首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Nicotine's action on the midbrain dopaminergic neurons is mediated by nicotinic acetylcholine receptors (nAChRs) that are present on the cell bodies and the terminals of these neurons. Previously, it was suggested that one of the nAChR subtypes located on striatal dopaminergic terminals may be an alpha3beta2 subtype, based on partial inhibition of nicotine-stimulated [(3)H]dopamine release by alpha-conotoxin MII, a potent inhibitor of heterologously expressed alpha3beta2 nAChRs. More recent studies indicated that alpha-conotoxin MII also potently blocks alpha6-containing nAChRs. In the present study, we have examined the nAChR subtype(s) modulating [(3)H]dopamine release from striatal terminals by using novel alpha-conotoxins that have 37- to 78-fold higher selectivity for alpha6-versus alpha3-containing nAChRs. All of the peptides partially (20-35%) inhibit nicotine-stimulated [(3)H]dopamine release with IC(50) values consistent with those obtained with heterologously expressed rat alpha6-containing nicotinic acetylcholine receptors. These results, together with previous studies by others, further support the idea that alpha6-containing nicotinic receptors modulate nicotine-stimulated dopamine release from rat striatal synaptosomes.  相似文献   

2.
The current study evaluated a new series of N,N'-alkane-diyl-bis-3-picolinium (bAPi) analogs with C6-C12 methylene linkers as nicotinic acetylcholine receptor (nAChR) antagonists, for nicotine-evoked [3H]dopamine (DA) overflow, for blood-brain barrier choline transporter affinity, and for attenuation of discriminative stimulus and locomotor stimulant effects of nicotine. bAPi analogs exhibited little affinity for alpha4beta2* (* indicates putative nAChR subtype assignment) and alpha7* high-affinity ligand binding sites and exhibited no inhibition of DA transporter function. With the exception of C6, all analogs inhibited nicotine-evoked [3H]DA overflow (IC50 = 2 nM-6 microM; Imax = 54-64%), with N,N'-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB; C12) being most potent. bPiDDB did not inhibit electrically evoked [3H]DA overflow, suggesting specific nAChR inhibitory effects and a lack of toxicity to DA neurons. Schild analysis suggested that bPiDDB interacts in an orthosteric manner at nAChRs mediating nicotine-evoked [3H]DA overflow. To determine whether bPiDDB interacts with alpha-conotoxin MII-sensitive alpha6beta2-containing nAChRs, slices were exposed concomitantly to maximally effective concentrations of bPiDDB (10 nM) and alpha-conotoxin MII (1 nM). Inhibition of nicotine-evoked [3H]DA overflow was not different with the combination compared with either antagonist alone, suggesting that bPiDDB interacts with alpha6beta2-containing nAChRs. C7, C8, C10, and C12 analogs exhibited high affinity for the blood-brain barrier choline transporter in vivo, suggesting brain bioavailability. Although none of the analogs altered the discriminative stimulus effect of nicotine, C8, C9, C10, and C12 analogs decreased nicotine-induced hyperactivity in nicotine-sensitized rats, without reducing spontaneous activity. Further development of nAChR antagonists that inhibit nicotine-evoked DA release and penetrate brain to antagonize DA-mediated locomotor stimulant effects of nicotine as novel treatments for nicotine addiction is warranted.  相似文献   

