GLUT1 was observed. From 15 weeks, GLUT1, GCK and K+(ATP) channel labelling was detected in an increasing proportion of insulin-positive cells and epithelial labelling with K+(ATP) channel antibodies diminished. GLUT2 was seen in the majority of beta cells only after 7 months of age. CONCLUSIONS/INTERPRETATION: The results demonstrate that only a subpopulation of beta cells in the human fetal pancreas produce all key elements of the glucose-sensing apparatus, which may contribute to poor secretory responses in early life.  相似文献   

16.
Preconditioning by one or several brief periods of ischemia activates an endogenous cardioprotective program that increases the resistance of cardiomyocytes to injury by subsequent prolonged periods of ischemia. Ischemic preconditioning can be mimicked by K(+) channel openers and various other substances, a phenomenon termed pharmacological preconditioning. Initially, ischemic preconditioning has been ascribed to the opening of ATP-sensitive K(+) channels at the surface membrane of cardiomyocytes. Since 1997, numerous publications have implicated mitochondrial ATP-sensitive K(+) channels (mK(ATP)) as a major trigger and/or end effector of preconditioning. Diazoxide has been suggested to be a specific activator of mK(ATP) channels, and the substituted fatty acid 5-hydroxydecanoate (5-HD) has been suggested to be a specific inhibitor. However, diazoxide and 5-HD have multiple K(+)-channel-independent actions, and the experimental evidence for an obligatory role of mK(ATP) channels in preconditioning, or even their existence, remains inconclusive. In contrast, surface K(ATP) channels have been well characterized, and we summarize the evidence suggesting that they make a major contribution to preconditioning. We also discuss a number of other factors involved in preconditioning: (1) generation of reactive oxygen species, (2) impairment of fatty acid metabolism, and (3) opening of the mitochondrial permeability transition pore. In the light of these emerging concepts, we critically re-examine the evidence for and against a role of mK(ATP) channels in ischemic and pharmacological preconditioning.  相似文献   

17.
Two nonhomologous polypeptide toxins, tityustoxinK alpha (TsTX-K alpha) and tityustoxin K beta (TsTX-K beta), purified from thevenom of the Brazilian scorpion Tityus serrulatus, selectively blockvoltage-gated noninactivating K+ channels in synaptosomes (IC50 values of 8 nMand 30 nM, respectively). In contrast, alpha-dendrotoxin (alpha-DTX) andcharybdotoxin (ChTX) block voltage-gated inactivating K+ channels insynaptosomes (IC50 values of 90 nM and 40 nM, respectively). We studiedinteractions among these toxins in 125I-alpha-DTX binding and 86Rb effluxexperiments. Both TsTX-K alpha and ChTX completely displaced specifically bound125I-alpha-DTX from synaptic membranes, but TsTX-K beta had no effect on boundalpha-DTX. TsTX-K alpha and TsTX-K beta blocked the same noninactivatingcomponent of 100 mM K(+)-stimulated 86Rb efflux in synaptosomes. Both alpha-DTXand ChTX blocked the same inactivating component of the K(+)-stimulated 86Rbefflux in synaptosomes. Both the inactivating and the noninactivating componentsof the 100 mM K(+)-stimulated 86Rb efflux were completely blocked when 200 nMTsTX-K beta and either 600 nM alpha-DTX or 200 nM ChTX were present. The effectsof TsTX-K alpha and ChTX on 86Rb efflux were also additive. When TsTX-K alphawas added in the presence of alpha-DTX, however, only the noninactivatingcomponent of the K(+)-stimulated efflux was blocked. The inactivating componentcould then be blocked by ChTX, which is structurally homologous to TsTX-K alpha.We conclude that TsTX-K alpha unblocks the voltage-gated inactivating K+channels in synaptosomes when they are blocked by alpha-DTX, but not when theyare blocked by ChTX. TsTX-K alpha binds to a site on the inactivating K+ channelthat does not occlude the pore; its binding apparently prevents alpha-DTX (7054Da), but not ChTX (4300 Da), from blocking the pore. The effects of TsTX-K alphaon 125I-alpha-DTX binding and 86Rb efflux are mimicked by noxiustoxin, which ishomologous to TsTX-K alpha and ChTX.  相似文献   

18.
目的观察内源性及外源性硫化氢(H2S)对大鼠离体心房肌细胞三磷酸腺苷(ATP)敏感性钾通道(KATP)外向电流的影响,以探讨H2S对心房肌细胞的作用。方法对大鼠离体心脏采用胶原酶酶解法得到单个心房肌细胞,采用膜片钳全细胞技术记录H2S生成酶——胱硫醚-γ-裂解酶的不可逆抑制剂DL-propargylglycine(PPG)用药前、用药后5,10,15,20,25 min及不同浓度外源性H2S的供体硫氢化钠(NaHS)干预前后的KATP电流。结果经200μmol/L PPG干预后KATP峰电流密度(+70 mV)显著减小(6.906 6±1.902 9 pA/pF vs 3.924 4±0.988 5 pA/pF,P<0.01),且具有时间依赖性。经9.375,18.75,37.5,75,150μmol/L NaHS干预后KATP峰电流密度呈浓度依赖性增大,至150μmol/L时峰电流密度明显增大(6.5974±1.1527 pA/pF vs 10.463 1±2.329 7 pA/pF,P<0.01)。结论内源性及外源性H2S均可以开放大鼠离体心房肌KATP通道,使KATP电流增加。  相似文献   

19.
20.
The molecular mechanisms by which higher plant cells take up K+ across the plasma membrane (plasmalemma) remain unknown. Physiological transport studies in a large number of higher plant cell types, including guard cells, have suggested that at least two distinct types of K(+)-uptake mechanisms exist, permitting low-affinity and high-affinity K+ accumulation, respectively. Recent patch clamp studies have revealed the presence of inward-conducting (inward-rectifying) K+ channels in the plasma membrane of higher plant cells. Research on guard cells has suggested that these K+ channels provide a major pathway for proton pump-driven K+ uptake during stomatal opening. In the present study the contribution of inward-rectifying K+ channels to higher plant cell K+ uptake was investigated by examining kinetic properties of guard cell K+ channels in Vicia faba in response to changes in the extracellular K+ concentration. Increasing the extracellular K+ concentration in the range from 0.3 mM to 11.25 mM led to enhancement of inward K+ currents and changes in current-voltage characteristics of K+ channels. The increase in K+ conductance as a function of the extracellular K+ concentration revealed a K(+)-equilibrium dissociation constant (Km) of approximately 3.5 mM, which suggests that inward-rectifying K+ channels can function as a molecular mechanism for low-affinity K+ uptake. Lowering the extracellular K+ concentration in the range from 11 mM to 1 mM induced negative shifts in the activation potential of K+ channels, such that these channels function as a K+ sensor, permitting only K+ uptake. At low extracellular K+ concentrations of 0.3 mM K+, inward-rectifying K+ channels induce hyperpolarization. Results from the present study suggest that inward-rectifying K+ channels constitute an essential molecular mechanism for plant nutrition and growth control by providing a K(+)-sensing and voltage-dependent pathway for low-affinity K+ uptake into higher plant cells and additionally by contributing to plasma membrane potential regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号