首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the immunohistochemial localization of the glutamate receptors (GluR-1, -2, and -3,) in the developing rat cerebral cortex and hippocampus using antibodies to GluR1 and to an epitope common to GluR2 and GluR3 (GluR2/3) subunits. In the cerebral cortex, GluR1 immunoreactivity appeared in the neurons from postnatal day (PND) 0, increased with maturation, was highest at PND?10, decreased until PND 30, and thereafter remained at the same level as on PND?0. GluR2/3 immunoreactivity appeared earlier in scattered neurons on embryonal day (ED) 18, increased with maturation and reached a peak between PND?10 and PND?15, after which the immunoreactivity gradually decreased and reached a plateau at PND?30. For both GluR1 and GluR2/3, some of the pyramidal neurons showed intense staining. In the pyramidal layers of the hippocampus, GluR1 and GluR2/3 immunoreactivity was found in all the pyramidal neurons of the CA1–4 area from ED?20. In the dentate gyrus of the hippocampus, GluR1 and GluR2/3 immunoreactivity was found in the neurons of the granule cells after PND?0. Immunoreactivity in the neurons of the subiculum was found after PND?5 and that of the polymorphic cell layers was found after PND?15–20. Our results indicate that the development of glutamate receptor subunits in the rat cerebral cortex and hippocampus is expressed in different spatial patterns and distinct temporal patterns throughout development and is scheduled during the early postnatal period, when synaptic plasticity or synaptic connection occurs in these regions.  相似文献   

2.
 We studied the immunohistochemial localization of the glutamate receptors (GluR-1, -2, and -3,) in the developing rat cerebral cortex and hippocampus using antibodies to GluR1 and to an epitope common to GluR2 and GluR3 (GluR2/3) subunits. In the cerebral cortex, GluR1 immunoreactivity appeared in the neurons from postnatal day (PND) 0, increased with maturation, was highest at PND 10, decreased until PND 30, and thereafter remained at the same level as on PND 0. GluR2/3 immunoreactivity appeared earlier in scattered neurons on embryonal day (ED) 18, increased with maturation and reached a peak between PND 10 and PND 15, after which the immunoreactivity gradually decreased and reached a plateau at PND 30. For both GluR1 and GluR2/3, some of the pyramidal neurons showed intense staining. In the pyramidal layers of the hippocampus, GluR1 and GluR2/3 immunoreactivity was found in all the pyramidal neurons of the CA1–4 area from ED 20. In the dentate gyrus of the hippocampus, GluR1 and GluR2/3 immunoreactivity was found in the neurons of the granule cells after PND 0. Immunoreactivity in the neurons of the subiculum was found after PND 5 and that of the polymorphic cell layers was found after PND 15–20. Our results indicate that the development of glutamate receptor subunits in the rat cerebral cortex and hippocampus is expressed in different spatial patterns and distinct temporal patterns throughout development and is scheduled during the early postnatal period, when synaptic plasticity or synaptic connection occurs in these regions. Accepted: 13 June 1996  相似文献   

3.
Immunocytochemistry was used to study the distribution of the kainate receptors GluR1, GluR2/3 and GluR4 and of the N-methyl-d-aspartate (NMDA) receptor NMDAR1 as well as the astrocyte markers glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP) in the hippocampus of normal and kainate-lesioned rats. Hippocampal pyramidal neurons and dentate granule neurons were labelled heavily for GluR1 and GluR2/3, but only lightly for GluR4. Dense GluR4 immunopositivity was, however, observed in oligodendrocyte-like glial cells. Hippocampal pyramidal neurons and dentate granule neurons were moderately labelled for NMDAR1. Intravenous kainate injections resulted in a decrease in GluR1 and GluR2/3 immunoreactivity on the apical dendrites of pyramidal neurons as early as 7 h postinjection. At 18 h, there was a marked reduction in GluR1 and GluR2/3 receptors in the terminal tuft of dendrites of most hippocampal pyramidal neurons in the affected area, although some cells showed labelling in other portions of the apical dendrites and in basal dendrites. Immunostaining for GluR4 and NMDAR1 was also reduced at this time. At postinjection day 3, only the cell bodies and the basal dendrites of a few scattered pyramidal cells were labelled. Taken together, these results indicate a progressive loss of glutamate receptors, which affects the apical dendritic tree before the basal dendritic tree. The decrease in receptor immunoreactivity could be due to a downregulation of the receptors, since it occurred as early as 7 h postlesion, before cell death was evident in Nissl-stained sections. At long intervals after kainate injection, all pyramidal cells at the centre of the lesion showed a lack of glutamate receptor staining, and no partially labelled pyramidal cells were observed. The periphery of the lesion, however, contained many partially labelled pyramidal neurons among the unlabelled cells and had features of early lesions. The present study also showed an early decrease in GS immunoreactivity in the affected CA fields of the hippocampus (18 h to 3 days postinjection), followed by a medium-term increase (5–68 days) and a late decrease in GS immunoreactivity (81 days). The decrease in GS immunoreactivity at 81 days is not due to an absence of astrocytes, since GFAP staining showed many densely labelled astrocytes in the affected CA field.  相似文献   

