首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims/hypothesis

Roux-en-Y gastric bypass (RYGB) improves glycaemic control in part by increasing postprandial insulin secretion through exaggerated glucagon-like peptide (GLP)-1 release. However, it is unknown whether islet cell responsiveness to i.v. glucose, non-glucose (arginine) and incretin hormones, including GLP-1, is altered.

Methods

Eleven severely obese glucose-tolerant individuals underwent three hyperglycaemic clamps with arginine bolus and co-infusion of either GLP-1, glucose-dependent insulinotropic polypeptide (GIP) or saline before, and at 1 week and 3 months after RYGB. In addition, an OGTT was performed before and 3 months after surgery.

Results

After RYGB, insulin sensitivity improved at 1 week and 3 months, while insulin stimulation and glucagon suppression in response to the clamp with saline co-infusion were largely unaltered. The influence of i.v. GLP-1 and GIP on insulin and glucagon secretion was also unchanged postoperatively. In response to the postoperative OGTT at 3 months, insulin and GLP-1, but not GIP, secretion increased. Furthermore, the glucose profile during the OGTT was altered, with a substantial reduction in 2 h plasma glucose and a paradoxical hypersecretion of glucagon.

Conclusions/interpretation

After RYGB, insulin hypersecretion is linked to the oral, but not the i.v., route of administration and is associated with exaggerated release and preserved insulinotropic action of GLP-1, while both the secretion and action of GIP are unchanged. The results highlight the importance of increased GLP-1 secretion for improving postoperative glucose metabolism.

Trial registration

ClinicalTrials.gov NCT01559779.  相似文献   

2.
Glucose-dependent insulinotropic polypeptide (GIP), a peptide released from the intestines after meals, is thought to stimulate insulin secretion. GIP receptor cDNA has recently been cloned and its mRNA has been recognized in several organs including the pituitary, but the physiological roles of GIP receptors of the pituitary have yet to be determined. We have demonstrated the possibility that GIP stimulates GH secretions from the pituitary adenoma cells of acromegalics. GIP-stimulated GH responses were studied in four acromegalics. In two acromegalics whose GH showed paradoxical secretion to oral glucose tolerance test (OGTT), GIP infusion (0.6 microg/kg/h) drove GH secretion (13.7 to 68.1, 22.5 to 76.2 ng/ml, respectively). However, in the other two acromegalics whose GH showed no paradoxical response to OGTT, GIP infusion did not induce GH secretion. One of the patients who was studied extensively had a GH that responded to OGTT. This patient's serum GH levels increased after meals while adenomectomy abolished both the paradoxical GH secretions by OGTT and GH responses to the GIP infusion. These data suggested that some somatotroph adenoma cells have an aberrant response to GIP which may go toward explaining paradoxical GH secretions to OGTT in acromegalics.  相似文献   

3.
Background: The aim of the present study was to determine the mechanisms underlying Type 2 diabetes remission after gastric bypass (GBP) surgery by characterizing the short‐ and long‐term changes in hormonal determinants of blood glucose. Methods: Eleven morbidly obese women with diabetes were studied before and 1, 6, and 12 months after GBP; eight non‐diabetic morbidly obese women were used as controls. The incretin effect was measured as the difference in insulin levels in response to oral glucose and to an isoglycemic intravenous challenge. Outcome measures were glucose, insulin, C‐peptide, proinsulin, amylin, glucagon, glucose‐dependent insulinotropic polypeptide (GIP), glucagon‐like peptide‐1 (GLP‐1) levels and the incretin effect on insulin secretion. Results: The decrease in fasting glucose (r = 0.724) and insulin (r = 0.576) was associated with weight loss up to 12 months after GBP. In contrast, the blunted incretin effect (calculated at 22%) that improved at 1 month remained unchanged with further weight loss at 6 (52%) and 12 (52%) months. The blunted incretin (GLP‐1 and GIP) levels, early phase insulin secretion, and other parameters of β‐cell function (amylin, proinsulin/insulin) followed the same pattern, with rapid improvement at 1 month that remained unchanged at 1 year. Conclusions: The data suggest that weight loss and incretins may contribute independently to improved glucose levels in the first year after GBP surgery.  相似文献   

