首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the variation in freely chosen pedal rate between subjects and its possible dependence on percentage myosin heavy chain I (%MHC I) in m. vastus lateralis, maximum leg strength and power, as well as efficiency. Additionally, the hypothesis was tested that a positive correlation exists between percentage MHC I and efficiency at pre‐set pedal rates but not at freely chosen pedal rate. Twenty males performed cycling at low and high submaximal power output (~40 and 70% of the power output at which maximum oxygen uptake (VO2max) was attained at 80 r.p.m.) with freely chosen and pre‐set pedal rates (61, 88, and 115 r.p.m.). Percentage MHC I as well as leg strength and power were determined. Freely chosen pedal rate varied considerably between subjects: 56–88 r.p.m. at low and 61–102 r.p.m. at high submaximal power output. This variation was only partly explained by percentage MHC I (21–97%) as well as by leg strength and power. Interestingly, %MHC I correlated significantly with the pedal rate at which maximum peak crank power occurred (r = ?0.81). As hypothesized, %MHC I and efficiency were unrelated at freely chosen pedal rate, which was in contrast to a significant correlation found at pre‐set pedal rates (r = 0.61 and r = 0.57 at low and high power output, respectively). Conclusions: Subjects with high percentage MHC I chose high pedal rates close to the pedal rates at which maximum peak crank power occurred, while subjects with low percentage MHC I tended to choose lower pedal rates, favouring high efficiency. Nevertheless, the considerable variation in freely chosen pedal rate between subjects was neither fully accounted for by percentage MHC I nor by leg strength and power. Previously recognized relationships between percentage Type I (~%MHC I) and efficiency as well as between pedal rate and efficiency were confirmed for pre‐set pedal rates, but for freely chosen pedal rate, these variables were unrelated.  相似文献   

2.
The freely chosen pedal rate is relatively high and energetically inefficient during submaximal cycling, which is a paradox since the rate of energy expenditure is considered important for voluntary motor behavior in other cyclical activities as, e.g., running. For example, it has been suggested that subjects pedal fast to reduce the perception of force. In this study, we investigated the hypothesis that strength training would cause subjects to pedal at a slower rate during low to moderate submaximal cycling. Fourteen healthy subjects performed supervised heavy (2–12 RM) strength training 4 days/week for 12 weeks, including 2 days/week with leg-extensor and knee-flexor exercises. Seven healthy subjects formed the control group. The training group increased strength (one repetition maximum, 1 RM) in both squat [20%(3), mean (SEM)] and leg curl [12%(1)] exercises from the beginning to the end of the study period (p < 0.01). At the same time, freely chosen pedal rate was reduced by 8 (2) and 10 (2) rpm, respectively, during cycling at 37 and 57% of maximal power output (W max) (p < 0.01). In addition, rate of energy expenditure is 3% (2) lower at 37% of W max (p < 0.05) and tended to be lower at 57% W max (p = 0.07) at the end of the study. Values for strength, freely chosen pedal rate, and rate of energy expenditure, were unchanged for the control group from the beginning to the end of the study. In conclusion, strength training caused subjects to choose a ∼9 rpm lower pedal rate during submaximal cycling. This was accompanied by a ∼3% lower rate of energy expenditure.  相似文献   