4.
-Amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors mediate excitatory neurotransmission in the central nervous system, and contain combinations of four subunits (GluR1-4). We developed a GluR3-specific monoclonal antibody and quantified the cellular distribution of GluR3 in rat hippocampus. GluR3 immunoreactivity was detected in all pyramidal neurons and most interneurons. In addition, we found a subset of parvalbumin (PV)-containing interneurons in the hippocampus and neocortex that was notable for its intense GluR3 immunoreactivity and lack of GluR2 immunoreactivity. Such an expression pattern of AMPA receptor subunits is likely to make these interneurons selectively vulnerable to excitotoxicity.  相似文献   

5.
AMPA receptors (AMPARs) are the principal glutamate receptors mediating fast excitatory synaptic transmission in neurons. Aberrant extracellular glutamate has long been recognized as a hallmark phenomenon during neuronal excitotoxicity. Excessive glutamate triggers massive Ca2+ influx through NMDA receptors (NMDARs), which in turn can activate Ca2+-dependent protease, calpain. In the present study, we found that prolonged NMDA treatment (100 μ m , 10 min) caused a sustained and irreversible suppression of AMPAR-mediated currents in cortical pyramidal neurons, which was largely blocked by selective calpain inhibitors. Biochemical and immunocytochemical studies demonstrated that in cortical cultures, prolonged glutamate or NMDA treatment reduced the level of surface and total GluR1, but not GluR2, subunits in a calpain-dependent manner. Consistent with the in vitro data, in animals exposed to transient ischaemic insults, calpain was strongly activated, and the AMPAR current density and GluR1 expression level were substantially reduced. Moreover, calpain inhibitors blocked the ischaemia-induced depression of AMPAR currents, and the NMDAR-induced, calpain-mediated depression of AMPA responses was occluded in ischaemic animals. Taken together, our studies show that overstimulation of NMDARs reduces AMPAR functions in cortical pyramidal neurons through activation of endogenous calpain, and calpain mediates the ischaemia-induced synaptic depression. The down-regulation of AMPARs by calpain provides a negative feedback to dampen neuronal excitability in excitotoxic conditions like ischaemia and epilepsy.  相似文献   

6.
The Edinger-Westphal nucleus (EW) in birds is responsible for the control of pupil constriction, accommodation, and choroidal blood flow. The activation of EW neurons is mediated by the neurotransmitter glutamate, in large part through AMPA-type glutamate receptors (GluRs), whose behavior varies according to the subunit composition. We investigated the developmental expression of the GluR subunits in EW of the chick (Gallus gallus) using immunohistochemistry on tissue from embryonic days 10 through 20 (E10–E20). Of the three antibodies used, one recognized the GluR1 subunit, another the GluR4 subunit, and the third recognized a sequence common to GluR2 and GluR3 subunits. No immunolabeling of EW neurons for any GluR subunits was observed prior to E12, although immunolabeling was seen in somatic oculomotor prior to E12. At E12, immunoreactivity for each of the three antibodies was in only approximately 2% of EW neurons. By E14, the abundance of GluR1+ perikarya in EW had increased to 13%, and for GluR2/3 had increased to 48%. The perikaryal abundance of the immunoreactivity for GluR1 and GluR2/3 declined to 3% and 23%, respectively, by E16. At E14, 33% of EW neurons immunolabeled for GluR4, and their frequency increased to 43% by E16, and remained at that approximate percentage through hatching. The increased expression of GluR1 and GluR4 in EW at E14 coincides with the reported onset of the expression of the calcium-binding protein parvalbumin, and the calcium currents associated with AMPA receptors formed by these two subunits may play a role in the occurrence of parvalbumin expression.  相似文献   