4.
Aims/hypothesis The insulinotropic effect of gastric inhibitory polypeptide (GIP) is reduced in patients with type 2 diabetes and around 50% of their first-degree relatives under hyperglycaemic conditions. It is unknown whether this is a result of a specific defect in GIP action or of a general reduction in beta cell function. Moreover, impaired secretion of glucagon-like peptide 1 (GLP-1) has been described in patients with type 2 diabetes. Therefore, we studied the insulinotropic effect of GIP in women with previous gestational diabetes (pGDM) under euglycaemic fasting conditions and during a hyperglycaemic clamp experiment. The secretion of GIP and GLP-1 was assessed following oral glucose ingestion.Materials and methods On separate occasions we performed an OGTT and administered an i.v. bolus of 20 pmol GIP/kg body weight in 20 women with pGDM and 20 control women. An additional hyperglycaemic clamp experiment (140 mg/dl [7.8 mmol/l] over 120 min) with i.v. infusion of GIP (2 pmol kg–1 min–1; 30–90 min) was performed in 14 women in each group. Capillary and venous blood samples were drawn for the measurement of glucose (glucose oxidase), insulin, C-peptide, GIP and GLP-1 (specific immunoassays). Indices of insulin sensitivity and beta cell function were calculated. Statistical analyses were carried out using repeated measures ANOVA.Results Following oral glucose ingestion, plasma glucose, insulin and C-peptide concentrations increased to higher levels in the women with pGDM than in the control women (p<0.05). The women with pGDM were characterised by a higher degree of insulin resistance than the control women (p=0.007 for the Matsuda index), but showed no overt defects in glucose-stimulated insulin secretion (p=0.40 for the insulinogenic index following i.v. glucose). The secretion of GLP-1 and GIP was not different between the groups (p=0.87 and p=0.57, respectively). The insulin secretory response to GIP administration was similar in the two groups both after GIP bolus administration and during the hyperglycaemic clamp experiment (p=0.99 and p=0.88, respectively). A hyperbola-like relationship was found between the degree of insulin sensitivity (Matsuda index) and the insulin secretory response to GIP and i.v. glucose administration.Conclusions/interpretation These results do not support the hypothesis of an early defect in GIP action as a risk factor for subsequent development of diabetes in women with previous gestational diabetes. The inverse relationship between insulin resistance and the insulin secretory response to glucose or GIP suggests that beta cell secretory function in response to different stimuli increases adaptively when insulin sensitivity is diminished.  相似文献   

5.
6.
Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects with IGT and we also examined this interrelation in relation to the 2 main incretins, glucagon-like peptide (GLP-1) and gastric inhibitory polypeptide (GIP). To that end, 13 women with IGT and 17 women with normal glucose tolerance (NGT) underwent an oral glucose tolerance test (OGTT) with measurements of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean +/- SD] years) and body mass index (BMI; 26.0 +/- 4.0 kg/m(2)) did not differ between the groups. Subjects with IGT displayed lower TIS during the initial 30 minutes after oral glucose (0.97 +/- 0.17 [mean +/- SEM] v 1.75 +/- 0.23 nmol/L in NGT; P =.018) and lower OGIS (397 +/- 21 v 463 +/- 12 mL/min/m(2); P =.005). The incremental 30-minute TIS times OGIS (reflecting insulin secretion in relation to insulin sensitivity) was significantly reduced in IGT (359 +/- 51 v 774 +/- 91 nmol/min/m(2), P =.001). This measure correlated inversely to the 2-hour glucose level (r = -0.71; P <.001). In contrast, TIS over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P <.001), but was not significantly different between the groups although there was a trend with lower extraction in IGT (P =.055). Plasma levels of GLP-1 and GIP increased after oral glucose. Total secretion of these incretin hormones during the 3-hour test did not differ between the 2 groups. However, the 30-minute increase in GLP-1 concentrations was lower in IGT than in NGT (P =.036). We conclude that also in non-obese subjects with IGT, when adiposity is controlled for in relation to NGT, defective early insulin secretion after oral glucose is a key factor. This defective beta-cell function is associated with, and may be caused by, a reduced early GLP-1 response.  相似文献   