3.
The nicotine metabolite cotinine is an abundant long-lived bio-active compound that may contribute to the overall physiological effects of tobacco use. Although its mechanism of action in the central nervous system has not been extensively investigated, cotinine is known to evoke dopamine release in the nigrostriatal pathway through an interaction at nicotinic receptors (nAChRs). Because considerable evidence now demonstrates the presence of multiple nAChRs in the striatum, the present experiments were done to determine the subtypes through which cotinine exerts its effects in monkeys, a species that expresses similar densities of striatal alpha4beta2* (nAChR containing the alpha4 and beta2 subunits, but not alpha3 or alpha6) and alpha3/alpha6beta2* (nAChR composed of the alpha3 or alpha6 subunits and beta2) nAChRs. Competition binding studies showed that cotinine interacts with both alpha4beta2* and alpha3/alpha6beta2* nAChR subtypes in the caudate, with cotinine IC(50) values for inhibition of 5-[(125) I]iodo-3-[2(S)-azetinylmethoxy]pyridine-2HCl ([(125)I]A-85380) and (125)I-alpha-conotoxinMII binding in the micromolar range. This interaction at the receptor level is of functional significance because cotinine stimulated both alpha4beta2* and alpha3/alpha6beta2* nAChR [(3)H]dopamine release from caudate synaptosomes. Our results unexpectedly showed that nicotine evokes [(3)H]dopamine release from two alpha3/alpha6beta2* nAChR populations, one of which was sensitive to cotinine and the other was not. This cotinine-insensitive subtype was only present in the medial caudate and was preferentially lost with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal damage. In contrast, cotinine and nicotine elicited equivalent levels of alpha4beta2* nAChR-mediated dopamine release. These data demonstrate that cotinine functionally discriminates between two alpha3/alpha6beta2* nAChRs in monkey striatum, with the cotinine-insensitive alpha3/alpha6beta2* nAChR preferentially vulnerable to nigrostriatal damage.  相似文献   

4.
Paraquat, an herbicide widely used in the agricultural industry, has been associated with lung, liver, and kidney toxicity in humans. In addition, it is linked to an increased risk of Parkinson's disease. For this reason, we had previously investigated the effects of paraquat in mice and showed that it influenced striatal nicotinic receptor (nAChR) expression but not nAChR-mediated dopaminergic function. Because nonhuman primates are evolutionarily closer to humans and may better model the effects of pesticide exposure in man, we examined the effects of paraquat on striatal nAChR function and expression in monkeys. Monkeys were administered saline or paraquat once weekly for 6 weeks, after which nAChR levels and receptor-evoked [(3)H]dopamine ([(3)H]DA) release were measured in the striatum. The functional studies showed that paraquat exposure attenuated dopamine (DA) release evoked by alpha3/alpha6beta2(*) (nAChR that is composed of the alpha3 or alpha6 subunits, and beta2; the asterisk indicates the possible presence of additional subunits) nAChRs, a subtype present only on striatal dopaminergic terminals, with no decline in release mediated by alpha4beta2(*) (nAChR containing alpha4 and beta2 subunits, but not alpha3 or alpha6) nAChRs, present on both DA terminals and striatal neurons. Paraquat treatment decreased alpha4beta2(*) but not alpha3/alpha6beta2(*) nAChR expression. The differential effects of paraquat on nAChR expression and receptor-evoked [(3)H]DA release emphasize the importance of evaluating changes in functional measures. The finding that paraquat treatment has a negative impact on striatal nAChR-mediated dopaminergic activity in monkeys but not mice indicates the need for determining the effects of pesticides in higher species.  相似文献   

5.
Because the mesolimbic dopamine system plays a critical role in nicotine addiction/reinforcement and because nicotinic receptors regulate dopamine release, we initiated a study to evaluate the long-term effects of nicotine (>6 months at the final dose) on nicotinic acetylcholine receptor (nAChR) sites and function in the nucleus accumbens of nonhuman primates. Nicotine was given in the drinking water as this mode of administration is long-term but intermittent, thus resembling smoking in this aspect. We determined the effects of nicotine treatment on function and binding of the alpha3/alpha6beta2* and alpha4beta2* nAChRs subtypes in nucleus accumbens, a region directly implicated in the addictive effects of nicotine. To evaluate function, we measured nicotine and K+-evoked [3H]dopamine release from nucleus accumbens synaptosomes. Changes in alpha4beta2* and alpha3/alpha6beta2* nAChRs were measured using 125I-epibatidine, [125I]A85380 [5-[125I]iodo-3(2(S)-azetidinylmethoxy) pyridine] and 125I-alpha-conotoxin MII autoradiography. Chronic nicotine treatment, which led to plasma nicotine levels in the range of smokers, significantly increased nucleus accumbens alpha4beta2* nAChR sites and function compared with control. By contrast, this treatment did not significantly change alpha3/alpha6beta2* nAChR sites or evoked dopamine release in this region compared with control. Thus, these data are distinct from previous results in striatum in which the same nicotine treatment paradigm decreased striatal alpha3/alpha6beta2* nAChR sites and function. The finding that long-term nicotine treatment selectively modulates alpha4beta2* and not alpha3/alpha6beta2* nAChR expression in primate nucleus accumbens is consistent with the results of studies in nicotinic receptor mutant mice implicating the alpha4beta2* nAChR subtype in nicotine-mediated addiction.  相似文献   