3.
The objective of this study was to verify the following hypothesis: the pedal rate that minimizes root mean square (RMS) slope and the slow component amplitude of oxygen consumption could be close to the freely chosen pedal rate (FCPR) used by well-trained cyclists. Nine male competitive cyclists performed a 21 min submaximal exercise on a cycle ergometer at a workload of 65% of their respective peak aerobic power. For each session, the subject's pedal rate was freely chosen or assigned to 60, 75, 90 or 105 rev min(-1). When pedal rates were imposed, the electromyographic root mean square slope, the oxygen uptake during the third minute and the 20th min, and the slow component amplitude of oxygen consumption were used in the analysis. In order to determine the optimal pedal rate (OPR), a quadratic function was fitted to the data by regression, for each variable measured. The mean values of OPR relative to oxygen uptake during the third min (71+/-9 rev min(-1)) were lower than the mean values of the OPR relative to the slow component amplitude of oxygen consumption (82+/-8 rev min(-1)), the electromyographic root mean square slope (80+/-7 rev min(-1)) and freely chosen pedal rate (86+/-13 rev min(-1)). Freely chosen pedal rate was not significantly different from the OPR in reference to the amplitude of the slow component of oxygen consumption, electromyographic root mean square slope, and oxygen uptake during the 20th min. OPR for RMS slope was correlated (R=0.72) to FCPR. Expert cyclists were likely to use a spontaneous pedal rate that minimizes neuromuscular fatigue.  相似文献   

4.
Freely chosen pedalling rate during cycling represents a voluntary rhythmic movement. It is unclear to what extent this is influenced by internal (e.g. loading on the cardiopulmonary system) and external (e.g. mechanical loading) conditions. It is also unclear just how robust a voluntary motor rhythm, the freely chosen pedalling rate, actually is. The present study investigated (N = 8) whether or not the freely chosen pedalling rate during submaximal cycling was affected by separate increases in loading on the cardiopulmonary system (changed by exposure to acute simulated altitude of 3,000 m above sea level) and mechanical loading (changed by exposure to increased power output and thereby pedal force). We also investigated (N = 7) whether or not the freely chosen pedalling rate and another voluntary motor rhythm, unimanual unloaded index finger tapping rate, shared common characteristics of steadiness and individuality over a 12-week period. Results showed that the freely chosen pedalling rate was unaffected by increased loading on the cardiopulmonary system at constant mechanical loading, and vice versa. Further, the pedalling rate was steady in the longitudinal perspective (as was the tapping rate), and like tapping rate, pedalling rate was highly individual. In total this indicated that freely chosen pedalling rate primarily is a robust innate voluntary motor rhythm, likely under primary influence of central pattern generators that again are minimally affected by internal and external conditions during submaximal cycling.  相似文献   

5.
Summary This experiment was designed to estimate the optimum pedal rates at various power outputs on the cycle ergometer. Five trained bicycle racers performed five progressive maximal tests on the ergometer. Each rode at pedal rates of 40, 60, 80, 100, and 120 rev·min–1. Oxygen uptake and heart rate were determined from each test and plotted against pedal rate for power outputs of 100, 150, 200, 250, and 300 W. Both and heart rate differed significantly among pedal rates at equivalent power outputs, the variation following a parabolic curve. The low point in the curve was taken as the optimal pedal rate; i.e., the pedal rate which elicited the lowest heart rate or for a given power output. When the optimum was plotted against power output the variation was linear. These results indicate that an optimum pedal rate exists in this group of cyclists. This optimum pedal rate increases with power output, and when our study is compared to studies in which elite racers, or non-racers were used, the optimum seems to increase with the skill of the rider.  相似文献   

