首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The capacity of the oxidative pentose phosphate pathway (PPP) in the heart is small, since the activity of glucose-6-phosphate dehydrogenase (G-6-PD), the first and rate-limiting enzyme, is very low. Basically, two mechanisms are involved in the regulation of this pathway. Under normal conditions, G-6-PD is inhibited by NADPH. This can immediately be overcome in the isolated perfused rat heart by increasing the oxidized glutathione and by elevating the NADP+/NADPH ratio.Apart from this rapid control mechanism, there exists a long-term regulation which involves the synthesis of G-6-PD. All catecholamines that were administered stimulated the activity of myocardial G-6-PD in a time- and dose-dependent manner. This stimulation was due to increased new synthesis of enzyme protein, since the G-6-PDmRNA was specifically enhanced. As a consequence of the stimulation of the oxidative PPP, the available pool of 5-phosphoribosyl-1-pyrophosphate (PRPP) was elevated which serves as an important precursor substrate for purine and pyrimidine nucleotide synthesis.The limiting step in the oxidative PPP can be bypassed by ribose which leads to an elevation of the cardiac PRPP pool. The decline in the ATP that is induced in many pathophysiological conditions can be attenuated or even entirely prevented by i.v. infusion of ribose. In some experimental in vivo rat models such as in the overloaded and catecholamine-stimulated heart and in the non-ischemic region of the infarcted heart, the normalization of the metabolic situation was accompanied by an improvement of global heart function.Ribose application has been shown to be beneficial in several clinical disease states such as myoadenylate deaminase deficiency and McArdle's disease. Moreover, ribose facilitated thallium-201 redistribution and markedly improved the detection of reversible ischemic injury of the pig and human heart.Dedicated to Prof. Dr. med. E. Gerlach on the occasion of his 65th birthday. The experimental research referred to in this article has been supported by Deutsche Forschungsgemeinschaft (Zi 199/8-1,2)  相似文献   

2.
3.
Regulation of the pentose phosphate pathway in human astrocytes and gliomas   总被引:2,自引:0,他引:2  
Several aspects of the regulation of the pentose phosphate pathway were examined in cultured normal human cortical astrocytes and gliomas of pathological grades I-IV. The generation of radiolabeled CO2 from [l-14C]glucose by the oxidative arm of the pentose phosphate pathway is a saturable process and has a maximum flux rate of 8–9 nmol/hr/mg cell protein. The flux can be blocked by the glycolytic inhibitor iodoacetamide but is unaffected by agents which inhibit oxidative phosphorylation. The magnitude of the pentose phosphate flux is directly related to the glioma grade. Grade IV gliomas (glioblastoma) show a pentose phosphate flux rate of approximately 4% of the total glucose flux. The flux rate can be increased by pharmacological agents which decrease the NADPH/NADP+ ratio. Both the activity and the regulation of glioma glucose-6-phosphate dehydrogenase (G6PDH) are altered in high-grade gliomas. While the affinity constants for cofactors in whole homogenates were not significantly different in glioma or normal astrocyte homogenates, normal astrocytes have a lower Km for glucose-6-phosphate and a G6PDH activity which is 10-fold greater than that of gliomas. NADPH is a powerful regulator of G6PDH activity in the normal astrocytes and in gliomas. At a NADPH/NADP+ ratio of 7:1 the normal astrocyte G6PDH is entirely inhibited, while the glioma enzyme is only 70% inhibited even at a ratio of20: 1. Increased metabolic flux through the oxidative arm of the pentose phosphate pathway is apparently due to an altered form of G6PDH.  相似文献   