7.
Amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) type glutamate receptors are ligand gated ion channels made up of various combinations of four subunits termed GluR1-4. The GluR2 subunit controls several key features of the receptor including calcium permeability and inward rectification. In the present study, we analysed by immunocytochemistry the cellular and subcellular distribution of the GluR2 subunit in neurons of the dorsal vagal complex of the rat. GluR2 immunoreactivity was found both in the neuropile and in neuronal cell bodies. Perikaryal staining was strong in the dorsal motor nucleus of the vagus nerve and moderate in the medial part of the nucleus tractus solitarii as well as in the area postrema. The lateral part of the nucleus tractus solitarii was almost devoid of immunoreactivity except for the interstitial subnucleus which was filled with numerous strongly immunoreactive perikarya and large cell processes. Ultrastructural examination was carried out in the interstitial subnucleus. Peroxidase staining indicative of GluR2 immunoreactivity was observed in neuronal cell bodies and dendrites. No labeled axon terminal or glial cell body was found. Additional experiments performed using pre-embedding immunogold showed that most of the labeling in immunoreactive dendrites was intracytoplasmic.These results indicate that GluR2 immunoreactivity is differentially distributed among neurons in the dorsal vagal complex, thereby suggesting differences in the functional properties of AMPA receptors between neuronal populations. These results also suggest that AMPA receptors, at least those containing the GluR2 subunit, have no major role as presynaptic receptors within this region. Finally, they indicate the existence of large intracellular pools of GluR2 subunits within dendrites of immunoreactive neurons.  相似文献   

8.
Specimens of human cerebral cortex were obtained during neurosurgical operations and studied by immunocytochemistry and electron microscopy, using antibodies to the metabotropic glutamate receptor subunit mGluR1a and the ionotropic glutamate receptor GluR2/3. A small number of non-pyramidal neuronal cell bodies were labelled for mGluR1a. Double immunolabelling with mGluR1a and GluR2/3 showed that most pyramidal cell bodies were labelled for GluR2/3 but not for mGluR1a. Despite the non-colocalisation of these two receptor subtypes in cell bodies, however, many dendrites and dendritic spines were double-labelled for mGluR1a and GluR2/3 at electron microscopy. As there is evidence that most neurons positive for GluR2/3 are pyramidal cells, this suggests that mGluR1a is present in dendrites of pyramidal neurons, despite absent or low levels of immunoreactivity in their cell bodies. Received: 5 May 1997 / Accepted: 24 July 1997  相似文献   

9.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) mediate the majority of fast excitation in the CNS. Receptors lacking GluR2 exhibit inward rectification and paired-pulse facilitation (PPF) due to polyamine (PA)-dependent block and unblock, respectively. In this study, we tested whether rectification and PPF in immature, but not mature, pyramidal neurons depend not only on the absence of functional GluR2 but also on the level of endogenous PAs. Whole cell recordings were obtained from layer V pyramidal neurons of P12-P14 or P16-P20 rats in the presence or absence of spermine in the pipette (50 microM). Isolated minimal excitatory synaptic responses were obtained, and paired (20 Hz) stimuli were used to investigate the rectification index (RI) and paired-pulse ratio (PPR). Spermine and its synthetic enzyme, ornithine decarboxylase (ODC), expression was examined using immunostaining and Western blot, respectively. At the immature stage (相似文献   

