首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regional and cellular distribution of serotonin type 2C receptor messenger RNA was investigated in autopsy samples of human brain by in situ hybridization histochemistry. The main sites of serotonin receptor type 2C messenger RNA expression were the choroid plexus, cerebral cortex, hippocampus, amygdala, some components of the basal ganglia, the substantia nigra, the substantia innominata and the ventromedial hypothalamus, suggesting that this receptor might be involved in the regulation of different brain functions. Interestingly, in all regions examined, the serotonin type 2C receptor messenger RNA was always restricted to subpopulations of cells, suggesting a specific role, perhaps determined by regionality. A comparison of the in situ hybridization results with those previously obtained by means of radioligand binding experiments suggested that in most of the areas analysed the serotonin type 2C receptors were located at axon terminals.  相似文献   

2.
Angiotensin IV and other AT4 receptor agonists, improve memory retention and retrieval in the passive avoidance and swim maze learning paradigms. Angiotensin IV binding sites (also known as the AT4 receptors) are widely distributed in guinea pig and monkey (Macaca fascicularis) brains where high densities of the binding sites have been detected in the hippocampus, neocortex and motor nuclei. However, the distribution of the binding sites in the human brain is not known. We have recently localised the angiotensin IV binding sites (AT4 receptors) in post-mortem human brain using iodinated Nle-angiotensin IV, a higher affinity and more stable analogue of angiotensin IV. This radioligand bound with relatively high affinity and specificity to angiotensin IV binding sites. In competition studies on consecutive sections through the prefrontal cortex and claustrum, angiotensin IV, Nle-angiotensin IV and LVV-hemorphin 7 competed for the binding of 125I[Nle]-angiotensin IV with nanomolar affinities. Angiotensin II and the AT1 and AT2 receptor antagonists were ineffective in competing for the binding at concentrations of up to 10 μM. We found high densities of 125I[Nle]-angiotensin IV binding sites throughout the cerebral cortex including the insular, entorhinal, prefrontal and cingulate cortices. Very high densities of the binding sites were observed in the claustrum, choroid plexus, hippocampus and pontine nucleus. Some thalamic nuclei displayed high densities of binding including the anteroprincipal, ventroanterior, anteromedial, medial dorsal and ventrolateral nuclei. The caudate nucleus, putamen, many amygdaloid nuclei and the red nucleus all displayed moderate densities of binding with a higher level detected in the substantia nigra pars compacta. In the hypothalamus, high densities binding sites were found in the ventromedial nucleus with lower levels in the dorsomedial and paraventricular nuclei. The distribution of 125I[Nle]-angiotensin IV binding sites in the human brain is similar to that found in other species and supports multiple roles for the binding sites in the central nervous system, including facilitation of memory retention and retrieval.  相似文献   

3.
Understanding dopamine signaling in human behavior requires knowledge of the distribution of all molecular components involved in dopamine pathways throughout the human brain. In the present study, the relative distributions of D1 and D2 dopamine receptor mRNAs were determined by in situ hybridization histochemistry in whole hemisphere sections from normal human post mortem brains. The findings confirmed information documented from single structure examination that the highest expression of both the D1 and D2 mRNAs were localized to the striatum. The cerebral cortex expressed moderate D1 mRNA in all regions with the highest signal in the medial orbital frontal area (Brodmann areas 11, 14), the paraterminal gyrus (Brodmann area 32) and the insular cortex (Brodmann areas 13-16), whereas the D2 mRNA expression had very low cortical expression. The bed nucleus of the stria terminalis and islands of Calleja had high expression of the D1 mRNA and moderate D2 mRNA levels. Moderate to high expression of the D2 mRNA was evident in the hippocampal formation, parafascicular and paraventricular thalamic nuclei, geniculate bodies, subthalamic nucleus, and pineal gland, all of which were devoid of, or showed only faint, D1 mRNA expression. Brainstem regions, e.g. substantia nigra, red nucleus, inferior colliculus, medial lemniscus, and pontine nuclei expressed D2, but not D1, mRNA. These results emphasize the differential anatomical localization of D1 and D2 dopamine receptor mRNA neuronal populations in the human brain. The restricted expression of the D1 mRNA to the cortical mantle and to a few forebrain structures indicates a strong involvement of the D1 system in cognitive function.  相似文献   