7.
Gastric inhibitory polypeptide (GIP) and truncated glucagon like peptide-1 (tGLP-1) are potent gastrointestinal insulinotropic factors (incretin), mostly released after a meal or ingestion of glucose in man and animals. To investigate whether sulfonylurea (SU) affects the secretion of incretin, the modulation of plasma GIP and tGLP-1 levels following glucose ingestion in non-insulin-dependent diabetic type 2 patients with or without SU therapy was studied. A 75-g oral glucose tolerance test (OGTT) was carried out on 9 healthy subjects (controls) and 18 patients with non-obese type 2, 9 of whom were treated by diet alone (NIDDM-diet) and the other 9 with SU (glibenclamide 2.5 mg or gliclazide 40 mg) once a day (NIDDM-SU). Plasma GIP was measured by radioimmunoassay (RIA) with R65 antibody, and GLP-1 was measured by RIA with N-terminal-directed antiserum R1043 (GLP-1NT) and C-terminal-directed antiserum R2337 (GLP-1CT). Following OGTT, plasma glucose, GIP, GLP-1NT, and GLP-1CT in type 2 patients increased more markedly than in controls, despite the lower response of insulin. However, there were no significant differences in plasma levels of these peptides between the NIDDM-diet and NIDDM-SU groups. Therefore, it is unlikely that SU is involved in the high response of GIP and GLP-1s to OGTT in type 2 patients.  相似文献   

8.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretin hormones secreted in response to meal ingestion, thereby enhancing postprandial insulin secretion. Therefore, an attenuated incretin response could contribute to the impaired insulin responses in patients with diabetes mellitus. The aim of the present investigation was to investigate incretin secretion, in obesity and type 1 and type 2 diabetes mellitus, and its dependence on the magnitude of the meal stimulus. Plasma concentrations of incretin hormones (total, reflecting secretion and intact, reflecting potential action) were measured during two meal tests (260 kcal and 520 kcal) in eight type 1 diabetic patients, eight lean healthy subjects, eight obese type 2 diabetic patients, and eight obese healthy subjects. Both in diabetic patients and in healthy subjects, significant increases in GLP-1 and GIP concentrations were seen after ingestion of both meals. The incretin responses were significantly higher in all groups after the large meal, compared with the small meal, with correspondingly higher C-peptide responses. Both type 1 and type 2 diabetic patients had normal GIP responses, compared with healthy subjects, whereas decreased GLP-1 responses were seen in type 2 diabetic patients, compared with matched obese healthy subjects. Incremental GLP-1 responses were normal in type 1 diabetic patients. Increased fasting concentrations of GIP and an early enhanced postprandial GIP response were seen in obese, compared with lean healthy subjects, whereas GLP-1 responses were the same in the two groups. beta-cell sensitivity to glucose, evaluated as the slope of insulin secretion rates vs. plasma glucose concentration, tended to increase in both type 2 diabetic patients (29%, P = 0.19) and obese healthy subjects (22% P = 0.04) during the large meal, compared with the small meal, perhaps reflecting the increased incretin response. We conclude: 1) that a decreased GLP-1 secretion may contribute to impaired insulin secretion in type 2 diabetes mellitus, whereas GIP and GLP-1 secretion is normal in type 1 diabetic patients; and 2) that it is possible to modulate the beta-cell sensitivity to glucose in obese healthy subjects, and possibly also in type 2 diabetic patients, by giving them a large meal, compared with a small meal.  相似文献   

