首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pitavastatin, a novel potent 3-hydroxymethylglutaryl-CoA reductase inhibitor, is selectively distributed to the liver in rats. However, the hepatic uptake mechanism of pitavastatin has not been clarified yet. In the present study, we investigated the contribution of organic anion transporting polypeptide 2 (OATP2/OATP1B1) and OATP8 (OATP1B3) to pitavastatin uptake using transporter-expressing HEK293 cells and human cryopreserved hepatocytes. Uptake studies using OATP2- and OATP8-expressing cells revealed a saturable and Na(+)-independent uptake, with K(m) values of 3.0 and 3.3 microM for OATP2 and OATP8, respectively. To determine which transporter is more important for its hepatic uptake, we proposed a methodology for estimating their quantitative contribution to the overall hepatic uptake by comparing the uptake clearance of pitavastatin with that of reference compounds (a selective substrate for OATP2 (estrone-3-sulfate) and OATP8 (cholecystokinin octapeptide) in expression systems and human hepatocytes. The concept of this method is similar to the so-called relative activity factor method often used in estimating the contribution of each cytochrome P450 isoform to the overall metabolism. Applying this method to pitavastatin, the observed uptake clearance in human hepatocytes could be almost completely accounted for by OATP2 and OATP8, and about 90% of the total hepatic clearance could be accounted for by OATP2. This result was also supported by estimating the relative expression level of each transporter in expression systems and hepatocytes by Western blot analysis. These results suggest that OATP2 is the most important transporter for the hepatic uptake of pitavastatin in humans.  相似文献   

2.
Until recently, it was generally believed that the transport of various organic anions across the bile canalicular membrane was mainly mediated by multidrug resistance-associated protein 2 (MRP2/ABCC2). However, a number of new reports have shown that some organic anions are also substrates of multidrug resistance 1 (MDR1/ABCB1) and/or breast cancer resistance protein (BCRP/ABCG2), implying MDR1 and BCRP could also be involved in the biliary excretion of organic anions in humans. In the present study, we constructed new double-transfected Madin-Darby canine kidney II (MDCKII) cells expressing organic anion-transporting polypeptide 1B1 (OATP1B1)/MDR1 and OATP1B1/BCRP, and we investigated the transcellular transport of four kinds of organic anions, estradiol-17beta-d-glucuronide (EG), estrone-3-sulfate (ES), pravastatin (PRA), and cerivastatin (CER), to identify which efflux transporters mediate the biliary excretion of compounds using double-transfected cells. We observed the vectorial transport of EG and ES in all the double transfectants. MRP2 showed the highest efflux clearance of EG among these efflux transporters, whereas BCRP-mediated clearance of ES was the highest in these double transfectants. In addition, two kinds of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, CER and PRA, were also substrates of all these efflux transporters. The rank order of the efflux clearance of PRA mediated by each transporter was the same as that of EG, whereas the contribution of MDR1 to the efflux of CER was relatively greater than for PRA. This experimental system is very useful for identifying which transporters are involved in the biliary excretion of organic anions that cannot easily penetrate the plasma membrane.  相似文献   

3.
BACKGROUND: The cardiac effects of statins are subject to controversial discussion, and the mechanism of their uptake into the human heart is unknown. A candidate protein is the organic anion transporting polypeptide (OATP) 2B1 (SLCO2B1), because related transporters are involved in the uptake of statins into the human liver. In this study we examine OATP2B1 expression in the human heart and describe statins as inhibitors and substrates of OATP2B1. METHODS: The expression of OATP2B1 was analyzed in 46 human atrial and 15 ventricular samples, including samples from hearts with dilated cardiomyopathy and hearts with ischemic cardiomyopathy. RESULTS: Significant messenger ribonucleic acid expression was found in all samples, with no difference in the diseased hearts. However, patients who had taken atorvastatin exhibit decreased OATP2B1 messenger ribonucleic acid expression compared with patients with no statin treatment. OATP2B1 protein was detected at approximately 85 kd in atrial samples, as well as ventricular samples, and could be localized to the vascular endothelium. Furthermore, estrone-3-sulfate transport into OATP2B1-overexpressing Madin-Darby canine kidney II cells was inhibited by various drugs, including atorvastatin, simvastatin, cerivastatin, glyburide (INN, glibenclamide), and gemfibrozil, with the most pronounced effect being found for atorvastatin (inhibition constant, 0.7 +/- 0.4 micromol/L). Whereas simvastatin (lactone) itself was not transported by OATP2B1, atorvastatin was identified as a high-affinity substrate for OATP2B1 (Michaelis-Menten constant, 0.2 micromol/L) by direct transport measurement via liquid chromatography-tandem mass spectrometry. CONCLUSION: OATP2B1 is a high-affinity uptake transporter for atorvastatin and is expressed in the vascular endothelium of the human heart, suggesting its involvement in cardiac uptake of atorvastatin.  相似文献   