6.
7.
Recent studies in nonhuman primates show that chronic nicotine treatment protects against nigrostriatal degeneration, with a partial restoration of neurochemical and functional measures in the striatum. The present studies were done to determine whether long-term nicotine treatment also protected against striatal nicotinic receptor (nAChR) losses after nigrostriatal damage. Monkeys were administered nicotine in the drinking water for 6 months and subsequently lesioned with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) over several months while nicotine was continued. (125)I-Epibatidine, [(125)I]5-[(125)I]iodo-3(2(S)-azetidinylmethoxy)-pyridine (A85380), and (125)I-alpha-conotoxinMII autoradiography was performed to evaluate changes in alpha4beta2* and alpha3/alpha6beta2* nAChRs, the major striatal subtypes. Nicotine treatment increased alpha4beta2* nAChRs by > or =50% in striatum of both unlesioned and lesioned animals. This increase in alpha4beta2* nAChRs was significantly greater in lesioned compared with unlesioned monkey striatum. Chronic nicotine treatment led to a small decrease in alpha3/alpha6beta2* nAChR subtypes. The decline in alpha3/alpha6beta2* subtypes, defined using alpha-conotoxinMII-sensitive (125)I-epibatidine or [(125)I]A85380 binding, was significantly smaller in striatum of nicotine-treated lesioned monkeys compared with unlesioned monkeys. This difference was not observed for alpha3/alpha6beta2* nAChRs identified using (125)I-alpha-conotoxinMII. These data suggest that there are at least two striatal alpha3/alpha6beta2* subtypes that are differentially affected by chronic nicotine treatment in lesioned animals. In addition, the results showing an improvement in striatal alpha4beta2* and select alpha3/alpha6beta2* nAChR subtypes, combined with previous work, demonstrate that chronic nicotine treatment restores and/or protects against the loss of multiple molecular markers after nigrostriatal damage. Such findings suggest that nicotine or nicotinic agonists may be of therapeutic value in Parkinson's disease.  相似文献   

8.
The presence of distinct nicotinic acetylcholine receptor (nAChR) subtypes in specific central nervous system (CNS) areas offers the possibility of developing targeted therapies for diseases involving the affected brain region. Parkinson's disease is a neurodegenerative movement disorder characterized by a progressive degeneration of the nigrostriatal system. alpha6-containing nAChRs (designated alpha6(*)1 nAChRs) have a relatively selective localization to the nigrostriatal pathway and a limited number of other CNS regions. In addition to a unique distribution, this subtype has a distinct pharmacology and specifically interacts with alpha-conotoxinMII, a toxin key in its identification and characterization. alpha6(*) nAChRs are also regulated in a novel manner, with a decrease in their number after nicotine treatment rather than the increase observed for alpha4(*) nAChRs. Striatal alpha6(*) receptors were functional and mediate dopamine release, suggesting that they have a presynaptic localization. This is further supported by lesion studies showing that both alpha6(*) nAChR sites and their functions are dramatically decreased with dopaminergic nerve terminal loss, in contrast to only small declines in alpha4(*) and no change in alpha7(*) receptors. Although the role of nigrostriatal alpha6(*) nAChRs is only beginning to be understood, an involvement in motor behavior is emerging. This latter observation coupled with the finding that nicotine protects against nigrostriatal damage suggest that alpha6(*) nAChRs may represent unique targets for neurodegenerative disorders linked to the nigrostriatal system such as Parkinson's disease.  相似文献   