10.
AMPA receptors (AMPARs) mediate the bulk of fast synaptic excitation in the CNS. We have recently shown that AMPAR-dependent synaptic transmission in immature neocortical pyramidal neurons is mediated by GluR2-deficient receptors that can be modulated by intra- or extracellular polyamines (PAs). Phosphorylation of AMPARs, e.g. by PKC, can lead to enhanced excitation, and PAs are known to modulate PKC activity. Therefore, PAs and PKC might interact to influence AMPAR function. To test this hypothesis, we made whole cell recordings from immature (P12–14) layer V pyramidal neurons and assayed two measures of PA influence on synaptic AMPAR function – inward rectification and use-dependent unblock (UDU), with the latter assayed by differences in rectification between a pair of EPSCs evoked at short (50 ms) latencies. We have previously shown that EPSCs in immature pyramidal neurons displayed inward rectification, which was enhanced by intracellular spermine, as was UDU. Staurosporin (ST), a PKC inhibitor, reversed the effect of PA on rectification and UDU, suggesting that PKC modulates postsynaptic activation of AMPARs. Similarly, polyamine-dependent rectification of spontaneous EPSCs was reversed by treatment with ST or GFX109203X, a specific PKC inhibitor. Chelating intracellular Ca2+ with BAPTA reproduced the effects of ST. In addition, PA immunoreactivity in layer V pyramidal neurons was reduced by PKC inhibition indicating that PKC activity influences PA metabolism. Taken together, these data support the involvement of postsynaptic PKC activation in both the inward rectification and UDU of EPSCs in immature rat cortex, and suggest an important mechanism by which excitatory synaptic transmission can be dynamically modulated by changes in either [Ca2+]i or [PA]i.  相似文献   

11.
Within neurons of several regions of the CNS, mature dendrite architecture is attained via extensive reorganization of arbor during the developmental period. Since dendrite morphology determines the firing patterns of the neuron, morphological refinement of dendritic arbor may have important implications for mature network activity. In the neocortex, a region of brain that is sensitive to activity-dependent structural rearrangement of dendritic arbor, the proportion of AMPA receptors increases over the developmental period. However, it is unclear whether changes in AMPA receptor expression contribute to maturation of dendritic architecture. To determine the effects of increasing AMPA receptor expression on dendrite morphology and connectivity within the neocortex, and to determine whether these effects are dependent on specific AMPA receptor subunits, we overexpressed the AMPA glutamate receptor subunit 1 (GluR1) and glutamate receptor subunit 2 (GluR2) in cultured rat neocortical neurons at the time that AMPA receptors would normally be incorporated into synapses. Following expression of GluR1 or GluR2 we observed increases in the length and complexity of dendritic arbor of cortical neurons, and a concurrent reduction in motility of spines. In addition, expression of either subunit was associated with an increased density of excitatory postsynaptic puncta. These results suggest that AMPA receptor expression is an important determinant of dendrite morphology and connectivity in neocortical neurons, and further, that contrary to other regions of the CNS, the effects of AMPA receptors on dendrite morphology are not subunit-specific.  相似文献   

12.
Structural malformations of the cortex, arising as a result of genetic mutation or injury during development are associated with dyslexia, epilepsy, and other neurological deficits. We have used a rat model of a microgyral malformation to examine mechanisms of epileptogenesis. Our previous studies showed that the frequency of miniature excitatory postsynaptic currents (mEPSCs) recorded in neocortical layer V pyramidal neurons is increased in malformed cortex at a time when field potential epileptiform events can be evoked. Here we show that the increase occurs at an age before onset of cortical epileptiform activity and at a time when the frequency of mEPSCs in control layer V pyramidal neurons is stable. An increase in the frequency of spontaneous (s)EPSCs in layer V pyramidal neurons of malformed cortex occurs earlier than that for mEPSCs, suggesting that there may additionally be alterations in intrinsic properties that increase the excitability of the cortical afferents. Frequencies of EPSC bursts and late evoked activity were also increased in malformed cortex. These results suggest that a hyperinnervation of layer V pyramidal neurons by excitatory afferents occurs as an active process likely contributing to subsequent development of field epileptiform events.  相似文献   