6.
The purpose of this study was to investigate the hypothesis that cycling efficiency in vivo is related to mitochondrial efficiency measured in vitro and to investigate the effect of training status on these parameters. Nine endurance trained and nine untrained male subjects (     , respectively) completed an incremental submaximal efficiency test for determination of cycling efficiency (gross efficiency, work efficiency (WE) and delta efficiency). Muscle biopsies were taken from m. vastus lateralis and analysed for mitochondrial respiration, mitochondrial efficiency (MEff; i.e. P/O ratio), UCP3 protein content and fibre type composition (% MHC I). MEff was determined in isolated mitochondria during maximal (state 3) and submaximal (constant rate of ADP infusion) rates of respiration with pyruvate. The rates of mitochondrial respiration and oxidative phosphorylation per muscle mass were about 40% higher in trained subjects but were not different when expressed per unit citrate synthase (CS) activity (a marker of mitochondrial density). Training status had no influence on WE (trained 28.0 ± 0.5, untrained 27.7 ± 0.8%, N.S.). Muscle UCP3 was 52% higher in untrained subjects, when expressed per muscle mass ( P < 0.05 versus trained). WE was inversely correlated to UCP3 ( r =−0.57, P < 0.05) and positively correlated to percentage MHC I ( r = 0.58, P < 0.05). MEff was lower ( P < 0.05) at submaximal respiration rates (2.39 ± 0.01 at 50%     ) than at state 3 (2.48 ± 0.01) but was neither influenced by training status nor correlated to cycling efficiency. In conclusion cycling efficiency was not influenced by training status and not correlated to MEff, but was related to type I fibres and inversely related to UCP3 . The inverse correlation between WE and UCP3 indicates that extrinsic factors may influence UCP3 activity and thus MEff in vivo .  相似文献   

7.
Critical power (CP) is lower at faster rather than slower pedalling frequencies and traditionally reported in watts (W). Faster pedalling frequencies also engender a greater metabolic rate (VO2) at low work rates, but with progressive increases in power output, the initial difference in VO2 between fast and slower pedalling frequencies is reduced. We tested the hypothesis that CP represents a unique metabolic rate for any given individual which would be similar at different pedalling frequencies. Eleven collegiate athletes (five cross-country runners, END; six sprinters, SPR), aged 18-23 years, performed exhaustive rides at either 60 or 100 r.p.m. on separate days for the determination of the pedal rate-specific CP. The VO2 at CP (CP-VO2) was determined from an 8 min ride at the CP for each pedal frequency. The group mean CP was significantly lower at 100 r.p.m. (189 +/- 50 W) compared to 60 r.p.m. (207 +/- 53 W, P < 0.05). However, the group mean CP-VO2 values at 60 (2.53 +/- 0.60 l min(-1)) and 100 r.p.m. (2.58 +/- 0.53 l min(-1)) were not significantly different. Critical power was significantly higher in the END athletes (242 +/- 50 W at 60 r.p.m.; 221 +/- 56 W at 100 r.p.m.) compared to SPR athletes at both pedal frequencies (177 +/- 38 W at 60 r.p.m.; 162 +/- 27 W at 100 r.p.m., P < 0.05), but the CP-VO2 was not (P > 0.05). However, when the CP-VO2 was scaled to body weight, the END athletes had a significantly greater CP-VO2 (41.3 +/- 4.1 ml min(-1) kg(-1) at 60 r.p.m.; 40.8 +/- 5.5 ml min(-1) kg(-1) at 100 r.p.m.) compared to the SPR athletes at both pedal frequencies (27.7 +/- 4.6 ml min(-1) kg(-1) at 60 r.p.m.; 29.4 +/- 2.8 ml min(-1) kg(-1) at 100 r.p.m., P < 0.05). We conclude that CP represents a specific metabolic rate (VO2) which can be achieved at different combinations of power outputs and pedalling frequencies.  相似文献   

8.
We compared the rate of perceived exertion for respiratory (RPE,resp) and leg (RPE,legs) muscles, using a 10-point Borg scale, to their specific power outputs in 10 healthy male subjects during incremental cycle exercise at sea level (SL) and high altitude (HA, 4559 m). Respiratory power output was calculated from breath-by-breath esophageal pressure and chest wall volume changes. At HA ventilation was increased at any leg power output by ~ 54%. However, for any given ventilation, breathing pattern was unchanged in terms of tidal volume, respiratory rate and operational volumes of the different chest wall compartments. RPE,resp scaled uniquely with total respiratory power output, irrespectively of SL or HA, while RPE,legs for any leg power output was exacerbated at HA. With increasing respective power outputs, the rate of change of RPE,resp exponentially decreased, while that of RPE,legs increased. We conclude that RPE,resp uniquely relates to respiratory power output, while RPE,legs varies depending on muscle metabolic conditions.  相似文献   