9.
Nicotinic acetylcholine receptors (nAChRs) regulate dopaminergic signaling in the striatum by modulating the release of neurotransmitters. We have recently reported that nicotine stimulates the release of dopamine via alpha4beta2(*) nAChRs and/or alpha7 nAChRs, leading to the regulation of DARPP-32 at Thr34, the site involved in regulation of protein phosphatase-1 (PP-1). In this study, we investigated the regulation of DARPP-32 phosphorylation at its other sites, Thr75 [cyclin-dependent kinase-5 (Cdk5) site], Ser97 (CK2 site), and Ser130 (CK1 site), that serve to modulate Thr34 phosphorylation and dephosphorylation. In neostriatal slices, nicotine (100 microM) increased phosphorylation of DARPP-32 at Ser97 and Ser130 at an early time point (30 s) and decreased phosphorylation of DARPP-32 at Thr75 at a late time point (3 min). The increase in Ser97 and Ser130 phosphorylation was mediated through the release of dopamine via activation of alpha4beta2(*) nAChRs and alpha7 nAChRs and the subsequent activation of dopamine D1 and D2 receptors. The decrease in Thr75 phosphorylation was mediated through the release of dopamine via activation of alpha4beta2(*) nAChRs and the subsequent activation of dopamine D1 receptors. These various actions of nicotine on modulatory sites of phosphorylation would be predicted to result in a synergistic increase in the state of phosphorylation of DARPP-32 at Thr34 and thus would contribute to increased dopamine D1 receptor/DARPP-32 Thr34/PP-1 signaling.  相似文献   

10.
A recently developed alpha-conotoxin, alpha-conotoxin Arenatus IB-[V11L,V16D] (alpha-CtxArIB[V11L,V16D]) [corrected], is a potent and selective competitive antagonist at rat recombinant alpha7 nicotinic acetylcholine receptors (nAChRs), making it an attractive probe for this receptor subtype. alpha7 nAChRs are potential therapeutic targets that are widely expressed in both neuronal and non-neuronal tissues, where they are implicated in a variety of functions. In this study, we evaluate this toxin at rat and human native nAChRs. Functional alpha7 nAChR responses were evoked by choline plus the allosteric potentiator PNU-120596 [1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea] in rat PC12 cells and human SH-SY5Y cells loaded with calcium indicators. alpha-CtxArIB[V11L,V16D] specifically inhibited alpha7 nAChR-mediated increases in Ca2+ in PC12 cells. Responses to other stimuli, 5-I-A-85380 [5-iodo-3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride], nicotine, or KCl, that did not activate alpha7 nAChRs were unaffected. Human alpha7 nAChRs were also sensitive to alpha-CtxArIB[V11L, V16D]; acetylcholine-evoked currents in Xenopus laevis oocytes expressing human alpha7 nAChRs were inhibited by alpha-CtxArIB[V11L,V16D] (IC(50), 3.4 nM) in a slowly reversible manner, with full recovery taking 15 min. This is consistent with the time course of recovery from blockade of rat alpha7 nAChRs in PC12 cells. alpha-CtxArIB[V11L,V16D] inhibited human native alpha7 nAChRs in SHSY5Y cells, activated by either choline or AR-R17779 [(2)-spiro[1-azabicyclo[2.2.2]octane-3,59-oxazolidin]-29-one] plus PNU-120596. Rat brain alpha7 nAChRs contribute to dopamine release from striatal minces; alpha-CtxArIB[V11L,V16D] (300 nM) selectively inhibited choline-evoked dopamine release without affecting responses evoked by nicotine that activates heteromeric nAChRs. This study establishes that alpha-CtxArIB[V11L,V16D] selectively inhibits human and rat native alpha7 nAChRs with comparable potency, making this a potentially useful antagonist for investigating alpha7 nAChR functions.  相似文献   