13.
The immunoreactivity of glutamate receptor subunits 2/3 (GluR2/3) and 4 (GluR4) was studied following neurectomy of the hypoglossal nucleus (NH). After a short period of survival (at 1, 2, and 7 days postoperation, dpo), GluR2/3 immunoreactivity was barely dectectable in the operated side of HN. During these periods, GluR4 immunoreactivity was present, but was greatly reduced when compared with the GluR4 immunoreactivity in the unoperated side. The data suggest that of the 4 subunits of the AMPA receptor, GluR2/3 is the most susceptible receptor to the early stage of hypoglossal neurectomy, and GluR4 tolerated the lesion more than the others. It is also suggested that both GluR2/3 and 4 may play a very important neuroprotective role in the early stage of neuronal degeneration after axotomy, especially the former. Following a midterm survival period (14, 21, and 35 dpo), GluR2/3 immunoreactivity gradually reappeared in some neurons on the operated side of HN, which may indicate functional recovery. However, the number of GluR4-immunopositive neurons on the operated side of HN was greatly reduced. The reason for such a reduction is not known, but, from the speculative point of view, it is possible that the disappearance of GluR4-positive neurons may be related to their excitotoxic property, especially at 35 dpo, when neuronal cell death had already occurred. Following a long-term period of survival (i.e., 56, 90, and 120 dpo), the numbers of surviving neurons remained fairly constant, suggesting the possible cessation of neuronal death. Received: 15 April 1997 / Accepted: 13 June 1997  相似文献   

14.
The primary amino acid sequences of the kainate binding proteins from the amphibian and avian central nervous systems are homologous with the functional alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors that have been cloned from rat brain. In this study, we have analysed the anatomical and subcellular distribution of the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors in the rat hippocampus and cerebellum, using a monoclonal antibody that was raised against a kainate binding protein purified from frog brain. Immunoblots of rat hippocampus and cerebellum, and membranes from COS cells transfected with rat brain alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor cDNAs (GluR1, GluR2, or GluR3) showed a major immunoreactive band migrating at a relative molecular weight of 107,000. In the cerebellum, an additional immunoreactive protein of approximately 128,000 mol. wt was also seen on immunoblots probed with the antibody. The distribution of this protein is apparently restricted to the cerebellum since the 128,000 mol. wt band was not present in other brain areas examined. The identity of the 128,000 mol. wt cerebellar protein is not known. Immunocytochemical analyses of the hippocampus demonstrated that alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor subunits are present in the cell bodies and dendrites of pyramidal cells. The granule cells were also immunostained. All of the pyramidal cell subfields were heavily labeled. In the pyramidal cell bodies, a high level of immunoreactivity was observed throughout the cytoplasm. In the cerebellum, the Purkinje cell bodies and dendrites also displayed very high levels of immunoreactivity. In addition to the Purkinje neurons, the Bergmann glia and some Golgi neurons were clearly immunostained. Subcellular fractionation and lesioning experiments using the excitotoxin domoic acid indicated that the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor subunits were associated with postsynaptic membranes. Direct visualization of the immunoreactivity using electron microscopy confirmed the postsynaptic localization of the staining in the dendritic areas in both the hippocampus and the cerebellum. Thus, unlike the kainate binding proteins, which are found primarily extrasynaptically in the frog and on glial cells in the chicken cerebellum, the GluR1, GluR2, and GluR3 receptor subunits are localized to the postsynaptic membrane in the dendrites of neurons in the rat central nervous system.  相似文献   

15.
The hypothesis that plastic changes in the efficacy of excitatory neurotransmission occur in areas of chronic cortical injury was tested by assessing short-term plasticity of evoked excitatory synaptic currents (EPSCs) in neurons of partially isolated neocortical islands (undercut cortex). Whole cell recordings were obtained from layer V pyramidal neurons of sensorimotor cortical slices prepared from P36-P43 control and undercut rats. AMPA/kainate receptor-mediated EPSCs elicited by stimuli delivered at 40 to 66.7 Hz exhibited more paired-pulse depression (PPD) in undercut cortex than control, the time constant of depression evoked by trains of 20- to 66.7-Hz stimuli was faster, and the steady-state amplitude of EPSCs reached after five to seven EPSCs was lower. An antagonist of the glutamate autoreceptor, group II mGluR, increased the steady-state amplitude of EPSCs from undercut but not control cortex, suggesting that activation of presynaptic receptors by released glutamate is more prominent in undercut cortex. In contrast, the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid had no effect. Increasing [Ca(2+)](o) from 2 to 4 mM increased PPD, with a smaller effect in neurons of the undercut. The I-V relationship of AMPA/kainate receptor-mediated EPSCs was close to linear in both control and undercut neurons, and spermine had no significant effect on the EPSCs, suggesting that decreases in postsynaptic glutamate receptors containing the GluR2 subunit were not involved in the alterations in short-term plasticity. Results are compatible with an increase in the probability of transmitter release at excitatory synapses in undercut cortex due to functional changes in presynaptic terminals.  相似文献   

