首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
Since the classical hallucinogens were initially reported to produce their behavioral effects via a 5-HT2 agonist mechanism (i.e., the 5-HT2 hypothesis of hallucinogen action), 5-HT2 receptors have been demonstrated to represent a family of receptors that consists of three distinct subpopulations: 5-HT2A, 5-HT2B, and 5-HT2C receptors. Today, there is greater support for 5-HT2A than for 5-HT2C receptor involvement in the behavioral effects evoked by these agents. However, with the recent discovery of 5-HT2B receptors, a new question arises: do classical hallucinogens bind at 5-HT2B receptors? In the present study we examined and compared the binding of 17 phenylisopropylamines at human 5-HT2A, 5-HT2B, and 5-HT2C receptors. Although there was a notable positive correlation (r>0.9) between the affinities of the agents at all three populations of 5-HT2 receptors, structural modification resulted only in small differences in 5-HT2B receptor affinity such that the range of affinities was only about 50-fold. As with 5-HT2A and 5-HT2C receptor affinity, there is a significant correlation (r>0.9, n=8) between 5-HT2B receptor affinity and human hallucinogenic potency. Nevertheless, given that 5-HT2A and 5-HT2A/2C antagonists – antagonists with low affinity for 5-HT2B receptors – have been previously shown to block the stimulus effects of phenylisopropylamine hallucinogens, it is likely that 5-HT2A receptors play a more prominent role than 5-HT2B and 5-HT2C receptors in mediating such effects despite the affinity of these agents for all three 5-HT2 receptor subpopulations.  相似文献   

2.
It has been shown that the hallucinogenic potencies of LSD, the phenylisopropylamines, such as DOB (4-bromo-2,5-dimethoxyphenylisopropylamine) and DOI (4-iodo-2,5-dimethoxyphenylisopropylamine), and the indoleaklylamines, such as DMT (dimethyltryptamine) and 5-OMe-DMT (5-methoxy-dimethyltryptamine), strongly correlate with their in vitro 5-HT2 receptor binding affinities in rat cortical homogenates. In order to ascertain if this correlation applies to human 5-HT2 receptors as well, we examined the affinities of 13 psychoactive compounds at 3H-ketanserin-labelled 5-HT2 receptors in human cortical samples. Both radioligand binding and autoradiographical procedures were used. As in rat brain d-LSD was the most potent displacer of 3H-ketanserin specific binding with a K i of 0.9 nM. The phenylisopropylamine DOI also displayed high affinity (K i of 6 nM). Stereospecific interactions were found with DOB; (-_ DOB had a K i of 17 nM while (+) DOB had a K i of 55 nM. The behaviorally active compound DOM (4-methyl-2,5-phenylisopropylamine) had an affinity of 162 nM while its behaviorally less active congener iso-DOM had an affinity of 6299 nM. The indolealkylamines 5-OMe-DMT and DMT competed with moderate affinities (207 and 462 nM, respectively). In general, Hill coefficients were significantly less than unity which is consistent with an agonist interaction with 5-HT2 receptors. MDMA, a substituted amphetamine analog was inactive with a K i of greater than 10 M. A strong correlation was found for the hallucinogen affinities and human hallucinogenic potencies (r=0.97). Also, human and rat brain 5-HT2 receptor affinities were strongly correlated (r=0.99). These results strongly support the hypothesis that the hallucinogenic effects of these drugs in humans are mediated in whole or in part via 5-HT2 receptors. Furthermore, these studies imply that treatment with 5-HT2 receptor antagonists may be effective in reversing the hallucinogenic effects caused by the ingestion, of LSD and LSD-like drugs.  相似文献   