4.
We investigated the inhibitory interaction potential of 22 currently marketed antituberculosis (TB) drugs on organic anion-transporting polypeptide 1B1 (OATP1B1)-, OATP2B1-, and OATP1B3-mediated uptake using in vitro Xenopus oocytes and HEK cells. Rifabutin, ethambutol, amoxicillin, linezolid, p-amino salicylic acid, and rifapentine exhibited mild to moderate inhibitory effects on OATP-mediated uptake of estrone-3 sulfate, estradiol 17β-d-glucuronide, and rosuvastatin. The 50% inhibitory concentration (IC50) values of rifabutin, amoxicillin, ethambutol, p-amino salicylic acid, and linezolid were 35.4, 36.2, 57.6, 72.6, and 65.9 μM, respectively, for uptake mediated by organic anionic transporter polypeptide 1B1 (OATP1B1) and 28.8, 28.9, 53.9, 31.5, and 61.0 μM, respectively, for uptake mediated by organic anionic transporter polypeptide 1B3 (OATP1B3). Streptomycin and linezolid showed greater inhibition of organic anionic transporter polypeptide 2B1 (OATP2B1)-mediated uptake, with IC50 values of 33.2 and 35.6 μM, respectively, along with mild inhibition of other drugs. Furthermore, rifabutin, amoxicillin, and rifapentine significantly inhibited OATP1B1-mediated rosuvastatin uptake, with IC50 values of 12.3, 13.0, and 11.0 μM, respectively, which showed a similar profile to estrone-3 sulfate uptake. The calculated R values ([I]u inlet,max/Ki, where [I]u inlet,max represents the maximum estimated inhibitor concentration inlet to the liver and Ki is the inhibition constant) as the drug-drug interaction (DDI) indexes of PAS, ethambutol, and amoxicillin were 26.1, 6.5, and 4.3 for OATP1B1 and 52.0, 8.0, and 4.6 for OATP1B3, and those for streptomycin, amikacin, and linezolid were 5.0, 4.2, and 4.4 for OATP2B1, respectively, suggesting a higher possibility of in vivo DDIs. This study is the first comprehensive report to show the novel inhibitory potential of 22 marketed anti-TB drugs on OATP-mediated uptake, providing evidence for future in vivo clinical DDI studies.  相似文献   

5.
The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-d-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.  相似文献   

6.
7.
Involvement of LST-1 (a human liver-specific transporter, also called OATP2) as the major transporter in the uptake of pravastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, by human liver was demonstrated. The hepatic uptake of pravastatin evaluated using human hepatocytes was Na(+)-independent and reached saturation with a Michaelis constant (K(m)) of 11.5 +/- 2.2 microM. The uptake of pravastatin was temperature-dependent and was inhibited by estradiol-17beta-D-glucuronide, taurocholic acid, bromosulfophthalein, and simvastatin acid, but not by p-aminohippurate. Estradiol-17beta-D-glucuronide competitively inhibited pravastatin uptake with an inhibition constant comparable to the K(m) value for estradiol-17beta-D-glucuronide transport, indicating that a common transporter mediates the transport of pravastatin and estradiol-17beta-D-glucuronide in human hepatocytes. The results obtained with human hepatocytes agreed with those obtained with LST-1 expressing Xenopus oocytes. Oocytes microinjected with human liver polyadenylated mRNA showed Na(+)-independent uptake of pravastatin and estradiol-17beta-D-glucuronide. A simultaneous injection of LST-1 antisense oligonucleotides completely abolished this uptake. Expression of LST-1 was immunohistochemically demonstrated in the human hepatocytes, but not in Hep G2 cells, which showed very low uptake of pravastatin. Therefore, LST-1 was regarded as a key molecule for pravastatin in liver-specific inhibition of cholesterol synthesis, making pravastatin accessible to the target enzyme, which would otherwise not be inhibited by this hydrophilic drug.  相似文献   