9.
The incretin hormones gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are released in response to nutrient ingestion and potentiate glucosestimulated insulin secretion from pancreatic β cells. The augmentation of postprandial insulin secretion by such gastrointestinal hormones is called the incretin effect. The incretin effect is almost completely absent in patients with type 2 diabetes. This is due to 1) an approximate 15% reduction in postprandial GLP-1 secretion and 2) a near total loss of insulinotropic activity of GIP. This review article summarizes clinical studies on abnormalities in the secretion and insulinotropic effects of GIP and GLP-1 in patients with type 2 diabetes as well as in individuals at high risk. A significant proportion of first-degree relatives are characterized by a reduced insulinotropic response to exogenous GIP. Nevertheless, this phenomenon does not predispose to a more rapid deterioration in glucose tolerance or conversion to impaired glucose tolerance or diabetes. Therefore, although there are hints of early abnormalities in incretin secretion and action in prediabetic populations, it has not been proven that such phenomena are central to the pathogenesis of type 2 diabetes.  相似文献   

10.
Postprandial insulin secretion is modulated by both neural and humoral gastrointestinal insulinotropic factors in addition to the absorbed nutrient. To investigate the involvement of the potent insulinotropic hormones gastric inhibitory polypeptide (GIP) and truncated glucagon-like peptide-1 (tGLP-1) in the postprandial hyperinsulinaemia of obesity, we examined the changes in plasma levels of GIP and tGLP-1 by an oral glucose tolerance test (OGTT) in nine normal subjects (controls), nine obese subjects without glucose intolerance (Group A), and six obese mild diabetic patients (Group B). Following the OGTT, plasma GIP levels in Group B were increased more markedly than those in the other two groups. Plasma levels of tGLP-1 were estimated by the difference between the values measured with the N-terminal directed antiserum (GLP-1NT) and those with the C-terminal directed antiserum (GLP-1 CT). Plasma levels of GLP-1 NT were increased in Group B, but decreased in the other two groups. Plasma GLP-1 CT levels were increased in all groups with the highest response in Group B. These results suggest that the combined augmentation of plasma GIP and tGLP-1 responses were involved in the delayed and considerable increases in plasma insulin after glucose ingestion in obese diabetic patients. Since tGLP-1 is suppressed in the hyperglycaemic hyperinsulinaemic state in normal subjects, the augmented tGLP-1 response appears to be characteristic of obese Type 2 diabetes.  相似文献   

11.
12.
Aim: Compare the response to oral glucose of the two incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) at 1 year after restrictive vs. malabsorptive bariatric surgery.
Methods: Vertical banded gastroplasty (VBG, n = 7) or jejunoileal bypass (JIB, n = 5) was performed in 12 women, aged 26–39 years, with severe obesity [body mass index (BMI) 46.6 ± 2.3 kg/m2]. After 1 year, 75 g glucose was administered and plasma levels of glucose, insulin, GIP and GLP-1 were determined regularly during the following 2 h.
Results: At 1 year after operation, reduction in body weight, actual body weight, fasting glucose or insulin, or the glucose and insulin responses to oral glucose did not differ significantly between the groups. Similarly, fasting GIP and GLP-1 levels did not differ significantly between the groups. In contrast, the GIP and GLP-1 responses to oral glucose were different between the groups in a dissociated pattern. Thus, AUCGIP was significantly higher after VBG than after JIB (53 ± 8 vs. 26 ± 6 pmol/l/min, p = 0.003). In contrast, AUCGLP−1 was significantly higher after JIB than after VBG (49 ± 5 vs. 20 ± 3 pmol/l/min, p = 0.007).
Conclusions: We conclude that at 1 year after bariatric surgery, the two incretins show dissociated responses in that the GIP secretion is higher after VBG whereas GLP-1 secretion is higher after JIB. This dissociated incretin response is independent from reduction in body weight, glucose tolerance or insulin secretion.  相似文献   