4.
5.
6.
OBJECTIVE: The oxidative pentose phosphate pathway (oxPPP) produces NADPH, which can be used to maintain glutathione in its reduced state (anti-oxidant; beneficial effects) or to produce radicals or nitric oxide (NO) through NADPH oxidase/NO synthase (detrimental effects). Changes in cytosolic redox status have been implicated in ischemic preconditioning (PC). This study investigates whether (1) PC affects mitochondrial redox state, (2) the oxPPP plays a protective or detrimental role in ischemia (I)-reperfusion (R) injury in the intact heart and (3) PPP is altered with PC. METHODS: Isolated rat hearts were subjected to 40-min global I and 30-min R (CO, control). Ischemia was either preceded by three 5-min I/R periods (PC) and/or oxPPP inhibition by 6-aminonicotinamide (6AN) or NADPH oxidase/NO synthase inhibition by diphenyleneiodonium (DPI). NADH videofluorometry was used to determine mitochondrial redox state. PPP intermediates were determined in CO and PC hearts using tandem mass spectrometry. RESULTS: PC reduced ischemic damage (creatine kinase, CK, release from 337+/-64 to 147+/-41 U/R/gdw) and contracture (from 59+/-5 to 31+/-3 mm Hg) and increased recovery of contractility (from 48+/-10% to 88+/-8%), as compared to CO. PC was without effect on NADH fluorometry. Inhibition of the oxPPP reduced injury (CK release: 91+/-24 U/R/gdw) to similar levels as PC, without improving contractility. Inhibition of NADPH oxidase/NO synthase mimicked the effects of oxPPP inhibition on injury (CK release: 140+/-22 U/R/gdw). Although levels of ribose-5P and (ribulose-5P+xylulose-5P) rose several fold during ischemia with minor changes in sedoheptulose-7P, demonstrating an active PPP in the heart, PC did not affect these levels. CONCLUSIONS: (1) PC can attenuate cardiac reperfusion injury without alterations in mitochondrial redox state; (2) inhibition of the oxPPP protects the heart against I/R-induced CK release; and (3) PC does not result in altered activity of the PPP.  相似文献   

7.
To examine whether stimulation of alpha-adrenergic receptors may affect the oxidative pentose phosphate pathway (PPP) in the rat heart, norepinephrine (NE) and the alpha-adrenergic agonist norfenephrine were used. NE was administered as a continuous intravenous infusion in awake rats for 3 days. It stimulated the activity of cardiac glucose-6-phosphate dehydrogenase (G-6-PD), the first and regulating enzyme of the oxidative PPP, in a dose-dependent manner. With the highest dose (0.2 mg.kg-1.hr-1), there was also a time-dependent enhancement. The increase observed after 48 hours was attenuated partially by the beta-receptor blocker metoprolol and the alpha-receptor blocker prazosin. It was entirely abolished when both drugs were administered. Carvedilol, a beta-adrenergic blocker and vasodilator with alpha 1-blocking activity (0.5 mg.kg-1.hr-1), prevented the NE-induced increase in cardiac G-6-PD activity, in functional parameters (heart rate, left ventricular systolic pressure, and left ventricular dP/dtmax), and in the heart weight/body weight ratio. The alpha-adrenergic stimulator norfenephrine increased myocardial G-6-PD activity; prazosin prevented this stimulation. NE and norfenephrine also elevated the available pool of cardiac 5-phosphoribosyl-1-pyrophosphate. G-6-PD activity was enhanced in cardiac myocytes freshly isolated from the left ventricle of rats that had received NE infusion for 3 days (12.3 +/- 1.4 units/g protein) compared with control rats (1.5 +/- 0.4 units/g protein). The activity of 6-phosphogluconate dehydrogenase, one of the enzymes in the oxidative PPP, was elevated only moderately from 12.7 +/- 0.7 to 19.1 +/- 1.4 units/g protein. Combined alpha- and beta-receptor blockade with carvedilol attenuated these effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
The influence of feeding 2-acetylaminofluorene on the dietary induction of the enzymes glucose-6-phosphate dehydrogenase, and 6-phosphogluconate dehydrogenase by a fasting-refeeding regime was investigated in the liver of hooded rats. After feeding a diet containing 0,03% acetylaminofluorene for two weeks, the induced activity of glucose-6-phosphate dehydrogenase was diminished significantly; after feeding this carcinogen either for 4 weeks or for 4 weeks followed by feeding carcinogen-free diet for 2 weeks, the diminution of the induction was hardly perceptible. In case of 6-phosphogluconate dehydrogenase the diminution of the induction was only slightly expressed, without statistical significance.  相似文献   

10.
Iodide oxidation and binding to proteins require a thyroperoxidase and an ill defined H2O2-generating system. The NADP+ supply and, thus, NADPH oxidation are the limiting steps of the pentose phosphate pathway. The purpose of this work was to test the hypothesis that H2O2 generation is a limiting step of iodination and NADPH oxidation and, therefore, of the pentose phosphate pathway. H2O2 produced by dog thyroid slices was measured with the homovanillic fluorescence assay. Our data show that H2O2 generation is stimulated by both the cAMP cascade [as activated by TSH, forskolin and (Bu)2cAMP] and the Ca2(+)-phosphatidylinositol cascade (as activated by carbamylcholine, ionomycin, and 12-O-tetradecanoylphorbol-13-acetate). We used several physiological and pharmacological agents that modulate iodide organification. In all cases there was a strict parallelism between effects on H2O2 generation, iodide binding to proteins, and pentose phosphate pathway activity. Moreover, in TSH- or carbamylcholine-stimulated slices, glucose or Ca2+ depletion, which greatly depressed H2O2 generation, also greatly decreased iodide organification and the activity of the pentose phosphate pathway. The glutathione peroxidase-catalyzed H2O2 reduction in the cytosol, which involves NADPH oxidation and, therefore, increases the NADP supply, also enhances the activity of the pentose phosphate pathway. All of these data strongly support the hypothesis that H2O2 generation in dog thyroid controls iodination of proteins; through the NADPH oxidation resulting from H2O2 production and reduction, hydrogen peroxide also regulates the activity of the pentose phosphate pathway.  相似文献   