16.
To examine the role of Ca(2+) entry through AMPA receptors in the pathogenesis of the ischemia-induced cell death of hippocampal neurons, we delivered cDNA of Q/R site-unedited form (GluR2Q) of AMPA receptor subunit GluR2 in the hippocampus by using an HVJ-liposome-mediated gene transfer technique. Two days prior to transient forebrain ischemia, we injected an HVJ-liposome containing cDNA of the GluR2Q-myc fusion gene into a rat unilateral hippocampus. In the absence of ischemic insult, overexpression of Ca(2+)-permeable GluR2Q did not cause any neurodegeneration in the cDNA-injected hippocampus. In ischemic rats, overexpression of Ca(2+)-permeable GluR2Q markedly promoted ischemic cell death of CA1 pyramidal neurons, while complete rescue of CA1 pyramidal neurons from ischemic damage occurred in the hippocampal hemisphere opposite the GluR2Q expression. Overexpression of the Q/R-site edited form (GluR2R) of subunit GluR2 did not affect the ischemia-induced damage of CA1 pyramidal neurons. From these results, we suggest that the Ca(2+)-permeability of AMPA receptors does not have a direct contribution to glutamate receptor-mediated neurotoxicity but has a promotive action in the evolution of ischemia-induced neurodegeneration of vulnerable neurons.  相似文献   

17.
In the present investigation, we address the question of whether the expression of GluR2-R4 subunits mRNAs and GluR2 and GluR4 subunits protein of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptors are modulated in the vestibular nuclei following unilateral labyrinthectomy. Specific GluR2-R4 radioactive oligonucleotides were used to probe sections of rat vestibular nuclei according to in situ hybridization methods. The signal was detected by means of film or emulsion photography. GluR2 and GluR4 subunit expression were also measured in control and operated rats by use of specific monoclonal GluR2 and GluR4 antibodies. Animals were killed at different stages following the lesion: 1, 3 or 8 days for the in situ hybridization study and 4 and 8 days for the immunohistochemical study.In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei expressed all the GluR2, GluR3 and GluR4 subunit mRNAs. Moreover, numerous vestibular nuclei neurons are endowed with AMPA receptors containing the GluR2 and the GluR4 subunits.In unilaterally labyrinthectomized rats, no asymmetry could be detected on autoradiographs between the two medial vestibular nuclei probed with the GluR2 and the GluR4 oligonucleotide probes regardless of the delay following the lesion. However, compared to control, a bilateral decrease (-22%) in GluR3 gene expression was observed in the medial vestibular nuclei 3 days after the lesion followed by a return to normal at day 8 post-lesion. No significant asymmetrical changes in the density of GluR2- and GluR4-immunopositive cells could be detected between the intact and deafferented sides in any part of the vestibular nuclear complex and at any times (day 4 or day 8) following the lesion.Our data show that the removal of glutamatergic vestibular input induced an absence of modulation of GluR2 and GluR4 gene and subunits expression. This demonstrates that GluR2 and GluR4 expression do not play a role in the recovery of the resting discharge of the deafferented medial vestibular nuclei neurons and consequently in the functional restoration of the static postural and oculomotor deficits. The functional role of the slight and bilateral GluR3 mRNA decrease in the vestibular nuclei remains to be elucidated.  相似文献   