13.
Gastric inhibitory polypeptide (GIP) and glucagon-like peptide 1 [7-36 amide] (GLP-1) are glucose-dependent insulinotropic gut hormones. Under experimental conditions, both have been shown to reduce stimulated gastric acid secretion. To study their individual and combined effects on pentagastrin-stimulated (0.1 micrograms/kg/h from -90 to 120 min) gastric volume, acid and chloride output, on separate occasions, synthetic human GIP (1 pmol/kg/min) and/or GLP-1 [7-36 amide] (0.3 pmol/kg/min) or placebo (0.9% NaCl with 1% albumin) were infused intravenously (from -30 to 120 min) in 9 healthy volunteers. At 0 min, a glucose infusion was started that mimicked the glycemic profile after an oral glucose load of 50 g/400 ml and allowed for the glucose-dependent insulinotropic action of GIP and GLP-1 [7-36 amide]. Pentagastrin stimulated acid output significantly, but neither GIP nor GLP-1 [7-36 amide] either alone or in combination, reduced pentagastrin-stimulated gastric acid secretion. The circulating concentrations of GIP and GLP-1 [7-36 amide] obtained at steady state during exogenous administration of synthetic peptides were similar to or higher than those reached after oral glucose (endogenous secretion). In conclusion, (penta)gastrin-stimulated gastric acid secretion is not inhibited by physiological circulating concentrations of GIP or GLP-1 [7-36 amide]. Therefore, the insulinotropic action of these intestinal hormones is physiologically more important than their possible role as enterogastrone.  相似文献   

14.
Glucagon-like peptide 1 (GLP-1) and analogues are being evaluated as a new therapeutic principle for the treatment of type 2 diabetes. GLP-1 suppresses glucagon secretion, which could lead to disturbances of hypoglycemia counterregulation. This has, however, not been tested. Nine healthy volunteers with normal oral glucose tolerance received infusions of regular insulin (1 mU x kg(-1) x min(-1)) over 360 min on two occasions in the fasting state. Capillary glucose concentrations were clamped at plateaus of 4.3, 3.7, 3.0, and 2.3 mmol/liter for 90 min each (stepwise hypoglycemic clamp); on one occasion, GLP-1 (1.2 pmol x kg(-1) x min(-1)) was administered i.v. (steady-state concentration, approximately 125 pmol/liter); on the other occasion, NaCl was administered as placebo. Glucagon, cortisol, GH (immunoassays), and catecholamines (radioenzymatic assay) were determined, autonomous and neuroglucopenic symptoms were assessed, and cognitive function was tested at each plateau. Insulin secretion rates were estimated by deconvolution (two-compartment model of C-peptide kinetics). At insulin concentrations of approximately 45 mU/liter, glucose infusion rates were similar with and without GLP-1 (P = 0.26). Only during the euglycemic plateau (4.3 mmol/liter), GLP-1 suppressed glucagon concentrations (4.1 +/- 0.4 vs. 6.5 +/- 0.7 pmol/liter; P = 0.012); at all hypoglycemic plateaus, glucagon increased similarly with GLP-1 or placebo, to maximum values greater than 20 pmol/liter (P = 0.97). The other counterregulatory hormones and autonomic or neuroglucopenic symptom scores increased, and cognitive functions decreased with decreasing glucose concentrations, but there were no significant differences comparing experiments with GLP-1 or placebo, except for a significant reduction of GH responses during hypoglycemia with GLP-1 (P = 0.04). GLP-1 stimulated insulin secretion only at plasma glucose concentrations of at least 4.3 mmol/liter. In conclusion, the suppression of glucagon by GLP-1 does occur at euglycemia, but not at hypoglycemic plasma glucose concentrations (< or = 3.7 mmol/liter). GLP-1 does not impair overall hypoglycemia counterregulation except for a reduction in GH responses, which is in line with other findings demonstrating pituitary actions of GLP-1. Below plasma glucose concentrations of 4.3 mmol/liter, the insulinotropic action of GLP-1 is negligible.  相似文献   

