首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Angiotensin II (Ang II) produces dose-related, site-specific cardiovascular effects in the canine and rat dorsal medulla. Our previous studies suggested that Ang II binding sites are associated with presynaptic vagal afferent fibers in the nucleus tractus solitarii (nTS) and vagal efferent neurons in the dorsal motor nucleus of the vagus (dmnX). High resolution autoradiography now establishes the relationship of putative Ang II receptors to the cytoarchitecture of these nuclei. Sections of the canine medulla oblongata were processed for film or emulsion autoradiography with 0.3-1 nM 125I-Ang II. Quantitative densitometry of films before and after processing sections for emulsion coating confirmed no selective alteration in labeling. In emulsion coated sections, dense labeling was seen over the majority of the large perikarya and surrounding neuropil in the ventral dmnX. Bands of label overlaid vagal efferent fibers coursing ventrolaterally to exit the medulla. In the nTS, Ang II binding was restricted to regions with heavy vagal afferent innervation. In the dorsal nTS, label was distributed over both cell bodies and neuropil, with highest density capping the solitary tract. In the medial nTS, label was concentrated over perikarya, with scattered grains over the intervening neuropil. The discrete subnuclear association of Ang II binding sites in the dorsal medulla with vagal cells and fibers documents that Ang II receptors are present on both afferent vagal fibers and intrinsic medullary neurons, and reveals an anatomical substrate for the autonomic effects of Ang II in this region.  相似文献   

2.
The aim of this study was to determine the anatomical relationships between catecholaminergic neurons and cytoarchitectonically defined nuclei in the caudal medulla oblongata. Previous studies have demonstrated the existence of noradrenergic cell bodies (designated as the A1 and A2 cell groups) in the caudal medulla oblongata of the rat (Dahlstr?m and Fuxe, '64), including the nTS. There is no information currently available with regard to details of the distribution of these noradrenergic neurons in the functionally distinct subnuclei of the medulla oblongata. In this study the location of catecholamine-synthesizing enzymes was examined in the serial sections of the caudal medulla oblongata of the rat: tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine N-methyl transferase (PNMT). The immunoperoxidase method of Sternberger ('79) was used to demonstrate the location of immunoreactive neurons, nerve fibers, and presumptive terminal processes. This was followed by Nissl staining of the same sections to localize accurately the immunoreactivity. Noradrenergic neurons (TH- and DBH-positive and PNMT-negative) were localized in a number of subnuclei of the nucleus of the tractus solitarius (nTS), the area postrema (ap), and in the dorsal motor nucleus of the vagus (dmnX). The distribution of these noradrenergic cells was different at different rostrocaudal levels. In addition, adrenergic neurons (TH-, DBH-, and PMNT-positive) were identified dorsal to the tractus solitarius (TS), in the dorsal strip region (ds), the periventricular region (PVR), the dorsal parasolitarius region (dPSR), and the dmnX (rostral to obex). In addition, dopaminergic neurons (TH-positive and DBH- and PNMT-negative) were found in the ap and dmnX. The A1 cell group in the ventrolateral medulla consisted almost exclusively of noradrenergic neurons (TH- and DBH-positive and PNMT-negative). These results indicate that in the rat the A2 cell group is a mixed population of catecholaminergic neurons that are localized in well-defined regions of the dorsal medulla oblongata. The distribution of these neurons is very specific both in terms of rostrocaudal levels and cytoarchitectonic subdivisions of regions of the medulla known to be involved in central autonomic control. This supports the hypothesis that monoaminergic neurons in the dorsal medulla play important roles in the central regulation of visceral function.  相似文献   