4.
GABAA and GABAB receptor site distribution in the rat central nervous system   总被引:17,自引:0,他引:17  
An autoradiographic procedure has been used to determine the quantitative distributions of gamma-aminobutyric acid (GABAA and GABAB) receptor subtypes in rat brain. Although the concentrations of both receptor binding sites were similar in some brain regions GABAA sites generally outnumbered GABAB sites. The highest concentration of GABAA sites were detected in the frontal cortex, the granule cell layer of the cerebellum, the olfactory bulb and the thalamic medial geniculate. The highest concentration of GABAB sites occurred in the molecular layer of the cerebellum, the interpeduncular nucleus, frontal cortex, anterior olfactory nucleus and thalamic nuclei. In addition the globus pallidus, temporal cortex, lateral posterior thalamus, superior colliculus, pontine nucleus, raphe magnus, spinal trigeminal tract and substantia gelatinosa contained significantly more GABAB sites than GABAA sites. The physiological and pharmacological significance of this heterogeneity has yet to be determined.  相似文献   

5.
Angiotensin IV and other AT4 receptor agonists, improve memory retention and retrieval in the passive avoidance and swim maze learning paradigms. Angiotensin IV binding sites (also known as the AT4 receptors) are widely distributed in guinea pig and monkey (Macaca fascicularis) brains where high densities of the binding sites have been detected in the hippocampus, neocortex and motor nuclei. However, the distribution of the binding sites in the human brain is not known. We have recently localised the angiotensin IV binding sites (AT4 receptors) in post-mortem human brain using iodinated Nle-angiotensin IV, a higher affinity and more stable analogue of angiotensin IV. This radioligand bound with relatively high affinity and specificity to angiotensin IV binding sites. In competition studies on consecutive sections through the prefrontal cortex and claustrum, angiotensin IV, Nle-angiotensin IV and LVV-hemorphin 7 competed for the binding of 125I[Nle]-angiotensin IV with nanomolar affinities. Angiotensin II and the AT1 and AT2 receptor antagonists were ineffective in competing for the binding at concentrations of up to 10 μM. We found high densities of 125I[Nle]-angiotensin IV binding sites throughout the cerebral cortex including the insular, entorhinal, prefrontal and cingulate cortices. Very high densities of the binding sites were observed in the claustrum, choroid plexus, hippocampus and pontine nucleus. Some thalamic nuclei displayed high densities of binding including the anteroprincipal, ventroanterior, anteromedial, medial dorsal and ventrolateral nuclei. The caudate nucleus, putamen, many amygdaloid nuclei and the red nucleus all displayed moderate densities of binding with a higher level detected in the substantia nigra pars compacta. In the hypothalamus, high densities binding sites were found in the ventromedial nucleus with lower levels in the dorsomedial and paraventricular nuclei. The distribution of 125I[Nle]-angiotensin IV binding sites in the human brain is similar to that found in other species and supports multiple roles for the binding sites in the central nervous system, including facilitation of memory retention and retrieval.  相似文献   