11.
The plant alkaloid methyllycaconitine (MLA) is considered to be a selective antagonist of the alpha7 subtype of neuronal nicotinic acetylcholine receptor (nAChR). However, 50 nM MLA partially inhibited (by 16%) [(3)H]dopamine release from rat striatal synaptosomes stimulated with 10 microM nicotine. Other alpha7-selective antagonists had no effect. Similarly, MLA (50 nM) inhibited [(3)H]dopamine release evoked by the partial agonist (2-chloro-5-pyridyl)-9-azabicyclo[4.2.1]non-2-ene (UB-165) (0.2 microM) by 37%. In both cases, inhibition by MLA was surmountable with higher agonist concentrations, indicative of a competitive interaction. At least two subtypes of presynaptic nAChR can modulate dopamine release in the striatum, and these nAChR are distinguished by their differential sensitivity to alpha-conotoxin-MII (alpha-CTx-MII). MLA was not additive with a maximally effective concentration of alpha-CTx-MII (100 nM) in inhibiting [(3)H]dopamine release elicited by 10 microM nicotine or 0.2 microM UB-165, suggesting that both toxins act at the same site. This was confirmed in quantitative binding assays with (125)I-alpha-CTx-MII, which displayed saturable specific binding to rat striatum and nucleus accumbens with B(max) values of 9.8 and 16.5 fmol/mg of protein, and K(d) values of 0.63 and 0.83 nM, respectively. MLA fully inhibited (125)I-alpha-CTx-MII binding to striatum and nucleus accumbens with a K(i) value of 33 nM, consistent with the potency observed in the functional assays. We speculate that MLA and alpha-CTx-MII interact with a presynaptic nAChR of subunit composition alpha3/alpha6beta2beta3* on dopamine neurons. The use of MLA as an alpha7-selective antagonist should be exercised with caution, especially in studies of nAChR in basal ganglia.  相似文献   

12.
Extensive evidence indicates that varenicline reduces nicotine craving and withdrawal symptoms by modulating dopaminergic function at α4β2* nicotinic acetylcholine receptors (nAChRs) (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex). More recent data suggest that α6β2* nAChRs also regulate dopamine release and mediate nicotine reinforcement. The present experiments were therefore done to test the effect of varenicline on α6β2* nAChRs and their function, because its interaction with this subtype is currently unclear. Receptor competition studies showed that varenicline inhibited α6β2* nAChR binding (K(i) = 0.12 nM) as potently as α4β2* nAChR binding (K(i) = 0.14 nM) in rat striatal sections and with ~20-fold greater affinity than nicotine. Functionally, varenicline was more potent in stimulating α6β2* versus α4β2* nAChR-mediated [(3)H]dopamine release from rat striatal synaptosomes with EC(50) values of 0.007 and 0.086 μM, respectively. However, it acted as a partial agonist on α6β2* and α4β2* nAChR-mediated [(3)H]dopamine release with maximal efficacies of 49 and 24%, respectively, compared with nicotine. We also evaluated varenicline's action in striatum of monkeys, a useful animal model for comparison with humans. Varenicline again potently inhibited monkey striatal α6β2* (K(i) = 0.13 nM) and α4β2* (K(i) = 0.19 nM) nAChRs in competition studies. Functionally, it potently stimulated both α6β2* (EC(50) = 0.014 μM) and α4β2* (EC(50) = 0.029 μM) nAChR-mediated [(3)H]dopamine release from monkey striatal synaptosomes, again acting as a partial agonist relative to nicotine at both subtypes. These data suggest that the ability of varenicline to interact at α6β2* nAChRs may contribute to its efficacy as a smoking cessation aid.  相似文献   

13.
The inhibition of uptake of [(3)H]dopamine into synaptosomes prepared from four mouse brain regions was investigated. The inhibition curves demonstrated that in three regions, striatum, nucleus accumbens, and olfactory tubercle, [(3)H]dopamine was taken up exclusively by dopaminergic terminals. In frontal cortex, however, only a portion of the uptake was into dopaminergic terminals, with a larger amount taken up by noradrenergic terminals, and another small portion by serotonergic terminals. Release studies in frontal cortex indicated that in this region only dopaminergic and noradrenergic terminals are capable of packaging [(3)H]dopamine in a form allowing vesicle-mediated release; additionally, only the dopaminergic terminals have functional presynaptic nAChRs that, when stimulated by nicotinic agonists, evoke [(3)H]dopamine release. Agonist-stimulated [(3)H]dopamine release was characterized from synaptosomes prepared from four mouse brain regions. alpha-Conotoxin MII was a partial inhibitor of dopamine release in all of the brain regions, which suggests that a minimum of two nicotinic cholinergic receptors (nAChRs) are expressed in the nerve terminals of all four brain regions. No nicotine-induced [(3)H]dopamine release was detected in any brain region when the synaptosomes were prepared from beta2 null mutant mice, which indicates that the beta2 subunit is required for all nAChRs mediating this release. Dose-response curves were constructed for seven agonists in each of the brain regions. The pharmacological properties of synaptosomal [(3)H]dopamine release appear similar across the four brain regions. The results suggest that all four regions express the same nAChRs, although subtle regional differences may exist.  相似文献   