3.
Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors   总被引:2,自引:0,他引:2  
Evidence from studies with phenylisopropylamine hallucinogens indicates that the 5HT2A receptor is the likely target for the initiation of events leading to hallucinogenic activity associated with LSD and related drugs. Recently, lisuride (a purported non-hallucinogenic congener of LSD) was reported to be a potent antagonist at the 5HT2C receptor and an agonist at the 5HT2A receptor. LSD exhibited agonist activity at both receptors. These data were interpreted as indicating that the 5HT2C receptor might be the initiating site of action for hallucinogens. To test this hypothesis, recombinant cells expressing 5HT2A and 5HT2C receptors were used to determine the actions of LSD and lisuride. LSD and lisuride were potent partial agonists at 5HT2A receptors with EC50 values of 7.2 nM and 17 nM, respectively. Also, LSD and lisuride were partial agonists at 5HT2C receptors with EC50 values of 27 nM and 94 nM, respectively. We conclude that lisuride and LSD have similar actions at 5HT2A and 5HT2C receptors in recombinant cells. As agonist activity at brain 5HT2A receptors has been associated with hallucinogenic acitivity, these results indicate that lisuride may possess hallucinogenic activity, although the psychopharmacological effects of lisuride appear to be different from the hallucinogenic effects of LSD. Received: 19 September 1997/Final version: 31 October 1997  相似文献   

4.

Rationale

After decades of social stigma, hallucinogens have reappeared in the clinical literature demonstrating unique benefits in medicine. The precise behavioral pharmacology of these compounds remains unclear, however.

Objectives

Two commonly studied hallucinogens, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD), were investigated both in vivo and in vitro to determine the pharmacology of their behavioral effects in an animal model.

Method

Rabbits were administered DOI or LSD and observed for head bob behavior after chronic drug treatment or after pretreatment with antagonist ligands. The receptor binding characteristics of DOI and LSD were studied in vitro in frontocortical homogenates from naïve rabbits or ex vivo in animals receiving an acute drug injection.

Results

Both DOI- and LSD-elicited head bobs required serotonin2A (5-HT2A) and dopamine1 (D1) receptor activation. Serotonin2B/2C receptors were not implicated in these behaviors. In vitro studies demonstrated that LSD and the 5-HT2A/2C receptor antagonist, ritanserin, bound frontocortical 5-HT2A receptors in a pseudo-irreversible manner. In contrast, DOI and the 5-HT2A/2C receptor antagonist, ketanserin, bound reversibly. These binding properties were reflected in ex vivo binding studies. The two hallucinogens also differed in that LSD showed modest D1 receptor binding affinity whereas DOI had negligible binding affinity at this receptor.

Conclusion

Although DOI and LSD differed in their receptor binding properties, activation of 5-HT2A and D1 receptors was a common mechanism for eliciting head bob behavior. These findings implicate these two receptors in the mechanism of action of hallucinogens.  相似文献   

5.
Summary The effects of several putative 5-HT1 receptorsubtype selective ligands were investigated in biochemical models for 5-HT1A, 5-HT1B, and 5-HT1D receptors (inhibition of forskolin-stimulated adenylate cyclase activity in calf hippocampus, rat and calf substantia nigra, respectively) and 5-HT1C receptors (stimulation of inositol phosphates production in pig choroid plexus). Following compounds were studied: 5-HT (5-hydroxytryptamine), TFMPP (1-(mtrifluoromethylphenyl)piperazine), mCPP (1-m-chlorophe-nyl)piperazine, 1 CGS 12066 (7-trifluoromethyl-4-(4-methyl1-piperazinyl)-pyrrolo[1,2-a]quinoxaline 1), isamoltane (CGP 361A, 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propranol), quipazine, 1-NP (1-(1-naphthyl)piperazine), and PAPP (LY165163, 1-[2-(4-aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)-piperazine). Among reported 5-HT1B receptor selective drugs, TFMPP had similar potency at 5HT1A, 5-HT1B and 5-HT1C receptors, mCPP did not separate between 5-HT1B and 5-HT1C receptors, CGS 12066 was equipotent at 5-HT1B and 5-HT1D receptors, and isamoltane was only slightly 5-HTIB versus 5-HT1A selective. Quipazine showed equal potency at 5-HTIB and 5-HT1C receptors and 1-NP did not discriminate between the four receptor subtypes. PAPP described as 5-HT1A receptor selective, was equally potent at 5-HT1A and 5-HT1D receptors. The potencies determined in second messenger studies were in good agreement with the affinity values determined in radioligand binding studies. Thus 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D receptors have different pharmacological profiles as predicted from radioligand binding studies. Despite claims to the contrary, none of the tested compounds had actual selectivity for a given 5-HT1 receptor subtype. Of interest were the properties of several of these drugs, which behaved as agonists at some receptors and as antagonists at others (e. g. quipazine, 1-NP, PAPP and isamoltane). Send offprint requests to D. Hoyer at the above address  相似文献   