8.
The pH-sensitive activity of human organic anion transporting polypeptide OATP-B, which is expressed at the apical membrane of human small intestinal epithelial cells, was functionally characterized. When initial uptake of estrone-3-sulfate, a typical substrate of OATP, was studied kinetically, we observed an increase in V(max) with decrease of pH from 7.4 to 5.0, whereas the change in K(m) was negligible. OATP-B-mediated uptake of estrone-3-sulfate was independent of sodium, chloride, bicarbonate, or glutathione, whereas the proton ionophore carbonylcyanide p-trifluoromethoxyphenylhydrazone exhibited a pH-dependent inhibitory effect, suggesting that a proton gradient is a driving force for OATP-B. When OATP-B was expressed in human embryonic kidney 293 cells, uptake activities for anionic compounds showed various kinds of pH sensitivity. Dehydroepiandrosterone-sulfate, estrone-3-sulfate, and fexofenadine were transported by OATP-B at both neutral and acidic pH, whereas estradiol-17beta-glucuronide, acetic acid, and lactic acid were not transported at all. Transport of taurocholic acid and pravastatin by OATP-B was observed only at acidic pH, demonstrating a pH-sensitive substrate specificity of OATP-B. Because the physiological pH close to the surface of intestinal epithelial cells is acidic, the roles of OATP-B in the small intestine might be different from those in other tissues, such as liver basolateral membrane. Although the driving force for OATP-B has not been fully established, the clarification of factors, such as pH, that affect the OATP-B-activity is essential for an understanding of the physiological and pharmacological relevance of the transporter in the small intestine.  相似文献   

9.
Methotrexate (MTX) is used in patients with malignant and autoimmune diseases. This drug is primarily excreted unchanged in the urine, and its net excretion occurs via active secretory and reabsorptive processes. We characterized the interaction of MTX with human organic-anion transporting polypeptide transporter (OATP) 1A2, which is expressed in tissues important for MTX disposition and toxicity, such as the intestine, kidney, liver, and endothelial cells of the blood-brain barrier. In Xenopus laevis oocytes expressing OATP1A2, the uptake of the model substrate, estrone-3-sulfate (ES), was enhanced 30-fold compared with uninjected oocytes. MTX uptake in oocytes expressing OATP1A2 was saturable (Km = 457 +/- 118 microM; Vmax = 17.5 +/- 4.9 pmol/oocyte/60 min) and sensitive to extracellular pH. That is, acidic pHs stimulated MTX uptake by as much as 7-fold. Seven novel protein-altering variants were identified in 270 ethnically diverse DNA samples. Four protein-altering variants in OATP1A2 exhibited altered transport of ES and/or MTX. The common variant, protein reference sequence (p.) Ile13Thr, was hyperfunctional for ES and MTX and showed a 2-fold increase in the V(max) for ES. The common variant, p. Glu172Asp, exhibited reduced maximal transport capacity for ES and MTX. p. Arg168Cys was hypofunctional, and p. Asn277DEL was nonfunctional. Because of its expression on the apical membrane of the distal tubule and in tissues relevant to MTX disposition and toxicity, these findings suggest that OATP1A2 may play a role in active tubular reabsorption of MTX and in MTX-induced toxicities. Furthermore, genetic variation in OATP1A2 may contribute to variation in MTX disposition and response.  相似文献   