3.
The sensory and motor connections of the cervical vagus nerves and of its inferior ganglion (nodose ganglion) have been traced in the medulla and upper cervical spinal cord of 16 male Wistar rats by using horseradish peroxidase (HRP) neurohistochemistry. The use of tetramethyl benzidine (TMB) as the substrate for HRP permitted the visualization of transganglionic and retrograde transport in sensory nerve terminals and perikarya, respectively. The vagus nerve in the rat enters the medulla in numerous fascicles with points of entry covering the entire lateral aspect of the medulla extending from level +4 to - 6 mm rostrocaudal to the obex. Fascicles of vagal sensory fibers enter the dorsolateral aspect of the medulla and travel to the tractus solitarius (TS) which was labeled for over 8.8 mm in the medulla. The caudal extent of the TS receiving vagal projections was found in lamina V of the cervical spinal cord (C1 to C2). Sensory terminal fields could be visualized bilaterally in the nucleus of the tractus solitarius (nTS), area postrema (ap) and dorsal motor nucleus of the vagus nerve (dmnX). The ipsilateral projection to the nTS and the dmnX was heavier than that found on the contralateral side. The area postrema was intensely labeled on both sides. Motor fibers from HRP-labeled perikarya in the dmnX travel ventromedially in a distinct fascicle and subsequently subdivide into a number of small fiber bundles that traverse the medullary reticular formation in the form of a fine network of HRP-labeled fibers. As these fibers from the dmnX approach the ventrolateral aspect of the medulla they are joined by axons from the nucleus ambiguus (nA), nucleus retroambigualis (nRA) and the retro facial nucleus (nRF). These latter fibers form hairpin loops in the middle of the reticular formation to accompany the axons from the dmnX exiting from the medulla in a ventrolateral location. HRP-labeled perikarya, in contrast to transganglionically transported HRP in sensory terminals in the nTS, were visualized on one side only, thus indicating that motor control via the vagus nerve is exerted only by motor neurons located ipsilaterally. Sensory information on the other hand, diverges to many nuclear subgroups located on both sides of the medulla.  相似文献   

4.
Electrophysiologic and anterograde tract tracing studies have demonstrated that the vagus nerve innervates the duodenum. These studies, however, have provided little information regarding the finer anatomic topography within the vagal complex. In this study, the retrograde neuronal tracers WGA-HRP or DiI, applied to the duodenum, were used to characterize the vagal afferent and efferent innervation of this portion of the gastrointestinal tract. This approach labeled a substantial number of motor neurons in both the medial and lateral columns of the dorsal motor nucleus of the vagus (DMNV). Vagal motor neurons innervating the duodenum were seen across the medial-lateral extent of the DMNV and between 600 microm rostral to obex and 1600 microm caudal to obex. The three branches of the vagus nerve contained efferent fibers to the duodenum. The gastric branch of the vagus nerve was the pathway that connected the majority of DMNV neurons with the duodenum. These neurons were located in the medial and middle thirds of the DMNV. The celiac branch to the duodenum was composed of axons from the majority of lateral column neurons but also contained axons from neurons in the medial column. The hepatic branch of the vagus nerve contained only a small number of cell axons. Some neurons were located medially whereas others were in the lateral third of the duodenum. Although central terminations of vagal primary afferents from the duodenum were not found in previous tract tracing studies, we observed a large number of terminals in the subpostremal/commissural region of the nucleus of the solitary tract. Similar to the motor fibers, most afferent fibers from the duodenum were located in the gastric branch of the vagus nerve, although the hepatic and celiac branches also contained afferent neurons. These results demonstrate that the vagal innervation of the duodenum is unique, being an amalgam of what would be expected following labeling of more proximal and distal portions of the GI tract. The uniqueness of the sensory and motor innervation to the duodenum has implications for hypotheses regarding the organization of vagovagal reflexes controlling gastrointestinal function.  相似文献   

5.
Specific angiotensin II (Ang II) binding sites are present in the dorsal medulla of several species and dose-related cardiovascular effects are produced by microinjection of the peptide into this region. Because the anatomical location of Ang II binding sites in the area postrema (ap), nucleus tractus solitarii (nTS) and dorsal motor nucleus of the vagus (dmnX) coincides with the topography of vagal afferent fibers and efferent motor neurons, the effect of either nodose ganglionectomy or cervical vagotomy on Ang II binding sites in the dorsomedial medulla was investigated in dogs by in vitro receptor autoradiography. Two weeks after unilateral ganglionectomy, there was a marked reduction in the density of specific Ang II binding sites in the ipsilateral ap, nTS and dmnX and an absence of binding sites in the region where vagal afferent fibers course through the rostral medulla. Unilateral cervical vagotomy, which has been shown to spare central processes of afferent fibers, resulted in a loss of binding only in the ipsilateral dmnX. We also show that Ang II binding sites are present in the nodose ganglion and central and peripheral processes of the vagus nerve. The data indicate that medullary Ang II binding sites are associated with both vagal afferent fibers and efferent motor neurons.  相似文献   