14.
It has been suggested that the negative effects associated with nicotine withdrawal promote continued tobacco use and contribute to the high relapse rate of smoking behaviors. Thus, it is important to understand the receptor-mediated mechanisms underlying nicotine withdrawal to aid in the development of more successful smoking cessation therapies. The effects of nicotine withdrawal are mediated through nicotinic acetylcholine receptors (nAChRs); however, the role of nAChRs in nicotine withdrawal remains unclear. Therefore, we used mecamylamine-precipitated, spontaneous, and conditioned place aversion (CPA) withdrawal models to measure physical and affective signs of nicotine withdrawal in various nAChR knockout (KO) mice. beta2, alpha7, and alpha5 nAChR KO mice were chronically exposed to nicotine through surgically implanted osmotic minipumps. Our results show a loss of anxiety-related behavior and a loss of aversion in the CPA model in beta2 KO mice, whereas alpha7 and alpha5 KO mice displayed a loss of nicotine withdrawal-induced hyperalgesia and a reduction in somatic signs, respectively. These results suggest that beta2-containing nAChRs are involved in the affective signs of nicotine withdrawal, whereas non-beta2-containing nAChRs are more closely associated with physical signs of nicotine withdrawal; thus, the nAChR subtype composition may play an important role in the involvement of specific subtypes in nicotine withdrawal.  相似文献   

15.
In the present study we used the nicotinic ligand 5-iodo-A-85380 [5-iodo-3(2(S)-azetidinylmethoxy)pyridine], which selectively binds to beta2-containing nicotinic acetylcholine receptors, to elucidate the nicotinic receptor subtypes affected by nigrostriatal damage in the monkey. Autoradiographic studies in control monkeys showed that 5-[(125)I]A-85380 ([(125)I]A-85380) binds throughout the brain with the characteristics of a nicotinic receptor ligand. Competition experiments with cytisine and nicotine yielded K(i) values of approximately 1 and 10 nM, respectively, with complete inhibition of [(125)I]A-85380 binding at a 10(-6) M concentration of these ligands. In contrast, alpha-conotoxin MII blocked radioligand binding in the striatum by 30% at the highest concentrations, suggesting that a subset of striatal [(125)I]A-85380 sites are alpha-conotoxin MII-sensitive. Monkeys treated with the nigrostriatal neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed a selective decrease in striatal [(125)I]A-85380 sites, with a 42% reduction in the caudate and putamen of animals with moderate nigrostriatal lesioning and a 53% decline in the striatum of severely lesioned animals. Our previous work had demonstrated that there were two populations of nicotinic receptors eliminated after nigrostriatal damage, an alpha-conotoxin MII-sensitive and an alpha-conotoxin MII- resistant subtype. Analysis of both striatal [(125)I]A-85380 and [(125)I]epibatidine competition studies extend our earlier studies by demonstrating that the alpha-conotoxin MII-sensitive sites eliminated after moderate nigrostriatal lesioning appear to be composed of two nicotinic receptor subtypes. The data may be important for potential therapeutic approaches because they suggest that there are at least three populations of nicotinic receptors in monkey striatum, of which two are selectively vulnerable to nigrostriatal damage, while the third is more resistant.  相似文献   