10.
CCK-8 (L-aspartyl-L-tyrosyl-L-methionylglycyl-L-tryptophyl-L-methionyl-L-aspartyl-L-phenylalaninamide hydrogen sulfate ester), a derivative of the gastrointestinal peptide hormone cholecystokinin, is specifically taken up into human hepatocytes by the organic anion transporter OATP1B3 (OATP8). So far it was unknown which transporter mediates the excretion of CCK-8 into bile. Double-transfected Madin-Darby canine kidney strain II cells, expressing recombinant human OATP1B3 in the basolateral membrane together with human ABCC2 (multidrug resistance protein 2, MRP2) in the apical membrane, represent a valuable model system to study vectorial transport. The importance of an appropriate filter support for optimized protein localization and substrate transport was demonstrated by the comparison of filter pore densities of 2 x 10(6) and 1 x 10(8) per cm(2). At the high pore density, immunofluorescence microscopy showed an intense OATP1B3 signal in the basolateral membrane of all cells, and 82 +/- 8% of cells expressed ABCC2 in the apical membrane. Uptake and efflux of radiolabeled CCK-8 in the double-transfected cells grown at high pore density was enhanced 3.5- and 5.6-fold, respectively, compared with cells grown at lower pore density. Higher transport rates were also observed with [(3)H]bromosulfophthalein. The high-affinity ATP-dependent transport of CCK-8 by ABCC2 was directly demonstrated in ABCC2-containing membrane vesicles with a K(m) value of 8.1 microM. The uptake by OATP1B3 and hence the vectorial transport of CCK-8 was inhibited by cyclosporin A (K(i) 1.2 microM) and by MK571 [(3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethylamino-3-oxopropyl)thio)methyl)thiopropanoic acid] (K(i) 0.6 microM); the respective K(i) values for the ABCC2-mediated transport were 24 and 8.5 microM. Thus, using an optimized filter support, we demonstrate vectorial transport of CCK-8 by OATP1B3 and by the apical export pump ABCC2.  相似文献   

11.
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. The mechanistic basis of bilirubin excretion and hyperbilirubinemia syndromes is largely understood, but that of Rotor syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, coproporphyrinuria, and near-absent hepatic uptake of anionic diagnostics, has remained enigmatic. Here, we analyzed 8 Rotor-syndrome families and found that Rotor syndrome was linked to mutations predicted to cause complete and simultaneous deficiencies of the organic anion transporting polypeptides OATP1B1 and OATP1B3. These important detoxification-limiting proteins mediate uptake and clearance of countless drugs and drug conjugates across the sinusoidal hepatocyte membrane. OATP1B1 polymorphisms have previously been linked to drug hypersensitivities. Using mice deficient in Oatp1a/1b and in the multispecific sinusoidal export pump Abcc3, we found that Abcc3 secretes bilirubin conjugates into the blood, while Oatp1a/1b transporters mediate their hepatic reuptake. Transgenic expression of human OATP1B1 or OATP1B3 restored the function of this detoxification-enhancing liver-blood shuttle in Oatp1a/1b-deficient mice. Within liver lobules, this shuttle may allow flexible transfer of bilirubin conjugates (and probably also drug conjugates) formed in upstream hepatocytes to downstream hepatocytes, thereby preventing local saturation of further detoxification processes and hepatocyte toxic injury. Thus, disruption of hepatic reuptake of bilirubin glucuronide due to coexisting OATP1B1 and OATP1B3 deficiencies explains Rotor-type hyperbilirubinemia. Moreover, OATP1B1 and OATP1B3 null mutations may confer substantial drug toxicity risks.  相似文献   

12.
Genetic polymorphisms of human organic anion transporting polypeptides OATP-C (SLC21A6) and OATP-B (SLC21A9) in the Japanese population were analyzed. The allele frequencies of OATP-C*1a, OATP-C*1b (N130D), OATP-C*1c (R152K and D241N), and OATP-C*5 (V174A) were 35.2, 53.7, 0, and 0.7%, respectively, in 267 healthy Japanese subjects. In the OATP-C gene, we found a novel allele called OATP-C*15 possessing two single nucleotide polymorphisms (SNPs), N130D and V174A, simultaneously. The allele frequency of OATP-C*15 was 3.0%. The allele frequencies of OATP-B*1, OATP-B*2 (T392I), and OATP-B*3 (S486F) were 69.1, 0, and 30.9%, respectively. For functional analysis, each OATP-C and OATP-B allele was expressed in human embryonic kidney (HEK293) cells, and the kinetics of uptake of [(3)H]estrone-3-sulfate was determined. In the case of OATP-C alleles, no significant alteration in K(m) or V(max) values of [(3)H]estrone-3-sulfate uptake was observed, even when the V(max) values were corrected for the expression levels of OATP-C protein. In contrast, V(max), corrected with the expression level of OATP-B*3, was decreased to 42.5% of OATP-B*1, whereas the K(m) values were comparable. Since the frequency of the OATP-B*3 allele was high (30.9%) in our subjects, the SNP of S486F may affect the physiological function and/or pharmacological effects of OATP-B substrates in vivo.  相似文献   