11.
12.
13.
14.
目的:通过探讨脂联素球状结构域(gAd)对3T3-L1脂肪细胞磷酸戊糖途径关键酶表达的影响,进而探讨gAd促进脂肪细胞摄取的葡萄糖是否经磷酸戊糖途径代谢。方法:用gAd干预分化成熟的3T3-L1脂肪细胞,干预结束后测定细胞残液的葡萄糖浓度,并以实时荧光定量PCR(RT-PCR)法检测各组细胞磷酸戊糖途径关键酶葡萄糖-6-磷酸酶(G6PD)转录水平的表达情况,进行统计学分析。结果:各实验组细胞残液中葡萄糖浓度均显著低于对照组(均P  相似文献   

15.
A pathway from glucose via sorbitol bypasses the control points of hexokinase and phosphofructokinase in glucose metabolism. It also may produce glycerol, linking the bypass to lipid synthesis. Utilization of this bypass is favored by a plentiful supply of glucose--hence, conditions under which glycolysis also is active. The bypass further involves oxidation of NADPH, so the pentose phosphate pathway and the bypass are mutually facilitative. Possible consequences in different organs under normal and pathological, especially diabetic, conditions are detailed. Enzymes with related structures (for example, sorbitol dehydrogenase and alcohol dehydrogenase, and possibly, aldehyde reductase and aldose reductase, respectively) are linked functionally by this scheme. Some enzymes of the bypass also feature in glycolysis (aldolase and alcohol dehydrogenase), and these enzymes, with the reductases involved, are proteins known to occur in different classes or multiple isozyme forms. Two of the enzymes (aldolase and alcohol dehydrogenase) both involve classes with and without a catalytic metal (zinc). The existence of parallel pathways and the occurrence of similar enzymic steps in one pathway may help to explain the abundance and multiplicity of enzymes such as reductases, aldolases, and alcohol dehydrogenases.  相似文献   

16.
17.
Congenital erythrocytoses represent a heterogenous group of rare defects of erythropoiesis characterized by elevated erythrocyte mass. We performed molecular-genetic analysis of 21 Czech patients with congenital erythrocytosis and assessed the mutual link between chronic erythrocyte overproduction and iron homoeostasis. Causative mutations in erythropoietin receptor (EPOR), hypoxia-inducible factor 2 alpha (HIF2A) or Von Hippel–Lindau (VHL) genes were detected in nine patients, including a novel p.A421Cfs*4 EPOR and a homozygous intronic c.340+770T>C VHL mutation. The association and possible cooperation of five identified missense germline EPOR or Janus kinase 2 (JAK2) variants with other genetic/non-genetic factors in erythrocytosis manifestation may involve variants of Piezo-type mechanosensitive ion channel component 1 (PIEZO1) or Ten-eleven translocation 2 (TET2), but this requires further research. In two families, hepcidin levels appeared to prevent or promote phenotypic expression of the disease. No major contribution of heterozygous haemochromatosis gene (HFE) mutations to the erythrocytic phenotype or hepcidin levels was observed in our cohort. VHL- and HIF2A-mutant erythrocytosis showed increased erythroferrone and suppressed hepcidin, whereas no overproduction of erythroferrone was detected in other patients regardless of molecular defect, age or therapy. Understanding the interplay between iron metabolism and erythropoiesis in different subgroups of congenital erythrocytosis may improve current treatment options.  相似文献   

18.
Oxidants and lung biochemistry. A brief review   总被引:1,自引:0,他引:1  
  相似文献   

19.
A patient with progressive neurological deterioration and myoclonus epilepsy showed an increased excretion of glycoprotein in the urine and storage material in lymphocytes and fibroblasts. This is probably a new disorder of glycoprotein metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号