9.
The purpose of this investigation was to determine the effects of cycle crank length on maximum cycling power, optimal pedaling rate, and optimal pedal speed, and to determine the optimal crank length to leg length ratio for maximal power production. Trained cyclists (n=16) performed maximal inertial load cycle ergometry using crank lengths of 120, 145, 170, 195, and 220 mm. Maximum power ranged from a low of 1149 (20) W for the 220-mm cranks to a high of 1194 (21) W for the 145-mm cranks. Power produced with the 145- and 170-mm cranks was significantly (P<0.05) greater than that produced with the 120- and 220-mm cranks. The optimal pedaling rate decreased significantly with increasing crank length, from 136 rpm for the 120-mm cranks to 110 rpm for the 220-mm cranks. Conversely, optimal pedal speed increased significantly with increasing crank length, from 1.71 m/s for the 120-mm cranks to 2.53 m/s for the 220-mm cranks. The crank length to leg length and crank length to tibia length ratios accounted for 20.5% and 21.1% of the variability in maximum power, respectively. The optimal crank length was 20% of leg length or 41% of tibia length. These data suggest that pedal speed (which constrains muscle shortening velocity) and pedaling rate (which affects muscle excitation state) exert distinct effects that influence muscular power during cycling. Even though maximum cycling power was significantly affected by crank length, use of the standard 170-mm length cranks should not substantially compromise maximum power in most adults. Electronic Publication  相似文献   

10.
Complete lower-limb paralysis resulting from spinal cord injury precludes volitional leg exercise, leading to muscle atrophy and physiological de-conditioning. Cycling can be achieved using phased stimulation of the leg muscles. With training there are positive physiological adaptations and health improvement. Prior to training, however, power output may not be sufficient to overcome losses involved in rotating the legs and little is known about the energetics of untrained paralysed muscles. Here we propose efficiency measures appropriate to subjects with severe physical impairment performing cycle ergometry. These account for useful internal work (i.e. muscular work done in moving leg mass) and are applicable even for very low work rates. Experimentally, we estimated total work efficiency of ten untrained subjects with paraplegia to be 7.6 +/- 2.1% (mean +/- SD). This is close to values previously reported for anaesthetised able-bodied individuals performing stimulated cycling exercise, but is less than 1/3 of that of able-bodied subjects cycling volitionally. Correspondingly, oxygen cost of the work (38.8 +/- 13.9 ml min(-1) W(-1)) was found to be approximately 3.5 times higher. This indicates the need, for increased power output from paralysed subjects, to maximise muscle strength through training, and to improve efficiency by determining better methods of stimulating the individual muscles involved in the exercise.  相似文献   

11.
1. The relation of V(O2) and speed was determined on six competition cyclists riding at speeds ranging from 12 km/hr to 41 km/hr on the runway of an airfield. Comparative measurements were made on the bicycle ergometer to determine the corresponding work rates, and from this information rolling resistance and air resistance were derived.2. V(O2) was a curvilinear function of cycling speed, and increased from 0.88 l./min at 12.5 km/hr to 5.12 l./min at 41 km/hr, mean body weight being 72.9 kg.3. On the ergometer, V(O2) was a linear function of work rate; maximum values up to 5.1 l./min (74.4 ml./kg min) and work rates up to 425 W (2600 kg m/min) were observed.4. Data are presented on the relation of pedal frequency and speed in cycling, and on the relation of mechanical efficiency and pedal frequency, as determined on the ergometer.5. The estimated rolling resistance for four subjects was 0.71 kg f. The drag coefficient was 0.79 and the drag area 0.33 m(2). The values agreed well with results obtained by other methods.6. The energy expenditure (power developed) in cycling increased approximately as the square of the speed, and not as the cube of the speed as expected. This was explained by the varying contribution of rolling resistance and air resistance to over-all resistance to motion at different speeds.  相似文献   