13.
OBJECTIVE: Our objective was to learn whether genetic polymorphisms of metabolic enzymes or transport proteins provide a mechanistic understanding of the in vivo disposition of atrasentan, a selective endothelin A receptor antagonist. METHODS: Atrasentan uptake was measured in HeLa cells transfected to express major alleles of organic anion transporting polypeptide 1B1 (OATP1B1). The results were used to classify individuals as extensive, intermediate, or poor OATP1B1 transporters according to their SLCO1B1 genotypes. Analysis of covariance including genotype, study, age, weight, sex, and ethnicity was used to identify factors influencing atrasentan single-dose (n = 44) and steady-state (n = 38) pharmacokinetic parameters. Genotypes for cytochrome P450 3A5, uridine diphosphate-glucuronosyltransferase (UGT) 1A1, UGT2B4, UGT2B15, adenosine triphosphate-binding cassette subfamily B (ABCB) 1, solute carrier organic anion transporter (SLCO) 1B1, and solute carrier family 22 (SLC22) A2 were each assessed. RESULTS: Single-dose atrasentan exposure (P = .0244), steady-state atrasentan exposure (P = .0108), and maximum postdose plasma concentration (P = .0002) were associated with OATP1B1 activity classified by SLCO1B1 genotype. No other tested genotypes were observed to be associated with both single-dose and steady-state atrasentan pharmacokinetics. CONCLUSIONS: OATP1B1 is a meaningful factor for atrasentan disposition. Individuals may be classified as having extensive, intermediate, or poor OATP1B1 transport phenotypes according to SLCO1B1 genotypes. Increased exposures of OATP1B1 substrates might be expected in individuals who have the poor transporter phenotype or are treated with an OATP1B1 inhibitor.  相似文献   

14.

Purpose

Ovarian cancer remains a deadly malignancy because most patients develop recurrent disease that is resistant to chemotherapy. Organic anion-transporting polypeptides (OATPs) mediate the uptake of clinically important drugs thereby effecting intracellular drug accumulation. In this study, we investigated whether OATPs may also contribute to paclitaxel transport in estrogen-responsive and estrogen-independent ovarian carcinoma cell lines and tumor tissue.

Methods

Expression of all 11 human OATPs in human ovarian cancer tissue samples and in the ovarian carcinoma cell lines OVCAR-3 and SK-OV-3 was investigated using real-time RT-PCR. Kinetic analysis of paclitaxel uptake was characterized in both cell lines and in OATP-transfected Xenopus laevis oocytes. Cytotoxicity of paclitaxel in OVCAR-3, SK-OV-3 and OATP1B1- and OATP1B3-transfected SK-OV-3 cells was performed using the CellTiter-Glo assay.

Results

OATP1B1 and OATP1B3 are active paclitaxel transporters in transfected X. laevis oocytes. Real-time RT-PCR analysis revealed expression of both OATPs in human ovarian cancer tissue specimens and in cancer cell lines. The higher mRNA levels for OATP1B1 and OATP1B3 found in SK-OV-3 cells correlated with higher initial uptake rates for paclitaxel. In addition, cytotoxicity studies with OATP1B1- and OATP1B3-transfected SK-OV-3 cells demonstrated lower IC50 values compared to cells transfected with the empty vector.