16.
Subtypes of neuronal nicotinic acetylcholine receptors (nAChRs) are differentially sensitive to up-regulation by chronic nicotine exposure in vitro. To determine whether this occurs in animals, rats were implanted with minipumps containing saline +/- nicotine (6.0 mg/kg/rat/day) for 14 days. Autoradiography with [125I]epibatidine using 3-(2(S)-azetidinylmethoxy)pyridine dihydrochloride (A-85380) or cytisine as selective competitors allowed quantitative measurement in 33 regions of 3 families of nAChR binding, with properties of alpha4beta2, alpha3beta4, and alpha3/alpha6beta2. Chronic nicotine exposure caused increases of 20 to 100% for alpha4beta2-like binding in most regions surveyed. However, binding to this subtype was not increased in some regions, including habenulopeduncular structures, certain thalamic nuclei, and several brainstem regions. In 9 of 33 regions, including catecholaminergic areas and visual structures, alpha3/alpha6beta2-like binding represented >10% of total binding. Binding to this subtype was up-regulated by nicotine in only two of these nine regions: the nucleus accumbens and superior colliculus. alpha3beta4-Like binding represented >10% of total in 15 of the 33 regions surveyed. Binding to this subtype was increased by nicotine in only 1 of these 15 regions, and actually decreased in subiculum and cerebellum. These studies yielded two principal findings. First, chronic nicotine exposure selectively up-regulates alpha4beta2-like binding, with relatively little effect on alpha3/alpha6beta2-like and alpha3beta4-like binding in vivo. Second, up-regulation by chronic nicotine exposure shows considerable regional variation. Differential subtype sensitivity to chronic nicotine exposure may contribute to altered pharmacological response in individuals who smoke or use nicotine replacement therapy.  相似文献   

17.
Bupropion, an efficacious antidepressant and smoking cessation agent, inhibits dopamine and norepinephrine transporters (DAT and NET, respectively). Recently, bupropion has been reported to noncompetitively inhibit alpha3beta2, alpha3beta4, and alpha4beta2 nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes or established cell lines. The present study evaluated bupropion-induced inhibition of native alpha3beta2* and alpha3beta4* nAChRs using functional neurotransmitter release assays, nicotine-evoked [(3)H]overflow from superfused rat striatal slices preloaded with [(3)H]dopamine ([(3)H]DA), and nicotine-evoked [(3)H]overflow from hippocampal slices preloaded with [(3)H]norepinephrine ([(3)H]NE). The mechanism of inhibition was evaluated using Schild analysis. To eliminate the interaction of bupropion with DAT or NET, nomifensine or desipramine, respectively, was included in the superfusion buffer. A high bupropion concentration (100 microM) elicited intrinsic activity in the [(3)H]DA release assay. However, none of the concentrations (1 nM-100 microM) examined evoked [(3)H]NE overflow and, thus, were without intrinsic activity in this assay. Moreover, bupropion inhibited both nicotine-evoked [(3)H]DA overflow (IC(50) = 1.27 microM) and nicotine-evoked [(3)H]NE overflow (IC(50) = 323 nM) at bupropion concentrations well below those eliciting intrinsic activity. Results from Schild analyses suggest that bupropion competitively inhibits nicotine-evoked [(3)H]DA overflow, whereas evidence for receptor reserve was obtained upon assessment of bupropion inhibition of nicotine-evoked [(3)H]NE overflow. Thus, bupropion acts as an antagonist at alpha3beta2* and alpha3beta4* nAChRs in rat striatum and hippocampus, respectively, across the same concentration range that inhibits DAT and NET function. The combination of nAChR and transporter inhibition produced by bupropion may contribute to its clinical efficacy as a smoking cessation agent.  相似文献   

18.
The N-methyl-d-aspartate (NMDA) receptor antagonist memantine is an approved drug for treatment of Alzheimer's disease (AD). Other such treatments are cholinesterase inhibitors and nicotinic acetylcholine receptor (nAChR)-sensitizing agents such as galantamine. The present study was designed to test whether memantine exerts any effect on the cholinergic system, in particular the Ca(2+)-conducting alpha7(*) nAChR, in cultured hippocampal neurons. Memantine caused a concentration-dependent reduction of the amplitudes of whole-cell currents evoked by the alpha7(*) nAChR-selective agonist choline (10 mM) or by N-methyl-d-aspartate (NMDA) (50 muM) plus glycine (10 muM). It also inhibited tonically activated NMDA receptors. Memantine was more potent in inhibiting alpha7(*) nAChRs than NMDA receptors; at -60 mV, the IC(50) values for memantine were 0.34 and 5.1 muM, respectively. Consistent with an open-channel blocking mechanism, memantine-induced NMDA receptor inhibition was voltage and use-dependent; the Hill coefficient (n(H)) was approximately 1. Memantine-induced alpha7(*) nAChR inhibition had an n(H) < 1 and showed a variable voltage dependence; the effect was voltage-independent at 0.1 muM, becoming voltage-dependent at >/=1 muM. Thus, memantine interacts with more than one class of sites on the alpha7(*) nAChRs. One is voltage-sensitive and therefore likely to be within the receptor channel. The other is voltage-insensitive and therefore likely to be in the extracellular domain of the receptor. It is suggested that blockade of alpha7(*) nAChRs by memantine could decrease its effectiveness for treatment of AD, particularly at early stages when the degrees of nAChR dysfunction and of cognitive decline correlate well.  相似文献   