6.
The neuronal distribution of cannabinoid receptor in the adult rat brain is reported, combining receptor binding radioautography using the synthetic psychoactive cannabinoid ligand CP55,940 with in situ hybridization histochemistry using oligonucleotide probes complementary to rat cannabinoid receptor cDNA. In the cerebral cortex, especially in the frontal and cingulate cortex, dense binding was found in layers I and VI together with slight mRNA levels in a majority of both pyramidal and non-pyramidal-shaped neurons and of high mRNA levels in a moderate number of non-pyramidal-shaped neurons especially in layers II-III and V-VI. In the hippocampal dentate gyrus, very dense staining was found in the molecular layer together with high mRNA levels in a moderate number of hilar neurons close to the granular layer. In Ammon's horn, especially in the CA3 sector, very dense binding was found in the dendritic layers together with slight mRNA levels in the majority of the pyramidal cells and high mRNA levels in a moderate number of interneurons. In the basal ganglia, binding was very dense in the lateral putamen, substantia nigra pars reticulata, globus pallidus and entopeduncular nucleus, moderate in the medial putamen and caudate; and slight in the accumbens, together with slight to moderate mRNA levels in the striatal medium-sized neurons. Together with slight binding, slight to moderate mRNA levels were found in the majority of the neurons in the subthalamic nucleus. No binding and mRNA were found in the substantia nigra pars compacta and ventral tegmental area. Slight to moderate binding was found together with slight to moderate mRNA levels in the majority of neurons in the anterior olfactory nucleus; septum, especially medial septum and diagonal band of Broca; amygdala, especially basolateral amygdala; lateral habenula; ventromedial hypothalamic nucleus; lateral interpeduncular nucleus; central gray, dorsal cochlear nucleus; parabrachial nucleus; dorsal pontine tegmentum; pontine nuclei; commissural part of the nucleus tractus solitarius; inferior olive and dorsal horn of the spinal cord. In the cerebellum, very dense binding was found in the molecular layer together with slight mRNA levels in the majority of the granule cells and moderate mRNA levels in the basket and stellate cells. In conclusion, this study provides, for the first time, indirect assessment of the neurons containing cannabinoid receptor in the entire adult rat brain and will serve as a basis for future direct morphological confirmation using receptor immunohistochemistry and for functional studies.  相似文献   

7.
The regional distribution of 5-hydroxytryptamine-1 receptors in the primate brain was studied by semi-quantitative autoradiographic analysis of tritiated ligand binding. Areas showing the highest density of 5-hydroxytryptamine-1 receptors (greater than 200 fmol [3H]5-hydroxytryptamine bound per mg tissue), included the cerebral cortex (laminae I-II), claustrum, posterior cell group of the basal nucleus of Meynert, the infracommissural part of the globus pallidus, cortical amygdaloid nucleus, hippocampal formation (CA1-subiculum region, the anterior CA2, CA3 and CA4 regions and the molecular layer of the dentate gyrus), thalamic nuclei (parafascicular, parataenial, paraventricular and superior central lateral nuclei), substantia nigra pars reticulata, dorsal raphe nucleus and choroid plexus. The distribution of 5-hydroxytryptamine-1 receptors is compared to the distribution of both 5-hydroxytryptamine receptors and terminal fields of serotonergic projections as previously described in subprimates.  相似文献   

8.
Endothelin binding sites in rat brain were mapped by quantitative in vitro autoradiography employing [125I]endothelin-1 as radioligand. [125I]Endothelin-1 bound with high affinity and specificity to rat cerebellar sections and was potently displaced by unlabelled endothelins (endothelin-1 greater than endothelin-2 = endothelin-3) and sarafotoxin 6B. The highest densities of endothelin binding sites were found in the cerebellum (especially Purkinje cell layer), choroid plexus and median eminence. High densities were found in the supraoptic and paraventricular hypothalamic nuclei, anterior hypothalamic area, ventromedial hypothalamic nucleus, mammillary nuclei and glomerular layer of olfactory bulb. Moderate densities were found in many thalamic nuclei, the pretectal region, interpeduncular nucleus, suprachiasmatic nucleus, raphe nuclei, tegmental nuclei, olfactory ventricle, red nucleus, subthalamic nucleus, central gray, reticular nuclei, vestibular nuclei, oculomotor and trochlear nuclei, hypoglossal nucleus, motor trigeminal nucleus, nucleus of the trapezoid body and lateral cerebellar nucleus. Low but detectable densities of endothelin binding sites were found in medial geniculate nucleus, fields of Ammon's horn, caudate-putamen, globus pallidus, entopeduncular nucleus, substantia nigra, anterior commissure, internal capsule, anterior pituitary, median preoptic nucleus, septohypothalamic nucleus, superior colliculus and area postrema. These patterns were completely abolished by 1 microM unlabelled endothelin-1, -2 and -3 and sarafotoxin S6B. Brain endothelin binding sites show high affinity for endothelin-1, -2 and -3 and sarafotoxin 6B with highest affinity for endothelin-1. Endothelin binding sites show a non-vascular pattern of distribution in the brain, suggesting that the peptide may have widespread functions as a modulator of neuronal function.  相似文献   