Conclusions

Our results revealed OATP1B1 and OATP1B3 as high-affinity paclitaxel transporters expressed in ovarian cancer cell lines and tumor tissues, suggesting a role for these polypeptides in the disposition of paclitaxel during therapy.  相似文献   

15.
Microcystins are a family of cyclic peptides that are potent inhibitors of the protein phosphatase families PP1 and PP2A. Only three human proteins are thought to be able to mediate the hepatic uptake of microcystins (the organic anion-transporting polypeptides OATP1B1, OATP1B3, and OATP1A2), and the predominant hepatic expression of these transporters accounts for the liver-specific toxicity of microcystins. A significant obstacle in the study of microcystins as anticancer drugs is the requirement of specific transport proteins for cellular uptake. We report that OATP1B3 mRNA is up-regulated in non-small cell lung cancer tumors in comparison with normal control tissues. This finding led to the exploration of microcystins as potential anticancer agents. We have developed a HeLa cell model with functional OATP1B1 and OATP1B3 activity. Transiently transfected HeLa cells are over 1,000-fold more sensitive to microcystin LR than the vector-transfected control cells, showing that transporter expression imparts marked selectivity for microcystin cytotoxicity. In addition, microcystin analogues showed variable cytotoxicities in the OATP1B1- and OATP1B3-transfected cells, including two analogues with IC(50) values <1 nmol/L. Cytotoxicity of microcystin analogues seems to correlate to the inhibition of PP2A in these cells and induces rapid cell death as seen by chromatin condensation and cell fragmentation. These studies show that microcystin-induced phosphatase inhibition results in potent cytotoxicity when microcystin compounds can gain intracellular access and are a potent novel class of therapeutic agents for tumors expressing these uptake proteins.  相似文献   

16.
In the present study, we compared the inhibitory effects of organic anions (including bile acids) on the uptake of taurocholate (TC) and estradiol 17beta-D-glucuronide (E(2)17betaG), typical substrates for sodium taurocholate cotransporting polypeptide (Ntcp) and organic anion transporting polypeptide (oatp1), respectively, using primary cultured rat hepatocytes and Ntcp- or oatp1-transfected COS-7 cells. The Na(+)-dependent uptake of TC was inhibited by nine bile acids and five nonbile acid organic anions in a concentration-dependent manner, and their inhibitory effects were similar in both primary cultured rat hepatocytes and Ntcp-transfected COS-7 cells. BQ-123 (1 microM) and indomethacin (10 microM), both of which exhibit no Ntcp-mediated transport, significantly inhibited the Na(+)-dependent uptake of TC mediated by Ntcp. In addition, the Na(+)-independent uptake of E(2)17betaG was inhibited by 15 organic anions in a concentration-dependent manner, and their inhibitory effects were similar between primary cultured rat hepatocytes and oatp1-transfected COS-7 cells. BQ-123 (1 microM), pravastatin (1 microM), and indomethacin (10 microM), all of which do not undergo oatp1-mediated transport, significantly inhibited the Na(+)-independent uptake of E(2)17betaG mediated by oatp1. These results are consistent with the hypothesis that the hepatic uptake of TC and E(2)17betaG is predominantly mediated by Ntcp and oatp1, respectively. In addition, it was clearly demonstrated that we cannot refer to the substrate specificity of transporters based on inhibition studies.  相似文献   

17.
18.
Sitagliptin, a selective dipeptidyl peptidase 4 inhibitor recently approved for the treatment of type 2 diabetes, is excreted into the urine via active tubular secretion and glomerular filtration in humans. In this report, we demonstrate that sitagliptin is transported by human organic anion transporter hOAT3 (Km=162 microM), organic anion transporting polypeptide OATP4C1, and multidrug resistance (MDR) P-glycoprotein (Pgp), but not by human organic cation transporter 2 hOCT2, hOAT1, oligopeptide transporter hPEPT1, OATP2B1, and the multidrug resistance proteins MRP2 and MRP4. Our studies suggested that hOAT3, OATP4C1, and MDR1 Pgp might play a role in transporting sitagliptin into and out of renal proximal tubule cells, respectively. Sitagliptin did not inhibit hOAT1-mediated cidofovir uptake, but it showed weak inhibition of hOAT3-mediated cimetidine uptake (IC50=160 microM). hOAT3-mediated sitagliptin uptake was inhibited by probenecid, ibuprofen, furosemide, fenofibric acid, quinapril, indapamide, and cimetidine with IC50 values of 5.6, 3.7, 1.7, 2.2, 6.2, 11, and 79 microM, respectively. Sitagliptin did not inhibit Pgp-mediated transport of digoxin, verapamil, ritonavir, quinidine, and vinblastine. Cyclosporine A significantly inhibited Pgp-mediated transport of sitagliptin (IC50=1 microM). Our data indicate that sitagliptin is unlikely to be a perpetrator of drug-drug interactions with Pgp, hOAT1, or hOAT3 substrates at clinically relevant concentrations. Renal secretion of sitagliptin could be inhibited if coadministered with OAT3 inhibitors such as probenecid. However, the magnitude of interactions should be low, and the effects may not be clinically meaningful, due to the high safety margin of sitagliptin.  相似文献   