19.
Tobacco use is a leading cause of preventable deaths worldwide. However, current smoking cessation therapies have very limited long-term success rates. Considerable research effort is therefore focused on identification of central nervous system changes with nicotine exposure because this may lead to more successful treatment options. Although recent work suggests that α6β2* nicotinic acetylcholine receptors (nAChRs) play a dominant role in dopaminergic function in rodent nucleus accumbens, the effects of long-term nicotine exposure remain to be determined. Here, we used cyclic voltammetry to investigate α6β2* nAChR-mediated release with long-term nicotine treatment in nonhuman primate nucleus accumbens shell. Control studies showed that nAChR-mediated dopamine release occurs predominantly through the α6β2* receptor subtype. Unexpectedly, there was a complete loss of α6β2* nAChR-mediated activity after several months of nicotine treatment. This decline in function was observed with both single- and multiple-pulse-stimulated dopamine release. Paired-pulse studies showed that the facilitation of dopamine release with multiple pulsing observed in controls in the presence of nAChR antagonist was lost with long-term nicotine treatment. Nicotine-evoked [(3)H]dopamine release from nucleus accumbens synaptosomes was similar in nicotine- and vehicle-treated monkeys, indicating that long-term nicotine administration does not directly modify α6β2* nAChR-mediated dopamine release. Dopamine uptake rates, as well as dopamine transporter and α6β2* nAChRs levels, were also not changed with nicotine administration. These data indicate that nicotine exposure, as occurs with smoking, has major effects on cellular mechanisms linked to α6β2* nAChR-mediated dopamine release and that this receptor subtype may represent a novel therapeutic target for smoking cessation.  相似文献   

20.
Schizophrenics have cortical dysfunction that may involve mesoprefrontal dopamine (DA) systems. Rates of nicotine dependence approach 90% in schizophrenia, and nicotine administration through cigarette smoking may ameliorate cognitive dysfunction, which may be related to cortical DA dysregulation. We have shown that repeated, but not acute, nicotine pretreatment (0.15 mg/kg daily s.c.) reduces footshock stress-induced mesoprefrontal DA metabolism and immobility responses. This effect of repeated nicotine is dependent on mecamylamine (MEC)-sensitive nicotinic acetylcholine receptor (nAChR) stimulation and endogenous opioid peptides. In the present study, we have further characterized these effects of repeated nicotine on the stress reactivity of mesoprefrontal DA neurons by using the following: 1) local infusion of MEC into cell bodies (ventral tegmental area) and terminal fields (medial prefrontal cortex) to determine the site of action of nicotine; and 2) systemic administration of selective nAChR antagonists. Results of bilateral local infusions of MEC (0.1-1.0 microgram/side) into ventral tegmental area or medial prefrontal cortex in saline- and nicotine-pretreated rats suggests a modulatory role for somatodendritic versus terminal field nAChRs on mesoprefrontal DA neurons under stress-induced states. Experiments with dihydro-beta-erythroidine (a beta2-subunit-selective blocker; 0.0-3.0 mg/kg) and methylycaconitine (an alpha7-subunit-selective blocker; 0.0-8.4 mg/kg) suggest that both alpha4beta2- and alpha7-containing nAChRs modulate mesoprefrontal DA neurons. Thus, complex regulation of mesoprefrontal DA neurons by nAChRs is suggested, which may have relevance to prefrontal cortical DA dysfunction and the high comorbid rates of nicotine dependence in schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号