6.
We have recently shown that distension-sensitive vagal afferents are part of a neural circuit affecting absorption of water in the rat small intestine. Our results indicated that vagal afferent activity directly or indirectly influences the activity of neurons in the dorsal motor nucleus of the vagus (DMNV). In the present study we pursued this interaction by examining the structure and function of neurons in the DMNV and nucleus of the solitary tract (NST) that responded to moderate distension of the small intestine. Distension-sensitive cells were filled by intracellular iontophoretic injection of horseradish peroxidase. A total of 43 distension-sensitive brainstem neurons were successfully characterized and labeled. Sixteen of the 17 NST neurons were excited by distension of the small intestine. Ten of the seventeen were restricted to the ipsilateral NST. Only two NST neurons possessed axons that terminated in the subjacent DMNV. In contrast to the response profile of the NST neurons, 24 of 26 DMNV neurons were inhibited by intestinal distension. Fourteen of the DMNV neurons appeared to contribute to the vagus nerve and 15 extended dendrites into the overlying NST. We propose that distension-induced inhibition of DMNV activity is accomplished by inhibitory NST neurons, which synapse on the dendrites of DMNV neurons in the NST.  相似文献   

7.
The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components—axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve.  相似文献   

8.
The afferent and efferent projections of the carotid sinus nerve were examined within the medulla of the dog with axonal transport of horseradish peroxidase (HRP), and compared with the projections of the glossopharyngeal nerve. The carotid sinus nerve was identified electrophysiologically prior to injection of tracer. Carotid sinus nerve afferent fibers entered the medulla as part of the glossopharyngeal nerve root near the caudal limits of the cochlear nuclei. Labeled axons entered the solitary tract and ran caudally to about 3 mm anterior to the obex, where they began to enter the nucleus tractus solitarii (nTS). Carotid sinus afferent fibers and presumptive terminals were discretely localized within limited portions of the ipsilateral dorsal, medial, and lateral nTS as far as 3 mm caudal to the obex. A few fibers entered the dorsolateral area postrema ipsilateral to HRP injection. Labeled fibers in the commissural nTS crossed the midline and entered the contralateral medial nTS. Efferent neurons were observed only in half of the cases, and were limited to one to three labeled perikarya in the periphery of the retrofacial nucleus. Comparison of the carotid sinus distribution with the previously described vagal afferent projections to the canine nTS revealed partially overlapping, but clearly distinctive patterns, which support a viscerotopic organization of the nTS.  相似文献   

9.
In 11 rabbits operations of intracranial transection of IXth and Xth cranial nerves and transections of vagal nerve on its several levels were performed. After survival 271-327 days karyometric investigations of neurons, astrocytes and oligodendrocytes contained in intercalary nuclei of both sides of medulla were performed. It was stated that after transection of the vagus nerve on the levels proximally to the arising of the recurrent laryngeal nerve the volume of cross-area of neurons and nuclei of astrocytes decreases on the operated side. The authors concluded that atrophic changes found in the intercalary nucleus may be probable of transsynaptic in character. It indicated, that intercalary nucleus receives afferents from the vagus nerve.  相似文献   

10.
Recordings were made of neural activity in the medial to lateral region of the dorsal nucleus of the vagus in the medulla oblongata (NDV), and from the gastric branch of the vagal nerve (gastric vagus) in rats. Gastric acid secretion following lateral hypothalamic (LHA) stimulation was observed, and NDV neurons were identified by stimulation of the peripheral end of the gastric vagus. NDV-neurons responded to LHA stimulation with latencies of about 5 msec, and about 6.5 msec to the peripheral stimulation of the gastric vagus. Out of 274 NDV neurons, which were located by their spontaneous discharge, 186 (67.9%) responded to LHA stimulation. Gastric acid secretion (with either short or long latency) occurred in 8.6% (16/186) of these cases. These 16 neurons were considered to be ‘gastric secretory’ neurons and are discussed as such. The results imply that some LHA neurons, which are either concerned with or directly control gastric acid secretion, communicated by at least one path (probably polysynaptic) to the medulla oblongata and then via the vagus to the oxyntic cells of gastric glands.  相似文献   