6.
Summary In the rat inferior vena cava preincubated with 3H-noradrenaline, the effects of nine serotonin (5-HT) receptor agonists and of eight antagonists (including two -adrenoceptor blocking agents) on the electrically evoked 3H overflow were determined. 1. 5-HT, 5-carboxamidotryptamine, 5-methoxy-3(1,2,3,6-tetrahydropyridine-4-yl)-1H-indole (RU 24969), 5-methoxytryptamine, N,Ndimethyl-5-HT, tryptamine and 5-aminotryptamine inhibited the evoked 3H overflow. The potencies of these agonists in inhibiting overflow were significantly correlated with their affinities for 5-HT1B binding sites, but not with their affinities for 5-HT1A, 5-HT1C or 5-HT2 binding sites. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5HT1A receptor agonist, and ipsapirone, a partial agonist at these receptors, did not inhibit overflow. 2. Cyanopindolol facilitated the evoked 3H overflow, an effect which was abolished by propranolol. The maximum inhibition of overflow obtainable with 5-HT was diminished by cyanopindolol. 3. The concentration-response curve for 5-HT was shifted to the right by metitepine, metergoline, quipazine, 6-chloro-2-(1-piperazinyl)pyrazine (MK 212) and propranolol which, given alone, did not affect 3H overflow. The apparent pA2 values of these antagonists tended to be correlated with their affinities for 5-HT1B (but not 5-HT1A, 5-HT1c or 5-HT2) binding sites. Ketanserin, a 5-HT2 receptor antagonist, and spiperone, which blocks 5-HT2 and 5-HT1A but not 5-HT1B or 5-HT1C receptors, failed to antagonize the effect of 5-HT. These results suggest that the inhibitory presynaptic 5-HT receptors on the sympathetic nerve terminals of the rat vena cava appear to belong to the 5-HT1B subtype. Cyanopindolol may act as a partial agonist at these receptors, as it does at the facilitatory prosynaptic -adrenoceptors.This study was supported by a grant of the Deutsche Forschungsgemeinschaft Send offprint requests to M. Göthert  相似文献   

7.

Rationale  

Hallucinogenic serotonin 2A (5-HT2A) receptor partial agonists, such as (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), induce a frontal cortex-dependent head-twitch response (HTR) in rodents, a behavioral proxy of a hallucinogenic response that is blocked by 5-HT2A receptor antagonists. In addition to 5-HT2A receptors, DOI and most other serotonin-like hallucinogens have high affinity and potency as partial agonists at 5-HT2C receptors.  相似文献   