12.
It was tested whether cyclists perform better during all-out cycling following prolonged cycling at the pedal rate resulting in minimum oxygen uptake (VO2), i.e. the energetically optimal pedal rate (OPR) rather than at the freely chosen pedal rate (FCPR). Nine trained cyclists cycled at 180 W to determine individual OPR and FCPR. Baseline performance was determined by measuring mean power output (W5min) and peak VO2 during 5-min all-out cycling at FCPR. Subsequently, on two separate days, the cyclists cycled 2.5 h at 180 W at OPR and FCPR, with each bout followed by a 5-min all-out trial. FCPR was higher (P < 0.05) than OPR at 180 W (95 ± 7 and 73 ± 11 rpm, respectively). During the prolonged cycling, VO2, heart rate (HR), and rate of perceived exertion (RPE) were 7–9% higher (P < 0.05) at FCPR than at OPR and increased (P < 0.05) 2–21% over time. During all-out cycling following prolonged cycling at OPR and FCPR, W5min was 8 and 10% lower (P < 0.05) than at baseline, respectively. Peak VO2 was lower (P < 0.05) than at baseline only after FCPR. The all-out trial power output was reduced following 2.5 h of cycling at 180 W at both OPR and FCPR. However, this aspect of performance was similar between the two pedal rates, despite a higher physiological load (i.e. VO2, HR, and RPE) at FCPR during prolonged cycling. Still, a reduced peak VO2 only occurred after cycling at FCPR. Therefore, during prolonged sub-maximal cycling, OPR is at least as advantageous as FCPR for performance optimization in subsequent all-out cycling.  相似文献   

13.
The purpose of the present study was to establish whether the performance of an all-out sprint could be replicated and the metabolic responses moderated in two further trials involving pre-set constant average pedalling rates. A total of 24 subjects (12 males and 12 females) completed a 30-s high-speed maximal all-out effort on a cycle ergometer against an applied resistance equal to 7.5% of their body mass. On two further occasions the applied resistance was increased so that the external work of the all-out effort could be replicated by adopting a pre-determined constant average pedal rate. When the required pedal rate was within the range of 60–90 rev??·??min?1 the subjects were able to maintain the rate for the full 30-s and so could replicate the external work of the all-out effort. They were unable to sustain a faster constant rate within the range of 97–150 rev??·??min?1 for the full 30 s, resulting in ≈7% less external work being achieved (P?P?P?相似文献   

14.
The aims of the present study were: first, to assess the interindividual variations of a spontaneously chosen crank rate (SCCR) in relation to the power developed during an incremental upper body exercise on an arm ergometer set at a constant power regime, and second, to compare heart rate (HR) responses, expired minute ventilation ( E) and oxygen consumption (O2) when the pedal rates were chosen spontaneously (TSCCR) or set at ±10% of the freely chosen rates (T+10% and T?10%, respectively). The mean pedal rate values were linearly related (P?r?=?0.96), although large variations of pedalling rate strategies were observed between subjects. Maximal power (MP) and time to exhaustion values were significantly higher (P?SCCR than during T+10% and T?10%. Peak O2 values were significantly higher (P?+10% than in TSCCR and T?10%. The increase in HR, E, and O2 mean values, in relation to the increase in the power developed, was significantly higher (P?±10%) than in the two other conditions. The findings of the present study suggest that the use of an electromagnetically braked ergometer, which automatically adjusts the resistance component to maintain a constant work rate, should be used in order to achieve the highest MP values during an incremental upper body exercise. A 10% increase of the SCCR should be used in order to provide the highest peak O2 value.  相似文献   