11.
The organization of the vagal nuclei was studied electrophysiologically in chloralose-anesthetized rats by analyzing the field potentials and unitary responses evoked in the nuclei by stimulation of the cervical vagus nerve. The rostral part of the nucleus commissuralis yielded only a long-latency response to stimulation of this nerve, suggesting that this region receives projections solely of nonmyelinated afferent fibers. In the nucleus tractus solitarius the stimulation elicited both short-latency and long-latency responses, indicating converging projections of myelinated and nonmyelinated afferents. A long-latency response was recorded diffusely within n. commissuralis and n. tractus solitarius of the contralateral side, whereas a short-latency response was restricted to a midline area, the caudal n. commissuralis, and the most medial part of n. tractus solitarius adjacent to it. These observations also suggest a difference in projections of myelinated and nonmyelinated afferents. Two types of motor neurons were identified in the dorsal vagal nucleus by antidromic activation: one with B-fiber axons and the other with C-fiber axons. C-Fiber motor neurons were characterized by the large positivity of the spike and the presence of an inflection in the rising phase of the spike, presumably between the initial segment and somatodendritic components. The latter component was readily blocked by repetitive stimulation. In the nucleus ambiguus, stimulation of the vagus nerve produced the earliest antidromic response of A-fiber motor neurons accompanied by multiple orthodromic responses of short and long latencies. Electrolytic lesions of the dorsomedial medulla oblongata abolished all potentials in n. ambiguus except the antidromic one, indicating that all the orthodromic responses were generated via the vagal sensory nuclei sinuated dorsomedially.  相似文献   

12.
The 27-kDa heat shock protein (Hsp27) is constitutively expressed in motor and sensory neurons of the brainstem. Hsp27 is also rapidly induced in the nervous system following oxidative and cellular metabolic stress. In this study, we examined the distribution of Hsp27 in the rat medulla oblongata by means of immunohistochemistry after the vagus nerve was cut or crushed. After vagal injury, rats were allowed to survive for 6, 12, 24 h, 2, 4, 7, 10, 14, 30, or 90 days. Vagus nerve lesions resulted in a time-dependent up-regulation of Hsp27 in vagal motor and nodose ganglion sensory neurons that expressed Hsp27 constitutively andde novoinduction in neurons that did not express Hsp27 constitutively. In the dorsal motor nucleus of the vagus nerve (DMV) and nucleus ambiguus, the levels of Hsp27 in motor neurons were elevated within 24 h of injury and persisted for up to 90 days. Vagal afferents to the nucleus of the tractus solitarius (NTS) and area postrema showed increases in Hsp27 levels within 4 days that were still present 90 days postinjury. In addition, increases in Hsp27 staining of axons in the NTS and DMV suggest that vagus nerve injury resulted in sprouting of afferent axons and spread into areas of the dorsal vagal complex not normally innervated by the vagus. Our observations are consistent with the possibility that Hsp27 plays a role in long-term survival of distinct subpopulations of injured vagal motor and sensory neurons.  相似文献   

13.
The distribution and ultrastructure of thyrotropin-releasing hormone-like immunoreactive (TRH-LI) neurons were examined in rabbit medulla oblongata. TRH-LI cell bodies were located in the ventral region of the medulla oblongata: in the paraolivary and parapyramidal regions, regions in and around the pyramidal tract, the dorsolateral region of the lateral reticular nucleus, and the raphe nuclei. The paraolivary and parapyramidal regions contained most of the TRH-LI cell bodies in the medulla oblongata. TRH-LI neurons processes were densely distributed in the dorsal vagal complex and the area postrema. Electron-microscopic immunocytochemical studies revealed TRH-LI neurons at the obex level in the paraolivary region of rabbits. TRH-like immunoreactivity was localized in larger granular vesicles. TRH-LI somata and dendrites received synaptic inputs from both TRH-LI and unlabeled axon terminals. More than half of the TRH-LI axon terminals made synapses with somata or processes of TRH-LI neurons. These observations, together with previous reports that TRH causes respiratory facilitation, suggest that TRH-LI neurons in the paraolivary region in rabbits may be involved in respiratory functions.  相似文献   

14.
The ultrastructural changes in the presynaptic nerve terminals in the dorsal vagal nucleus were studied in rats with bilateral electrolytic lesions placed in the dorso-medio-caudal hypothalamic area in the sagittal plane of the dorsomedial nuclei, just behind these nuclei in the P3,5–P3,7 interval. On days 3,4 and 5 following placement of the hypothalamic lesions, degeneration of some of the presynaptic profiles in the dorsal vagal nucleus was found in the experimental animals. The data obtained provide evidence for the existence of descending hypothalamic axons terminating in the medulla oblongata on the neurons of the dorsal vagal nucleus. The possible involvement of the descending hypothalamic-vagal nerve pathway in the control of endocrine pancreas is discussed.  相似文献   