8.
In the present study we compared the affinity of various drugs for the high affinity agonist-preferring binding site of human recombinant 5-HT2A, 5-HT2B and 5-HT2C receptors stably expressed in monoclonal mammalian cell lines. To ensure that the agonist-preferring conformation of the receptor was preferentially labelled in competition binding experiments, saturation analysis was conducted using antagonist and agonist radiolabels at each receptor. Antagonist radiolabels ([3H]-ketanserin for 5-HT2A receptor and [3H]-mesulergine for 5-HT2B and 5-HT2C receptor) bound to a larger population of receptors in each preparation than the corresponding agonist radiolabel ([125I]-DOI for 5-HT2A receptor binding and [3H]-5-HT for 5-HT2B and 5-HT2C receptor binding). Competition experiments were subsequently conducted against appropriate concentrations of the agonist radiolabels bound to the agonist-preferring subset of receptors in each preparation. These studies confirmed that there are a number of highly selective antagonists available to investigate 5-HT2 receptor subtype function (for example, MDL 100907, RS-127445 and RS-102221 for 5-HT2A, 5-HT2B and 5-HT2C receptors respectively). There remains, however, a lack of highly selective agonists. (–)DOI is potent and moderately selective for 5-HT2A receptors, BW723C86 has poor selectivity for human 5-HT2B receptors, while Org 37684 and VER-3323 display some selectivity for the 5-HT2C receptor. We report for the first time in a single study, the selectivity of numerous serotonergic drugs for 5-HT2 receptors from the same species, in mammalian cell lines and using, exclusively, agonist radiolabels. The results indicate the importance of defining the selectivity of pharmacological tools, which may have been over-estimated in the past, and highlights the need to find more selective agonists to investigate 5-HT2 receptor pharmacology.  相似文献   

9.

Rationale

Compounds that activate the 5-HT2A receptor, such as lysergic acid diethylamide (LSD), act as hallucinogens in humans. One notable exception is the LSD congener lisuride, which does not have hallucinogenic effects in humans even though it is a potent 5-HT2A agonist. LSD and other hallucinogens have been shown to disrupt prepulse inhibition (PPI), an operational measure of sensorimotor gating, by activating 5-HT2A receptors in rats.

Objective

We tested whether lisuride disrupts PPI in male Sprague–Dawley rats. Experiments were also conducted to identify the mechanism(s) responsible for the effect of lisuride on PPI and to compare the effects of lisuride to those of LSD.

Results

Confirming a previous report, LSD (0.05, 0.1, and 0.2 mg/kg, s.c.) reduced PPI, and the effect of LSD was blocked by pretreatment with the selective 5-HT2A antagonist MDL 11,939. Administration of lisuride (0.0375, 0.075, and 0.15 mg/kg, s.c.) also reduced PPI. However, the PPI disruption induced by lisuride (0.075 mg/kg) was not blocked by pretreatment with MDL 11,939 or the selective 5-HT1A antagonist WAY-100635 but was prevented by pretreatment with the selective dopamine D2/D3 receptor antagonist raclopride (0.1 mg/kg, s.c).

Conclusions

The effect of LSD on PPI is mediated by the 5-HT2A receptor, whereas activation of the 5-HT2A receptor does not appear to contribute to the effect of lisuride on PPI. These findings demonstrate that lisuride and LSD disrupt PPI via distinct receptor mechanisms and provide additional support for the classification of lisuride as a non-hallucinogenic 5-HT2A agonist.  相似文献   

10.
Serotonergic hallucinogens produce profound changes in perception, mood, and cognition. These drugs include phenylalkylamines such as mescaline and 2,5-dimethoxy-4-methylamphetamine (DOM), and indoleamines such as (+)-lysergic acid diethylamide (LSD) and psilocybin. Despite their differences in chemical structure, the two classes of hallucinogens produce remarkably similar subjective effects in humans, and induce cross-tolerance. The phenylalkylamine hallucinogens are selective 5-HT2 receptor agonists, whereas the indoleamines are relatively non-selective for serotonin (5-HT) receptors. There is extensive evidence, from both animal and human studies, that the characteristic effects of hallucinogens are mediated by interactions with the 5-HT2A receptor. Nevertheless, there is also evidence that interactions with other receptor sites contribute to the psychopharmacological and behavioral effects of the indoleamine hallucinogens. This article reviews the evidence demonstrating that the effects of indoleamine hallucinogens in a variety of animal behavioral paradigms are mediated by both 5-HT2 and non-5-HT2 receptors.  相似文献   