9.
芳香化酶mRNA在小鼠脑内的表达及其分布   总被引:5,自引:1,他引:4  
肖岚  蔡文琴 《解剖学报》2001,32(1):5-8,T002
目的 研究芳香化酶m(RNA(aromatase mRNA)在小鼠脑内的基因表达。方法 原位杂交组织化学和PNA斑点杂交。结果 (1)斑点杂交结果显示,脑内芳香化酶mRNA在小鼠E16-P300整个发育过程中均有表达,表达高峰在生后6d左右,成年后降至最低;(2)脑内芳香化酶mRNA主要定位于神经元;(3)芳香化酶mRNA在脑内的表达,阳性区域主要分布于大脑皮层,丘脑、下丘脑及边缘系统。其中,皮质锥体细胞层、内侧视前区、隔内侧核、海马各区锥体层、杏仁核群、扣带皮质、梨状前皮质及杏仁周皮质等部位阳性信号较强;中等强度的阳性信号见于丘脑腹内、外侧核,丘脑外侧背核、下丘脑室旁核、室周核等处。结论 以上结果进一步证明脑内芳香化酶的表达与脑发育存在一定的相关性,芳香化酶mRNA的表达部位与文献报道酶的活性分布基本一致;海  相似文献   

10.
M Sato  H Kiyama  M Tohyama 《Neuroscience》1992,48(1):137-149
In situ hybridization histochemistry revealed three different ontogenetic patterns of localized expression of the high-affinity type of neurotensin receptor mRNA in the developing rat brain: one comprises sites which showed transient expression of neurotensin receptor mRNA during the first postnatal week, the expression greatly decreasing thereafter (type I); another comprises sites at which there is a gradual increase in neurotensin receptor mRNA after birth, as there is in cell number and intensity, with advancing age, followed by a plateau (type II); the third comprises sites at which there is much expression of neurotensin receptor mRNA already at birth, and a slight decrease thereafter (type III). The cerebral cortex, except retrosplenial and entorhinal cortices, and the anterior dorsal thalamic nucleus exhibit the type I pattern, while the horizontal and vertical limbs of the diagonal band of Broca, magnocellular preoptic nucleus, substantia innominata, ventral part of the suprachiasmatic nucleus, medial habenular nucleus, ventral tegmental area and substantia nigra pars compacta exhibit the type II pattern. The tenia tecta, retrosplenial and entorhinal cortices exhibit the type III pattern. One of the most striking findings in this study was that the entire neocortex and most of the limbic cortex exhibit the type I pattern, i.e. neurotensin receptor mRNA is expressed transiently long before a neuronal network is established there. This suggests that neurotensin plays an important role in cortical development, other than its reported transmitter-like role in the adult.  相似文献   

11.
The natriuretic peptide clearance receptor (NPR-C) binds atrial natriuretic peptide, brain natriuretic peptide and C-type natriuretic peptide with high affinity. This receptor lacks an intracellular guanylate cyclase domain, and is believed to exert biological actions by sequestration of released natriuretic peptides and/or inhibition of adenylate cyclase. The present report summarizes the first detailed mapping of NPR-C mRNA in rat brain. In situ hybridization analysis revealed high levels of NPR-C mRNA expression in frontal and retrosplenial granular cortices, medial preoptic nucleus, ventral cochlear nucleus and choroid plexus. NPR-C mRNA expression was also observed in deep layers of neocortex and limbic cortex, posterior cortical amygdala, ventral subiculum, amygdalohippocampal area, and dentate gyrus. Positive hybridization signal was observed in both anterior and intermediate lobes of the pituitary gland. Regulatory studies indicated that expression of NPR-C mRNA was increased in the medial preoptic nucleus of adrenalectomized rats, suggesting negative glucocorticoid regulation. No changes in NPR-C mRNA expression were observed in frontal cortex or choroid plexus. These results suggest a role for the NPR-C in modulation of natriuretic peptide availability and/or adenylate cyclase activity in a subset of central natriuretic peptide circuits concerned with cortical, olfactory and neuroendocrine functions. Response of the NPR-C gene to changes in circulating hormones suggests the capacity for glucocorticoid modulation of natriuretic peptide action at the receptor level.  相似文献   