15.
Lower limb explosive power, which is more predictive of functional difficulties than strength per se with women being more at risk than men for disability, has been previously compared between young and older women using systems with fixed inertia. Individuals may have been obliged to use a percentage of their maximum strength that is not ideal for performing the movement at the optimum speed for maximum power output. This study was designed to compare explosive power output and its two determinants, optimal force and optimal speed, during a leg-press action between young and older women after optimising the load for maximum power production. The experiments were carried out on 20 women in good physical condition: 10 older, aged between 65 and 74 years and 10 young, aged between 18 and 30. Explosive power output was measured by setting the initial load at different percentages of maximum isometric strength and measuring the corresponding speed of movement during a leg-press action of the dominant leg. Maximum peak power, which was obtained at 60% of maximum isometric strength in both young and older women, was 61% lower in the older women (P<0.0001). This was due to a 52% lower optimal force (P<0.0001) and 21% lower optimal speed (P<0.01). The ratio of peak power to maximum isometric strength was 22.1% lower in the older women (P<0.01). After optimising the load, both lower speed of movement and lower strength determine the lower levels of power in older women. Power is more affected by ageing than isometric strength.  相似文献   

16.
An isokinetic cycle ergometer has been developed to measure power output generated over a wide range of constant velocities. The ergometer system has two operating modes and it can be instantly switched from one to another. In its conventional mode the cycle ergometer is connected to a conventional electrically braked cycle ergometer so that the subjects can perform submaximal steady-state exercise. For maximal power measurements the system can be instantly switched to an isokinetic control mechanism which allows a constant pedalling rate to be set in the range of 23–180 rev·min–1. In both operating modes the forces generated on the pedals are monitored by strain gauges mounted inside the pedals. This enables information to be obtained regarding the direction of forces generated at the foot-pedal interface. The output from the strain-gauges was A-D converted and stored along with data giving pedal and crank position. Data was sampled 150 times in each revolution of the crank. Force data are usually analysed for maximal peak power (highest instantaneous power generated during each revolution), mean power (power generated over a complete revolution), extension and flexion power (power generated during leg extension and leg flexion respectively). This system allows characterisation of the relationship between maximal leg power and pedalling rate, both under control and exercise-induced potentiation and fatigue conditions. Thus it is possible for example to quantify instantly the magnitude of fatigue induced by preceding dynamic exercise of a given duration, intensity or contraction velocity.  相似文献   

17.
Rehabilitation of persons with pareses commonly uses recumbent pedalling and a rigid pedal boot that fixes the ankle joint from moving. This study was performed to provide general muscle moments (GMM) and joint power data from able-bodied subjects performing recumbent cycling at two workloads.Twenty-six able-bodied subjects pedalled a stationary recumbent tricycle at 60 rpm during passive cycling and at two workloads (low 15 W and high 40 W per leg) while leg kinematics and pedal forces were recorded. GMM and power were calculated using inverse dynamic equations.During the high workload, the hip and knee muscles produced extensor/flexor moments throughout the extensions/flexions phases of the joints. For low workload, a prolonged (crank angle 0–258°) hip extension moment and a shortened range (350–150°) of knee extension moment were observed compared to the corresponding extension phases of each joint. The knee and hip joints generated approximately equal power. At the high workload the hip and knee extensors generated increased power in the propulsion phase.For the first time, this study provides GMM and power patterns for able-bodied subjects performing recumbent cycling with an immobilized ankle. The patterns showed greater similarities to upright cycling with a free ankle, than previously supposed.  相似文献   