15.
Monounsaturated fatty acids, such as oleic acid (OA), and certain milk proteins, especially whey protein (WP), have insulinotropic effects and can reduce postprandial glycemia. This effect may involve the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). To explore this, we examined the release and inactivation of GIP and GLP-1 after administration of glucose with or without OA or WP through gastric gavage in anesthetized C57BL/6J mice. Insulin responses to glucose (75 mg) were 3-fold augmented by addition of WP (75 mg; P < 0.01), which was associated with enhanced oral glucose tolerance (P < 0.01). The insulin response to glucose was also augmented by addition of OA (34 mg; P < 0.05) although only 1.5-fold and with no associated increase in glucose elimination. The slope of the glucose-insulin curve was increased by OA (1.7-fold; P < 0.05) and by WP (4-fold; P < 0.01) compared with glucose alone, suggesting potentiation of glucose-stimulated insulin release. WP increased GLP-1 secretion (P < 0.01), whereas GIP secretion was unaffected. OA did not affect GIP or GLP-1 secretion. Nevertheless, WP increased the levels of both intact GIP and intact GLP-1 (both P < 0.01), and OA increased the levels of intact GLP-1 (P < 0.05). WP inhibited dipeptidyl peptidase IV activity in the proximal small intestine by 50% (P < 0.05), suggesting that luminal degradation of WP generates small fragments, which are substrates for dipeptidyl peptidase IV and act as competitive inhibitors. We therefore conclude that fat and protein may serve as exogenous regulators of secretion and inactivation of the incretin hormones with beneficial influences on glucose metabolism.  相似文献   

16.
CONTEXT: Low birth weight (LBW) is associated with increased risk of type 2 diabetes mellitus. An impaired incretin effect was reported previously in type 2 diabetic patients. OBJECTIVE: We studied the secretion and action of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) in young LBW men (n = 24) and matched normal birth weight controls (NBW) (n = 25). RESULTS: LBW subjects were 5 cm shorter but had a body mass index similar to NBW. LBW subjects had significantly elevated fasting and postprandial plasma glucose, as well as postprandial (standard meal test) plasma insulin and C-peptide concentrations, suggestive of insulin resistance. Insulin secretion in response to changes in glucose concentration ("beta-cell responsiveness") during the meal test was similar in LBW and NBW but inappropriate in LBW relative to insulin sensitivity. Fasting and postprandial plasma GLP-1 and GIP levels were similar in the groups. First- and second-phase insulin responses were similar in LBW and NBW during a hyperglycemic clamp (7 mm) with infusion of GLP-1 or GIP, respectively, demonstrating normal action of these hormones on insulin secretion. CONCLUSION: Reduced secretion or action of GLP-1 or GIP does not explain a relative reduced beta-cell responsiveness to glucose or the slightly elevated plasma glucose concentrations observed in young LBW men.  相似文献   

17.
CONTEXT: In response to a meal, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are released and modulate glycemic control. Normally these incretins are rapidly degraded by dipeptidyl peptidase-4 (DPP-4). DPP-4 inhibitors are a novel class of oral antihyperglycemic agents in development for the treatment of type 2 diabetes. The degree of DPP-4 inhibition and the level of active incretin augmentation required for glucose lowering efficacy after an oral glucose tolerance test (OGTT) were evaluated. OBJECTIVE: The objective of the study was to examine the pharmacodynamics, pharmacokinetics, and tolerability of sitagliptin. DESIGN: This was a randomized, double-blind, placebo-controlled, three-period, single-dose crossover study. SETTING: The study was conducted at six investigational sites. PATIENTS: The study population consisted of 58 patients with type 2 diabetes who were not on antihyperglycemic agents. INTERVENTIONS: Interventions included sitagliptin 25 mg, sitagliptin 200 mg, or placebo. MAIN OUTCOME MEASURES: Measurements included plasma DPP-4 activity; post-OGTT glucose excursion; active and total incretin GIP levels; insulin, C-peptide, and glucagon concentrations; and sitagliptin pharmacokinetics. RESULTS: Sitagliptin dose-dependently inhibited plasma DPP-4 activity over 24 h, enhanced active GLP-1 and GIP levels, increased insulin/C-peptide, decreased glucagon, and reduced glycemic excursion after OGTTs administered at 2 and 24 h after single oral 25- or 200-mg doses of sitagliptin. Sitagliptin was generally well tolerated, with no hypoglycemic events. CONCLUSIONS: In this study in patients with type 2 diabetes, near maximal glucose-lowering efficacy of sitagliptin after single oral doses was associated with inhibition of plasma DPP-4 activity of 80% or greater, corresponding to a plasma sitagliptin concentration of 100 nm or greater, and an augmentation of active GLP-1 and GIP levels of 2-fold or higher after an OGTT.  相似文献   