11.
The serotonin (5-HT) syndrome occurs in humans after antidepressant overdose or combination of drugs inducing a massive increase in extracellular 5-HT. Several 5-HT receptors are known to participate in this syndrome in humans and animal models. The 5-HT2B receptor has been proposed as a positive modulator of serotonergic activity, but whether it is involved in 5-HT syndrome has not yet been studied.We analyzed here, a putative role of 5-HT2B receptors in this disorder by forced swimming test (FST) and behavioral assessment in the open field. In FST, genetic (5-HT2B−/− mice) or pharmacological (antagonist RS127445 at 0.5 mg/kg) ablation of 5-HT2B receptors facilitated selective 5-HT reuptake inhibitors (SSRI)-induced increase of immobility time as well as expression of other symptoms related to 5-HT syndrome like hind limb abduction and Straub tail. Increase in immobility was also developed in FST by both wild type (WT) and 5-HT2B−/− mice after the administration of 5-HT1A, 5-HT2A or 5-HT2C receptor agonists, 8-OH-DPAT (5 mg/kg), DOI (1 mg/kg), or WAY161503 (5 mg/kg), respectively. In contrast, the 5-HT2B receptor agonist BW723C86 (3 mg/kg) or 5-HT1B receptor agonist CGS12066A (2 mg/kg) decreased immobility time in both genotypes. The 5-HT syndrome induced by fluoxetine at high doses was blocked in WT and 5-HT2B−/− mice by administration of 5-HT1A and 5-HT2C receptor antagonists (WAY100635 0.5 mg/kg and SB242084 0.5 mg/kg) but not by the 5-HT2A receptor antagonist MDL100907 (1 mg/kg). By behavioral assessment, we confirmed that 5-HT2B−/− mice were more prone to develop 5-HT syndrome symptoms after administration of high dose of SSRIs or the 5-HT precursor 5-Hydroxytryptophan, 5-HTP, even if increases in 5-HT plasma levels were similar in both genotypes.This evidence suggests that the presence of 5-HT2B receptors hinders acute 5-HT toxicity once high levels of 5-HT are attained. Therefore, differential agonism/antagonism of 5-HT receptors should be considered in the search of therapeutic targets for treating this serious disorder.  相似文献   

12.
Like hallucinogenic 5-HT2 agonists, LSD (d-lysergic acid diethylamide) produces characteristic decreases in locomotor activity and investigatory behaviors of rats tested in a novel environment. Because LSD is an agonist at both 5-HT1A and 5-HT2 receptors, however, the respective influences of these different receptors in the behavioral effects of LSD remain unclear. In particular, the paucity of selective 5-HT1A antagonists has made it difficult to assess the specific contribution of 5-HT1A receptors to the effects of LSD. An alternative approach to the delineation of receptor-specific effects is the use of cross-tolerance regimens. In the present studies, rats were pretreated with saline, 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) (0.5 mg/kg SC), 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (1.0 mg/kg SC), or LSD (60 µg/kg SC), every 12 h for 5 or 8 days. Thirty-six hours later, rats were tested in a behavioral pattern monitor 10 min after injection of saline, 0.5 mg/kg 8-OH-DPAT, 1.0 mg/kg DOI, or 60 µg/kg LSD. As expected, tolerance to the decreases in locomotor activity produced by acute administrations of 8-OH-DPAT, DOI, or LSD occurred when rats were pretreated chronically with 8-OH-DPAT, DOI, or LSD, respectively. Furthermore, pretreatment with either 8-OH-DPAT or DOI produced cross-tolerance to LSD. These results support the hypothesis that the effects of LSD in this model reflect a combination of 5-HT1A and 5-HT2 effects and support the view that there is an interaction between 5-HT1A and 5-HT2 receptors.  相似文献   