18.
The purpose of this investigation was to examine the influence of muscle fiber type composition on the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG) amplitude and mean power frequency (MPF) during a fatiguing submaximal isometric muscle action. Five resistance-trained (mean +/- SD age = 23.2 +/- 3.7 yrs) and five aerobically-trained (mean +/- SD age = 32.6 +/- 5.2 yrs) men volunteered to perform a fatiguing, 30-sec submaximal isometric muscle action of the leg extensors at 50% of the maximum voluntary contraction (MVC). Muscle biopsies from the vastus lateralis revealed that the myosin heavy chain (MHC) composition for the resistance-trained subjects was 59.0 +/- 4.2% Type IIa, 0.1 +/- 0.1% Type IIx, and 40.9 +/- 4.3% Type I. The aerobically-trained subjects had 27.4 +/- 7.8% Type IIa, 0.0 +/- 0.0% Type IIx, and 72.6 +/- 7.8% Type I MHC. The patterns of responses and mean values for absolute and normalized EMG amplitude and MPF during the fatiguing muscle action were similar for the resistance-trained and aerobically-trained subjects. The resistance-trained subjects demonstrated relatively stable levels for absolute and normalized MMG amplitude and MPF across time, but the aerobically-trained subjects showed increases in MMG amplitude and decreases in MMG MPE The absolute MMG amplitude and MPF values for the resistance-trained subjects were also greater than those for the aerobi-cally-trained subjects. These findings suggested that unlike surface EMG, MMG may be a useful noninvasive technique for examining fatigue-related differences in muscle fiber type composition.  相似文献   

19.
The purpose of this study was to investigate the muscular efficiency during cycling exercise under certain total power output (P tot) or external power output (P ext) experimental conditions that required a large range of pedal rates from 40 to 120 rpm. Muscular efficiency estimated as a ratio of P tot, which is sum of internal power output (P int) and P ext, to rate of energy expenditure above a resting level was investigated in two experiments that featured different conditions on a cycle ergometer, which were carried out at the same levels of P tot (Exp. 1) and P ext (Exp. 2). Each experiment consisted of three exercise tests with three levels of pedal rates (40, 80 and 120 rpm) lasting for 2–3 min of unloaded cycling followed by 4–5 min of loaded cycling. during unloaded cycling (∼430 ml min−1 for 40 rpm, ∼640 ml min−1 for 80 rpm, ∼1,600 ml min−1 for 120 rpm) and the P int (∼3 W for 40 rpm, ∼25 W for 80 rpm, ∼90 W for 120 rpm) in the two experiments were markedly increased with increasing pedal rates. The highest muscular efficiency was found at 80 rpm in the two experiments, whereas a remarkable reduction (19%) in muscular efficiency obtained at 120 rpm could be attributable to greater O2 cost due to higher levels of P int accompanying the increased pedal rates. We concluded that muscular efficiency could be affected by the differences in O2 cost and P int during cycling under the large range of pedal rates employed in this study.  相似文献   

20.
The purpose of this investigation was to compare the myosin heavy chain (MHC) isoform expression of the triceps brachii muscle and isoinertial, isometric and isokinetic strength indices in competitive bodybuilders (CB, n?=?5), recreational resistance trainers (RT, n?=?5), endurance-trained rowers (ER, n?=?5) and control (C, n?=?5) subjects. Muscle tissue samples were analysed for MHC isoform content using 6% sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The CB possessed significantly smaller (P??ER?≈?C). The MHC type I protein content did not differ significantly among RT [24.20 (SD 4.89)%] ER [25.38 (SD 1.67)%] and C [27.06 (SD 1.81)%] groups. The CB [31.32 (SD 2.67)%] presented significantly more type I MHC isoforms only in comparison with RT. However, when changes in the percentage of MHC type I isoforms were converted to effect sizes (ES), it appeared that low statistical power rather than the absence of an effect accounted for the nonsignificant differences between CB and other groups (i.e.?CB?>?RT?≈?ER?≈?C). Significant differences existed in isoinertial strength among the trained athletes (i.e. CB?>?RT?>?ER?≈?C), while isometric and isokinetic strength were not significantly different among any of the trained groups. However, the ES transformation of data demonstrated that large differences existed between resistance-trained groups and ER for isometric and isokinetic strength (i.e. CB?≈?RT?>?ER?≈?C). A statistically significant negative correlation (P?r?=???0.68). The MHC type IIa proteins were positively related to all the strength measures considered (r?=?0.51?–?0.61; P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号