19.
Although Oatp1a1 (rat organic anion-transporting polypeptide 1a1) was the transporter found responsible for the hepatocellular entry of enalapril (EN) into the rat liver, the canalicular transporter involved for excretion of EN and the metabolite, enalaprilat (ENA), was unknown. The Eisai hyperbilirubinemic rat (EHBR) that lacks Mrp2 (multidrug resistance-associated protein 2) was used to appraise the role of Mrp2 in the excretion of [3H]EN and its metabolite [3H]ENA in single-pass rat liver preparations. Although the total and metabolic clearances and hepatic extraction ratios at steady-state were virtually unaltered for EN in EHBR compared with published values of Sprague-Dawley rats, the biliary clearances of EN and ENA were significantly reduced almost to zero (P<0.05). Involvement of human OATP1B1, OATP1B3, and MRP2 in EN transport was further assessed in single- or double-transfected mammalian cells. Human embryonic kidney 293 cells that expressed OATP1B1 or OATP1B3 showed that OATP1B3 transport of EN (20-500 microM) was of low affinity, whereas transport of EN by OATP1B1 was associated with the Km of 262+/-35 microM, a value similar to that for Oatp1a1 (214 microM). The transcellular transport of EN via human OATP1B1 and MRP2, investigated with the double-transfected Madin-Darby canine kidney (MDCK) II cells in the Transwell system, showed that the sinusoidal to canalicular flux of EN in the OATP1B1/MRP2/MDCK cells was significantly higher (P<0.05) than that of mock/MDCK and OATP1B1/MDCK cells. EN was transported by Oatp1a1 and Mrp2 in rats and OATP1B1/OATP1B3 and MRP2 in humans.  相似文献   

20.
Ethinylestradiol (EE) is one of the key constituents of oral contraceptives. Major metabolites of EE in humans are the glucuronide and sulfate conjugates, EE-3-O-glucuronide (EE-G) and EE-3-O-sulfate (EE-S). In the present study, transport of EE-G and EE-S by the human multidrug resistance proteins MRP1, MRP2, and MRP3 was investigated using inside-out membrane vesicles, isolated from Sf9 cells expressing human MRP1, MRP2, or MRP3. Vesicular uptake studies showed that EE-G was not a substrate for MRP1, whereas an ATP-dependent and saturable transport of [(3)H]EE-G was observed in MRP2 (K(m) of 35.1 +/- 3.5 microM) and MRP3 (K(m) of 9.2 +/- 2.3 microM) containing vesicles. EE-S was not transported by either MRP1, MRP2, or MRP3. However, low concentrations of EE-S stimulated MRP2-mediated uptake of ethacrynic acid glutathione. EE-S also stimulated MRP2 and MRP3-mediated uptake of 17beta-estradiol-17beta-D-glucuronide. Interestingly, EE-S stimulated strongly MRP2- and MRP3-mediated uptake of EE-G by increasing its apparent transport affinity, whereas no reciprocal stimulation of EE-S uptake by EE-G was observed. These data indicate that EE-S allosterically stimulates MRP2- and MRP3-mediated transport of EE-G and is not cotransported with EE-G. Our studies demonstrate specific active transport of a pharmacologically relevant drug conjugate by human MRP2 and MRP3, involving complex interactions with other organic anions. We also suggest that caution needs to be taken when using only competition studies as screening tools to identify substrates or inhibitors of MRP-mediated transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号