13.
Several agents that downregulate 5-HT2 receptors produce anxiolytic effects in humans, but the role of 5-HT2 receptor downregulation has been difficult to assess because of their other actions. To test the effects of pharmacological downregulation of 5-HT2 receptors on exploratory behavior in the mouse, mianserin, a drug known to downregulate 5-HT2 receptors after a single dose, was administered 30 min, 48 hr, or 18 days prior to testing in the elevated plus-maze. Following testing in the elevated maze, the head-shake response to 4-iodo-R-(—)-2,5-dimethoxyphenylisopropylamine (DOI), a selective 5-HT2/5-HT1C agonist was assessed, and in a separate group of animals 5-HT1A, 5-HT1B, 5-HT1C, β12, and 5-HT2 agonist and antagonist binding was quantified autoradiographically. Mianserin pretreatment resulted in a significant dose-related anxiolytic effect in the elevated plus maze evidenced by increases in the percentage of entries to, and time spent on the open arms. Head-shakes induced by DOI were also dose-dependently decreased as a result of mianserin pretreatment. At this time, the binding of the 5-HT2 receptor antagonist, 7-amino-8[125I]ketanserin was decreased by 50%. Binding of DOI to 5-HT2 receptors was decreased by 46%, and to 5-HT1C receptors was decreased by 53%, but no other changes were found in any of the other receptor types examined. These findings demonstrate that the 5-HT2 receptor plays at least a permissive role in anxiety-like behaviors, since an intact 5-HT2 system is necessary for the full expression of the anxiety-like response, but the role of 5-HT1C receptor downregulation in the effects of mianserin cannot be ruled out at this time. © 1992 Wiley-Liss, Inc.  相似文献   

14.
Investigations conducted over the past 3 decades have demonstrated that serotonergic receptors, specifically the 5-HT2A and 5-HT2C subtypes, play an important role in the behavioral effects of hallucinogenic compounds. The present study was designed to determine the respective significance of these two receptors in the stimulus effects of LSD and (–)DOM in the rat. Specifically, the interactions of a series of serotonergic antagonists (risperidone, pirenpirone, metergoline, ketanserin, loxapine, LY53857, pizotyline, spiperone, cyproheptadine, mesulergine, promethazine, and thioridazine) with the LSD stimulus and the (–)DOM stimulus in LSD-trained subjects was defined. From these data, IC50 values were determined for the inhibition of the LSD-appropriate responding elicited by either 0.1 mg/kg LSD (15-min pretreatment time) or 0.4 mg/kg (–)DOM (75-min pretreatment). In addition, the affinities of these antagonists for 5-HT2A and 5-HT2C receptors were determined in radioligand competition studies. 5-HT2A affinity correlated significantly with IC50 values for the blockade of the LSD (r=+0.75,P<0.05) and (–) DOM (r=+0.95,P<0.001) stimuli in the LSD trained subjects. 5-HT2C affinity did not correlate significantly with either series of IC50 values. These data indicate that (1) the stimulus effects of LSD, and (2) the substitution of (–)DOM for the LSD stimulus are mediated by agonist activity at 5-HT2A receptors.This study was supported in part by US Public Health Service grant DA 03385 (J.C.W., R.A.R.), by National Research Service Award MH 10567 (D.F.), and by a fellowship from Schering-Plough Research Institute (D.F.). Animals used in these studies were maintained in accordance with the Guide for Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources, National Research Council.  相似文献   

15.
Rationale The hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is structurally similar to other indoleamine hallucinogens such as LSD. The present study examined the effects of 5-MeO-DMT in rats using the Behavioral Pattern Monitor (BPM), which enables analyses of patterns of locomotor activity and exploration, and the prepulse inhibition of startle (PPI) paradigm.Objectives A series of interaction studies using the serotonin (5-HT)1A antagonist WAY-100635 (1.0 mg/kg), the 5-HT2A antagonist M100907 (1.0 mg/kg), and the 5-HT2C antagonist SER-082 (0.5 mg/kg) were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT (0.01, 0.1, and 1.0 mg/kg) in the BPM and PPI paradigms.Results 5-MeO-DMT decreased locomotor activity, investigatory behavior, the time spent in the center of the BPM chamber, and disrupted PPI. All of these effects were antagonized by WAY-100635 pretreatment. M100907 pretreatment failed to attenuate any of these effects, while SER-082 pretreatment only antagonized the PPI disruption produced by 5-MeO-DMT.Conclusions While the prevailing view was that the activation of 5-HT2 receptors is solely responsible for hallucinogenic drug effects, these results support a role for 5-HT1A receptors in the effects of the indoleamine hallucinogen 5-MeO-DMT on locomotor activity and PPI in rats.  相似文献   