15.
The CNS cell groups that project to vagal preganglionic neurons which innervate the most distal part of the airways were identified by the viral retrograde transneuronal labeling method. Pseudorabies virus (PRV) was injected into the lung parenchyma of C8 spinal rats and after 5 days survival, brain tissue sections from these animals were processed for immunohistochemical detection of PRV. Retrogradely labeled parasympathetic preganglionic cells (first-order neurons) were seen mainly in the ventral medulla oblongata: the compact portion of the nucleus ambiguus and the area ventral to it. Occasionally, a few labeled cells were seen within the rostral part of the dorsal vagal nucleus. This labeling pattern correlated well with the retrograde cell body labeling seen following cholera toxin beta-subunit (CT-b) injections in the lung parenchyma. PRV transneuronally labeled neurons (second-order and/or presumed third-order neurons) were found throughout the CNS with the characteristic labeling in the brainstem. Labeled neurons were identified along and just beneath the ventral medullary surface, and in nearby areas: the parapyramidal, retrotrapezoid, gigantocellular and lateral paragigantocellular reticular nuclei, as well as the caudal raphe nuclei (raphe pallidus, obscurus, and magnus). Several nucleus tractus solitarius (nTS) regions contained labeled cells including the commissural, medial, and ventrolateral nTS subnuclei. The A5 cell group and a small number of locus coeruleus neurons were also labeled. PRV-infected neurons were present in the K?lliker-Fuse and Barrington's nuclei. In the mesencephalon, neurons within the ventral periventricular gray matter were labeled. Labeling was present in the dorsal, lateral and paraventricular hypothalamic nuclei, and within the amygdaloid complex. In summary, the parasympathetic preganglionic neurons that innervate the peripheral airways are controlled by networks of lower brainstem and suprapontine neurons that lie in the same regions known to be involved in central regulation of autonomic functions.  相似文献   

16.
The motor nuclei and sensory connections of the IXth, Xth, XIth, and XIIth cranial nerves of the reptile Varanus exanthematicus were studied with the methods of anterograde degeneration and anterograde and retrograde axonal transport. The motor nuclei of nerve IX are located ventrally in the rhombencephalon and are constituted medially by the large-celled glossopharyngeal part of the nucleus ambiguus and laterally by the small-celled nucleus salivatorius inferior. The motor nuclei of nerve X consist of the dorsomedially located dorsal motor nucleus of the vagus and the laterally located vagal part of the nucleus ambiguus. The rostral portion of the latter cell group contains smaller cells than its caudal portion and is rostrally continuous with the nucleus salivatorius inferior of nerve IX. The efferent axons of nerves IX and X arising from the ventrolateral medulla first course dorsomedially, form genua beneath the IVth ventricle, and then exit the brainstem. All primary afferent fibers of nerve IX and the majority of those of nerve X enter the solitary tract. Terminations of vagal fibers were observed in the postvagal portion of the nucleus of the solitary tract, the dorsal motor nucleus of the vagus, and the nucleus of the commissura infima. A small contingent of vagal fibers courses caudally just dorsolateral to the descending trigeminal tract. A separate spinal component of nerve XI could not be found. The bulbar component of this nerve forms part of nerve X and takes its main origin from a detached caudal element of the nucleus ambiguus. The motor nuclear complex of nerve XII consists of a large dorsal nucleus and a small ventral nucleus that extend from the medulla oblongata into the first segment of the cervical spinal cord.  相似文献   

17.
A double labeling technique employing retrograde labeling of vagal neurons with horseradish peroxidase from injections into the stomach wall and immunocytochemistry for dopamine-beta-hydroxylase revealed catecholaminergic neurons in the medulla oblongata which project into the abdomen. The great majority of such neurons were located in the dorsal motor nucleus of the vagus, particularly in its rostral third.  相似文献   