12.
13.
Three opioid receptor types have recently been cloned that correspond to the pharmacologically defined μ, δ and κ1 receptors. In situ hybridization studies suggest that the opioid receptor mRNAs that encode these receptors have distinct distributions in the central nervous system that correlate well with their known functions. In the present study polyclonal antibodies were generated to the C terminal 63 amino acids of the cloned μ receptor (335–398) to examine the distribution of the μ receptor-like protein with immunohistochemical techniques. μ receptor-like immunoreactivity is widely distributed in the rat central nervous system with immunoreactive fibers and/or perikarya in such regions as the neocortex, the striatal patches and subcallosal streak, nucleus accumbens, lateral and medial septum, endopiriform nucleus, globus pallidus and ventral pallidum, amygdala, hippocampus, presubiculum, thalamic and hypothalamic nuclei, superior and inferior colliculi, central grey, substantia nigra, ventral tegmental area, interpeduncular nucleus, medial terminal nucleus of the accessory optic tract, raphe nuclei, nucleus of the solitary tract, spinal trigeminal nucleus, dorsal motor nucleus of vagus, the spinal cord and dorsal root ganglia. In addition, two major neuronal pathways, the fasciculus retroflexus and the stria terminalis, exhibit densely stained axonal fibers. While this distribution is in excellent agreement with the known μ receptor binding localization, a few regions, such as neocortex and cingulate cortex, basolateral amygdala, medial geniculate nucleus and the medial preoptic area fail to show a good correspondence. Several explanations are provided to interpret these results, and the anatomical and functional implications of these findings are discussed.  相似文献   

14.
As a result of its interaction with a specific receptor, inositol 1,4,5-trisphosphate mobilizes intracellular calcium. The metabolism of inositol 1,4,5-trisphosphate is rather complex: inositol 1,4,5-trisphosphate 3-kinase produces inositol 1,3,4,5-tetrakisphosphate, a putative second messenger. In order to elucidate inositol 1,3,4,5-tetrakisphosphate function, a comparative in situ hybridization study of the distributions of inositol 1,4,5-trisphosphate 3-kinase and receptor mRNAs was performed in the adult rat brain using oligonucleotides derived from their cDNA sequences. The neuronal distributions of the mRNA for the receptor were larger than for the kinase. Highest levels of both mRNAs were found in the cerebellar Purkinje cells, where they were enriched in their neuronal perikarya and to a lesser extent in their dendrites. In addition to the cerebellum, mRNAs were mainly detected in the hippocampal pyramidal cells of the CA1 sector of the Ammon's horn and in the granule cells of the dentate gyrus, and also in a majority of the neurons in the cortical layers II-III and V, especially in the frontal cortex and cingulate cortex; caudate-putamen, accumbens, olfactory tubercle and Calleja islets; claustrum; anterior olfactory nucleus; taenia tecta; piriform cortex; dorsolateral septum; bed nucleus stria terminalis; amygdala; hippocampal CA2-4 sectors and subiculum. The inositol 1,4,5-trisphosphate receptor mRNA but not kinase mRNA was found in a majority of the neurons in the thalamus, especially in the parafascicular nucleus; hypothalamus, especially the medial hypothalamus; substantia nigra pars compacta and ventral tegmental area; superior colliculus; lateral interpeduncular nucleus and central gray. Taking into account the limitation in sensitivity of the technique, both mRNAs were not detected in glial cells and in the olfactory bulb; basal nucleus of Meynert, diagonal band nuclei; medial septal nucleus; substantia innominata; globus pallidus; entopeduncular nucleus; substantia nigra pars reticulata; ventral pallidum; subthalamic nucleus; spinal cord and dorsal root ganglia. In conclusion, cerebellum and hippocampus appear to contain almost similar levels of kinase mRNA. This is in contrast to receptor mRNA levels which were at much higher levels in the cerebellum when compared with the hippocampus. For this reason, we have chosen hippocampal CA1 pyramidal cells and dentate gyrus granule cells for studying inositol 1,4,5-trisphosphate 3-kinase function.  相似文献   