16.
Summary GR 43175 (3-[2-dimethylamino]ethyl-N-methyl-1H-indole-5 methane sulphonamide) is a novel 5-HT1-like receptor-selective agonist which was reported to be active in the treatment of migraine attacks. The effects of the compound were investigated in radioligand binding studies and in functional models for 5-HT1A, 5-HT1B, and 5-HT1D receptors (inhibition of forskolin-stimulated adenylate cyclase activity in calf hippocampus, rat and calf substantia nigra, respectively) and 5-HT1C receptors (stimulation of inositol phosphate production in pig choroid plexus).GR 43175 displayed the following order of affinity for 5-HT recognition sites (pKD values, -log mol/l, in parentheses): 5-HT1D (7.54) > 5-HT1B (6.35) > 5-HT1A (6.13) 5-HT1C (4.13) > 5-HT2 (3.67). The same order of potency was observed at functional 5-HT1 receptors, at which GR 43175 acted as a full agonist, with the exception of the 5-HT1C receptor, where the compound was a weak antagonist (pEC50 or pKB values, -log mol/l, in parentheses): 5-HT1D (6.28) > 5-HT1B (6.03) > 5-HT1A (5.57) > 5-HT1C (4.25).The present data show that GR 43175 interacts preferentially as an agonist with 5-HT1B and 5-HT1D receptors. Since 5-HT1B receptors have not yet been identified in human brain, it seems possible that it is the 5-HT1D receptor which is relevant to the reported antimigraine effects of this compound.Send offprint requests to D. Hoyer at the above address  相似文献   

17.
Rationale Few studies have examined the effects of 2,5-dimethoxy-4-(n)-propylthiophenethylamine (2C-T-7) in vivo. Objectives 2C-T-7 was tested in a drug-elicited head twitch assay in mice and in several drug discrimination assays in rats; 2C-T-7 was compared to the phenylisopropylamine hallucinogen R(−)-1-(2,5-dimethoxy-4-methylphenyl)-2aminopropane (DOM) in both assays, with or without pretreatment with the selective 5-HT2A antagonist (+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine-methanol (M100907). Finally, the affinity of 2C-T-7 for three distinct 5-HT receptors was determined in rat brain. Methods Drug-elicited head twitches were quantified for 10 min following administration of various doses of either 2C-T-7 or R(−)-DOM, with and without pretreatments of 0.01 mg/kg M100907. In rats trained to discriminate lysergic acid diethylamide (LSD), 2C-T-7 and R(−)-DOM were tested for generalization. In further studies, rats were trained to discriminate 2C-T-7 from saline, then challenged with 0.05 mg/kg M100907. In competition binding studies, the affinity of 2C-T-7 was assessed at 5-HT2A receptors, 5-HT1A receptors, and 5-HT2C receptors. Results 2C-T-7 and R(−)-DOM induced similar head twitch responses in the mouse that were antagonized by M100907. In the rat, 2C-T-7 produced an intermediate degree of generalization (75%) to the LSD cue and served as a discriminative stimulus; these interoceptive effects were attenuated by M100907. Finally, 2C-T-7 had nanomolar affinity for 5-HT2A and 5-HT2C receptors and lower affinity for 5-HT1A receptors. Conclusions 2C-T-7 is effective in two rodent models of 5-HT2 agonist activity and has affinity at receptors relevant to hallucinogen effects. The effectiveness with which M100907 antagonizes the behavioral actions of 2C-T-7 strongly suggests that the 5-HT2A receptor is an important site of action for this compound.  相似文献   