18.
The aim of this study was to examine details of the distribution of neuropeptide Y (NPY)-immunoreactive perikarya and nerve terminals in the medulla oblongata in relation to cytoarchitectonically and functionally distinct catecholaminergic regions. The immunoperoxidase method was combined with Nissl staining to determine nuclear boundaries of transmitter-identified nerve cell bodies and to examine the relationship between populations of NPY-immunoreactive neurons and catecholaminergic cell groups (A1, A2, C1, C2, and C3) in serial sections. Previous studies using immunofluorescence have described the existence of NPY catecholaminergic immunoreactive nerve cell bodies in the brainstem. No information is currently available with regard to details of the distribution of these peptidergic neurons and nerve terminals in the functional subnuclear units of the medulla oblongata. In this study we have delineated the anatomical association of NPY immunoreactivity with cardiovascular function. Neuropeptide Y-immunoreactive neurons were found located in close association with noradrenergic neurons of the A1 cell group in the caudal ventrolateral medulla oblongata, where they were usually found located dorsal to the lateral reticular nucleus (LRt). A second population of NPY-immunoreactive neurons was found located medial to the A1 cell group in the ventral subdivision of the reticular nucleus of the medulla (MdV). Neuropeptide Y-immunoreactive neurons in the rostral medulla were found located in regions corresponding to the principal distribution of adrenergic neurons in the C1, C2, and C3 cell groups. In the dorsomedial medulla (A2 region) NPY-immunoreactive neurons were localized in the area postrema (ap) and in a number of subnuclei of the nucleus of the tractus solitarius (nTS), i.e., the dorsal parasolitary region (dPSR), the dorsal strip (ds), the periventricular region (PVR), and the ventral parasolitary region (vPSR). The location of NPY-immunoreactive perikarya and nerve terminals in the dorsal subnuclei of the nTS, i.e., the dPSR and ds, is of particular significance, since this distribution corresponds with the location of small adrenergic neurons as well as with the site of termination of aortic and carotid sinus nerve afferent fibers. NPY-immunoreactive neurons in the dorsomedial medulla are ideally situated for receiving monosynaptic input from baroreceptor afferents and could play a key role in the central integration of cardiovascular reflexes.  相似文献   

19.
The primary gustatory sensory nuclei in catfish are grossly divisible into a vagal lobe and a facial lobe. In this study, the reflex connections of each gustatory lobe were determined with horseradish peroxidase (HRP) tracing methods. In addition, in order to determine the loci and morphology of the other brainstem cranial nerve nuclei, HRP was applied to the trigeminal, facial, glossopharyngeal, or vagus nerve. The sensory fibers of the facial nerve terminate in the facial lobe. The facial lobe projects bilaterally to the posterior thalamic nucleus, superior secondary gustatory nucleus, and medial reticular formation of the rostral medulla. The facial lobe has reciprocal connections with the n. lobobulbaris, medial reticular formation of the rostral medulla, descending trigeminal nucleus, medial and lateral funicular nuclei, and the vagal lobe, ipsilaterally; and with the facial lobe contralaterally. In addition, the facial lobe receives inputs from the raphe nuclei, from a pretectal nucleus, and from perilemniscal neurons located immediately adjacent to the ascending gustatory lemniscal tract at the level of the trigeminal motor nucleus. The gustatory fibers of the vagus nerve terminate in the vagal lobe, while the general visceral sensory fibers terminate in a distinct general visceral nucleus. The vagal lobe projects ipsilaterally to the superior secondary gustatory nucleus, lateral reticular formation, and n. ambiguus; and bilaterally to the commissural nucleus of Cajal. The vagal lobe has reciprocal connections with the ipsilateral lobobulbar nucleus and facial lobe. In addition, the vagal lobe receives input from neurons of the medullary reticular formation and perilemniscal neurons of the pontine tegmentum. In summary, the facial gustatory system has connections consonant with its role as an exteroceptive system which works in correlation with trigeminal and spinal afferent systems. In contrast, the vagal gustatory system has connections (e.g., with the n. ambiguus) more appropriate to a system involved in control of swallowing. These differences in central connectivity mirror the reports on behavioral dissociation of the facial and vagal gustatory systems.  相似文献   

20.
Cholinergic enzymes and muscarinic receptors in nuclei of rat medulla oblongata were examined after unilateral vagotomy to determine their association with efferent vagal neurons. Vagotomy caused an ipsilateral depletion of acetylcholinesterase from the dorsal motor nucleus of the vagus (DNV) and the nucleus ambiguus (NA). Choline acetyltransferase activity was reduced in ipsilateral DNV, nucleus tractus solitarius and rostral NA. Muscarinic receptor localization by autoradiography with [3H]quinuclidinyl benzilate (QNB) revealed marked intranuclear variations in receptor density. Vagotomy had no effect on the QNB binding pattern. Loss of cholinergic enzymes is a consistent response of motor and preganglionic autonomic neurons to axotomy. Depletion of muscarinic receptors is an additional component of axon reaction in brain stem motoneurons. Accordingly, previous studies have shown a decrease in neurotransmitter-related proteins after axotomy of motoneurons. In the present study, cholinergic enzymes were depleted from axotomized vagal neurons but receptors were not. It is concluded that muscarinic receptors in the DNV and NA are not associated with vagal efferent neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号