15.
16.
17.
18.
肾上腺髓质素在正常大鼠大脑的分布   总被引:3,自引:1,他引:2  
目的观察正常大鼠脑组织肾上腺髓质素(ADM)及ADM mRNA的表达及分布。方法免疫组织化学法(SABC法)检测ADM阳性细胞表达、原位杂交法检测ADM mRNA阳性细胞表达,RT-PCR法检测ADM mRNA在正常大鼠脑内的表达。结果在正常大鼠大脑内有ADM及ADM mRNA的表达,主要表达在大脑皮质锥体细胞、海马CA1区、CA2区、CA3区、CA4区锥体细胞、齿状回颗粒细胞层、丘脑的室旁核、视上核、丘脑内侧核、丘脑外侧核、缰内侧核、室旁组织、脉络丛、室管膜细胞、尾状核、壳核、苍白球、血管内皮细胞及平滑肌细胞,其中室旁组织为高表达区。结论ADM在中枢神经系统的广泛分布,预示着ADM在中枢神经系统内具有重要的作用。  相似文献   

19.
The anatomical distribution of serotonin-1 receptors in human postmortem brain tissue was studied by quantitative light microscopic autoradiography. [3H]Serotonin was used to label all the subtypes of serotonin-1 sites (serotonin-1A, serotonin-1B, serotonin-1C). Serotonin-1A receptors were specifically labelled with [3H]8-hydroxy-2-[N,N-di-N-propyl-amino]tetralin, while [3H]mesulergine was used to identify serotonin-1C receptors. Receptor densities were quantified by means of a computer-assisted microdensitometric system. Confirming previous findings, serotonin-1A and serotonin-1C receptors were found in the human brain, while sites with the pharmacological characteristics of serotonin-1B binding sites could not be identified in this tissue. In addition, serotonin-1C receptors appeared to present differences in terms of pharmacology, depending on the brain area analysed. The distribution of both serotonin-1A and serotonin-1C receptor subtypes throughout the human brain was heterogeneous. High or very high densities of serotonin-1A receptors were found over the Ca1 field of the hippocampus, raphé nuclei, layers I and II of the cortex and some nuclei of the thalamus and amygdala. The claustrum, posterior hypothalamus, mesencephalic and pontine central grey matter and substantia gelatinosa of the cervical spinal cord, among others, presented intermediate concentrations of serotonin-1A receptors. In contrast, high densities of serotonin-1C receptors were present in the choroid plexus, substantia nigra, globus pallidus and ventromedial hypothalamus, while low or very low amounts of this receptor subtype were found in many other human brain areas. The anatomical distribution of serotonin-1A and serotonin-1C receptors is discussed taking into account the distribution of serotonergic neurons and fibres, the central functions in which serotonin appears to be involved and the characteristics of the neurological and psychiatric disorders where changes in brain serotonin-1 receptors have been reported.  相似文献   

20.
Parathyroid hormone receptor 2 (PTH2R) and its ligand, tuberoinfundibular peptide of 39 residues (TIP39) constitute a neuromodulator system implicated in endocrine and nociceptive regulation. We now describe the presence and distribution of the PTH2R and TIP39 in the brain of primates using a range of tissues and ages from macaque and human brain. In situ hybridization histochemistry of TIP39 mRNA, studied in young macaque brain, due to its possible decline beyond late postnatal ages, was present only in the thalamic subparafascicular area and the pontine medial paralemniscal nucleus. In contrast, in situ hybridization histochemistry in macaque identified high levels of PTH2R expression in the central amygdaloid nucleus, medial preoptic area, hypothalamic paraventricular and periventricular nuclei, medial geniculate, and the pontine tegmentum. PTH2R mRNA was also detected in several human brain areas by RT-PCR. The distribution of PTH2R-immunoreactive fibers in human, determined by immunocytochemistry, was similar to that in rodents, including dense fiber networks in the medial preoptic area, hypothalamic paraventricular, periventricular and infundibular (arcuate) nuclei, lateral hypothalamic area, median eminence, thalamic paraventricular nucleus, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, sensory trigeminal nuclei, medullary dorsal reticular nucleus, and dorsal horn of the spinal cord. Co-localization suggested that PTH2R fibers are glutamatergic, and that TIP39 may directly influence hypophysiotropic somatostatin containing and indirectly influence corticotropin releasing-hormone containing neurons. The results demonstrate that TIP39 and the PTH2R are expressed in the brain of primates in locations that suggest involvement in regulation of fear, anxiety, reproductive behaviors, release of pituitary hormones, and nociception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号