18.
The effects of various 5-HT receptor subtype-selective antagonists were studied on phenylisopropylamine hallucinogen1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia in Wistar rats, in an attempt to characterize the 5-HT receptor subtype mediating DOI-induced hyperthermia. Intraperitoneal administration of DOI to rats produced hyperthermia with a peak effect at 60 min. Pretreatment with propranolol (-adrenoceptor antagonist that also has binding affinity for 5-HT1A, 5-HT1B and 5-HT2C sites), MDL-72222 or ondansetron (5-HT3 antagonists) did not attenuate DOI-induced hyperthermia. In contrast, pretreatment with metergoline (5-HT1/5-HT2 antagonist), ketanserin, LY53857, mesulergine, mianserin and ritanserin (5-HT2C/5-HT2A antagonists), as well as spiperone (5-HT1A/5-HT2A/D2 antagonist), significantly attenuated DOI-induced hyperthermia. Furthermore, daily administration of DOI (2.5 mg/kg per day) for 17 days did not produce either tolerance to its hyperthermic effect or modifym-CPP-induced hyperthermia in rats. These findings suggest that DOI-induced hyperthermia in rats is mediated by stimulation of 5-HT2A receptors.  相似文献   

19.
Rationale The drug discrimination procedure is the most frequently used in vivo model of hallucinogen activity. Historically, most drug discrimination studies have been conducted in the rat. With the development of genetically modified mice, a powerful new tool has become available for investigating the mechanisms of drug-induced behavior. The current paper is part of an ongoing effort to determine the utility of the drug discrimination technique for evaluating hallucinogenic drugs in mice.Objective To establish the training procedures and characterize the stimulus properties of (+)lysergic acid diethylamide (LSD) in mice.Methods Using a two-lever drug discrimination procedure, C57Bl/6J mice were trained to discriminate 0.45 mg/kg LSD vs saline on a VI30 sec schedule of reinforcement, with vanilla-flavored Ensure serving as the reinforcer.Results As in rats, acquisition was orderly, but the training dose was nearly five-fold higher for mice than rats. LSD lever selection was dose-dependent. Time-course studies revealed a rapid loss of the LSD stimulus effects. The 5-HT2A/2C receptor agonist, 2,5-dimethoxy-4-bromoamphetamine [(–)DOB] (1.0 mg/kg), substituted fully for LSD and the 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) (1.6 mg/kg), substituted partially for LSD. Pretreatment with the 5-HT2A receptor-selective antagonist, MDL 100907, or the 5-HT1A-selective antagonist WAY 100635, showed that each antagonist only partially blocked LSD discrimination. Substitution of 1.0 mg/kg (–)DOB for LSD was fully blocked by pretreatment with MDL 100907 but unaltered by WAY 100635 pretreatment.Conclusions These data suggest that in mice the stimulus effects of LSD have both a 5-HT2A receptor and a 5-HT1A receptor component.  相似文献   

20.
Abstract: The present study was designed to examine 1) functional interactions between 5-HT1A and 5-HT2A/C receptors in thermoregulation in rats and 2) the specific involvement of 5-HT2A and 5-HT2C receptors in such interactions. The 5-HT2A/C receptor agonist DOI (0.025 1.6 mg kg?1, subcutaneously) produced a dose-dependent hyperthermia in rats, which was enhanced by addition of either of two 5-HT1A receptor antagonists, (-)-pindolol (0.5-1.0 mg kg?1, subcutaneously) or WAY-100,635 (0.1-0.4 mg kg?1, subcutaneously). Furthermore, the DOI-induced hyperthermia was counteracted by pretreatment with the 5-HT1A receptor agonist 8-OH-DPAT (0.05 mg kg?1, subcutaneously). The hyperthermia produced by DOI, alone or in combination with WAY-100,635, was fully antagonized by pretreatment with the 5-HT2A/Creceptor antagonist ritanserin (1.0 mg kg?1, subcutaneously), as well as with the selective 5-HT2A receptor antagonist amperozide (2.0 mg kg?1, subcutaneously). The present results provide evidence for functional interactions between 5-HT1A and 5-HT2A receptors in temperature regulation in rats, and also suggest an important role for postsynaptic 5-HT2A receptors in the mediation of DOI-induced hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号