18.
Dhillon A  Jones RS 《Neuroscience》2000,99(3):413-422
Paired intracellular recordings were used to investigate recurrent excitatory transmission in layers II, III and V of the rat entorhinal cortex in vitro. There was a relatively high probability of finding a recurrent connection between pairs of pyramidal neurons in both layer V (around 12%) and layer III (around 9%). In complete contrast, we have failed to find any recurrent synaptic connections between principal neurons in layer II, and this may be an important factor in the relative resistance of this layer in generating synchronized epileptiform activity. In general, recurrent excitatory postsynaptic potentials in layers III and V of the entorhinal cortex had similar properties to those recorded in other cortical areas, although the probabilities of connection are among the highest reported. Recurrent excitatory postsynaptic potentials recorded in layer V were smaller with faster rise times than those recorded in layer III. In both layers, the recurrent potentials were mediated by glutamate primarily acting at alpha-amino-3-hydroxy-5-methyl-4-isoxazole receptors, although there appeared to be a slow component mediated by N-methyl-D-aspartate receptors. In layer III, recurrent transmission failed on about 30% of presynaptic action potentials evoked at 0.2Hz. This failure rate increased markedly with increasing (2, 3Hz) frequency of activation. In layer V the failure rate at low frequency was less (19%), and although it increased at higher frequencies this effect was less pronounced than in layer III. Finally, in layer III, there was evidence for a relatively high probability of electrical coupling between pyramidal neurons.We have previously suggested that layers IV/V of the entorhinal cortex readily generate synchronized epileptiform discharges, whereas layer II is relatively resistant to seizure generation. The present demonstration that recurrent excitatory connections are widespread in layer V but not layer II could support this proposal. The relatively high degree of recurrent connections and electrical coupling between layer III cells may be a factor in it's susceptibility to neurodegeneration during chronic epileptic conditions.  相似文献   

19.
Previous evidence has suggested that glutamate-driving neurotransmission and glutamate-excitotoxicity are modulated by substance P in the basal ganglia, but the assembly of glutamate receptors mediating this process remains to be delineated. By using a double immunofluorescence, cellular expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits (GluR1-4) in substance P receptor (SPR)-containing neurons was examined in the striatum of rats. It revealed that distribution of SPR-immunoreactive neurons completely overlapped with that of GluR1, 2, 3 or 4-immunoreactive neurons in the caudate-putamen. Neurons showing both SPR and AMPA receptor subunits (except of GluR3)-immunoreactivity were observed: all (100%) of SPR-positive neurons displayed GluR1-, GluR2- or GluR4-immunoreactivity, and the double-labeled neurons constituted about 33, 3 or 29% of total GluR-positive ones. In contrast, the neurons exhibiting both SPR- and GluR3-immunoreactivity were not detected, though numerous GluR3-positive neurons were still distributed in the caudate-putamen regions. Co-localization of SPR and distinct AMPA receptor subunits in the striatal neurons has provided a basis for functional modulation of neuronal APMA receptors by substance P in the caudate-putamen of rodents. Taken together with previous observations, this study has also suggested that, through interaction with AMPA receptors composed of subunits 1, 2 and 4, substance P or neurokinin peptides may play important roles in regulating neuronal properties and protecting neurons from excitotoxicity in the basal ganglia of mammals.  相似文献   

20.
The dorsal horn of the subnucleus caudalis of the spinal trigeminal nucleus is a relay of oro-facial pain transmission; increase in subnucleus caudalis neuronal activity in response to tissue injury affects the level of chemical mediators participating in nociceptive processing. We investigated, by means of immunocytochemistry, the expression of N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) glutamate receptor subunits in this nucleus in a model of inflammation. Rats injected with formalin in the whisker pad were compared with saline-injected control rats. One and two days after formalin injection, the immunostaining of cell bodies and neuropil of the AMPA receptor subunits GluR1 and GluR2/3 was markedly decreased in the ipsilateral superficial laminae of the subnucleus caudalis compared to the contralateral side. Side differences were not evident in the saline-treated animals. The down-regulation of AMPA GluR1 and GluR2/3 was no longer detectable in the subnucleus caudalis three days after formalin injection. No side difference was detected in the N-methyl-D-aspartate receptor subunit NR2A/B immunoreactivity of the subnucleus caudalis at any time-point in the formalin-injected animals. The modulation of AMPA receptor may be related to the decrease of hyperalgesia evident 1 h after formalin injection, in spite of the increasing perioral inflammation evident later on and characteristic of the formalin model. The present findings point out a selective down-regulation of AMPA receptor subunits in the transduction of trigeminal pain. These data also support the involvement of glutamate receptor subunits in the processing of trigeminal inflammation induced by noxious chemical stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号