18.
The ageing entero-insular axis   总被引:2,自引:0,他引:2  
Summary Ageing is one of the major risk factors for glucose intolerance including impaired glucose tolerance and Type II (non-insulin-dependent) diabetes mellitus. Reduced insulin secretion has been described as part of normal ageing although there is no information on age-related changes in the secretion of the major insulinotropic hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide (7–36 amide) (GLP-1). We assessed the entero-insular axis in 6 young premenopausal and 6 older postmenopausal women following treatment with oral carbohydrate. Insulin and glucose integrated responses were similar in the younger and older groups. Total integrated responses for GIP and GLP-1 were considerably greater in the older subjects. A positive correlation between age and total integrated responses for glucose (r = 0.65; p < 0.02) as well as GLP-1 (r = 0.85; p < 0.001) was seen. We hypothesise that an age-related impairment of insulin secretion to insulinotropic hormones, GIP and GLP-1, contributes to a reduction in glucose tolerance in this age group. The pronounced compensatory increase in postprandial secretion of GIP and GLP-1 provides further evidence not only for the negative feedback relation between incretin and insulin secretion but also for the importance of the entero-insular axis in the regulation of insulin secretion. [Diabetologia (1998) 41: 1309–1313] Received: 14 January 1998 and in revised form: 12 June 1998  相似文献   

19.
Incretins, insulin secretion and Type 2 diabetes mellitus   总被引:11,自引:4,他引:11  
Vilsbøll T  Holst JJ 《Diabetologia》2004,47(3):357-366
When glucose is taken orally, insulin secretion is stimulated much more than it is when glucose is infused intravenously so as to result in similar glucose concentrations. This effect, which is called the incretin effect and is estimated to be responsible for 50 to 70% of the insulin response to glucose, is caused mainly by the two intestinal insulin-stimulating hormones, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Their contributions have been confirmed in mimicry experiments, in experiments with antagonists of their actions, and in experiments where the genes encoding their receptors have been deleted. In patients with Type 2 diabetes, the incretin effect is either greatly impaired or absent, and it is assumed that this could contribute to the inability of these patients to adjust their insulin secretion to their needs. In studies of the mechanism of the impaired incretin effect in Type 2 diabetic patients, it has been found that the secretion of GIP is generally normal, whereas the secretion of GLP-1 is reduced, presumably as a consequence of the diabetic state. It might be of even greater importance that the effect of GLP-1 is preserved whereas the effect of GIP is severely impaired. The impaired GIP effect seems to have a genetic background, but could be aggravated by the diabetic state. The preserved effect of GLP-1 has inspired attempts to treat Type 2 diabetes with GLP-1 or analogues thereof, and intravenous GLP-1 administration has been shown to be able to near-normalize both fasting and postprandial glycaemic concentrations in the patients, perhaps because the treatment compensates for both the impaired secretion of GLP-1 and the impaired action of GIP. Several GLP-1 analogues are currently in clinical development and the reported results are, so far, encouraging.Abbreviations GLP-1 Glucagon-like peptide-1 - GIP glucose-dependent insulinotropic polypeptide - FPG fasting plasma glucose  相似文献   

20.
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to “isoglycaemic” intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and—in the long run—body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号