首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Chemokines are a superfamily of small proteins that bind to G protein-coupled receptors on target cells and were originally discovered as mediators of directional migration of immune cells to sites of inflammation and injury. In recent years, it has become clear that the function of chemokines extends well beyond the role in leukocyte chemotaxis. They participate in organ development, angiogenesis/angiostasis, leukocyte trafficking and homing, tumorigenesis and metastasis, as well as in immune responses to microbial infection. Therefore, chemokines and their receptors are important targets for modulation of host responses in pathophysiological conditions and for therapeutic intervention of human diseases.  相似文献   

2.
Chemokines have emerged as critical regulators of leukocyte function and as such represent attractive new targets for the therapy of allergic diseases. Recent studies have revealed important roles for the chemokine family in both the afferent and efferent limbs of the immune system, orchestrating and integrating innate and acquired immune responses. A subset of chemokines including eotaxin-1 (also called CCL11), eotaxin-2 (CCL24), eotaxin-3 (CCL26), MCP (monocyte chemoattractant protein)-3 (CCL7), MCP (monocyte chemoattractant protein)-4 (CCL13), TARC (thymus- and activation-regulated chemokine) (CCL17), and MDC (macrophage-derived chemokine) (CCL22) are highly expressed in allergic inflammation and are regulated by T helper type 2 cytokines. Receptors for these chemokines, including CCR3 (CC chemokine receptor 3), CCR4 (CC chemokine receptor 4) and CCR8 (CC chemokine receptor 8) are expressed on key leukocytes associated with allergic inflammation, such as T helper type 2 cells, eosinophils, mast cells and basophils, establishing a subset of chemokine/chemokine receptors potentially important in allergic inflammation. Recent data using inhibitory antibodies and chemokine antagonists support the concept that interfering with this subset of chemokines and their receptors represents a new approach to allergy immunotherapy.  相似文献   

3.
Chemokines secreted by astrocytes play multiple roles in the pathology of Alzheimer’s disease, a chronic inflammation disorder of central nervous system. The level of chemokines in serum, cerebrospinal fluid and brain tissue and their receptors both significantly changed in patients with Alzheimer’s disease. In this review, we briefly summarized the involvement of astrocytes and chemokines in Alzheimer’s disease, and the role of chemokine/chemokine receptors in the occurrence and development of Alzheimer’s disease. Clarification of the involvement of chemokines and their receptors, such as MCP-1/CCR2, fractalkine/CX3CR1, SDF-1α/CXCR4, MIP-1α/CCR5, IP-10/CXCR3, IL-8/CXCR1, CXCR2, and RANTES/CCR1, CCR3, CCR5, will provide a new strategy and more specific targets for the treatment of Alzheimer’s disease.  相似文献   

4.
Marked inflammatory infiltration by activated leukocytes is a characteristic feature of allergic diseases. Elucidation of the mechanisms of leukocyte trafficking in allergic diseases would identify targets to establish novel anti-inflammatory strategies for treatment of these diseases. Leukocyte trafficking is controlled by tissue-specific expression of chemokines and chemokine receptor expression on the leukocyte surface. Here, we review the role of chemokines and their receptors in leukocyte trafficking to inflammatory sites in allergic diseases and discuss therapeutic strategies targeting chemokine networks for treatment of these diseases.  相似文献   

5.
Chemokine regulation of normal and pathologic immune responses   总被引:26,自引:0,他引:26  
Chemokines are small basic proteins that are the major mediators of all leukocyte migration. There are at least 46 distinct chemokines, and 19 chemokine receptors, making it easily the largest cytokine family. Chemokines can be both beneficial and harmful, by either stimulating an appropriate immune response to microbial invasion, or by mediating pathologic tissue destruction in many types of human disease. Chemokines have been implicated in the tissue destruction seen in autoimmune diseases, atherosclerosis, allograft rejection, and neoplasia. Chemokines also play essential roles in normal lymphocyte trafficking to primary and secondary lymphoid organs for antigen presentation and lymphocyte maturation. Chemokines also regulate hematopoietic stem and progenitor cell homing and proliferation. Therefore, it is likely that chemokines will become important targets for pharmacologic intervention in a wide variety of human diseases in the future.  相似文献   

6.
Trafficking of leukocytes to sites of inflammation is an important step in the establishment of an immune response. Chemokines are critical regulators of leukocyte trafficking and are widely studied molecules for their important role in disease and for their potential as new therapeutic targets. The ability of chemokines to induce leukocyte recruitment has been mainly measured by in vitro chemotaxis assays, which lack many components of the complex biological process of leukocyte migration and therefore provide incomplete information about chemokine function in vivo. In vivo assays to study the activity of chemokines to induce leukocyte recruitment have been difficult to establish. We describe here the development of a robust in vivo recruitment assay for CD8(+) and CD4(+) T lymphocytes induced by the CXCR3 ligands IP-10 (CXCL10) and I-TAC (CXCL11). For this assay, in vitro activated T lymphocytes were adoptively transferred into the peritoneum of na?ve mice. Homing of these transferred T lymphocytes into the airways was measured following intratracheal instillation of chemokines. High recruitment indices were achieved that were dependent on chemokine concentration and CXCR3 expression on the transferred lymphocytes. Recruitment was also inhibited by antibodies to the chemokine. The assay models the natural condition of chemokine-mediated lymphocyte migration into the airways as chemokines are expressed in the airways during inflammation. The nature of this model allows flexibility to study wildtype and mutant chemokines and chemokine receptors and the ability to evaluate chemokine antagonists and antibodies in vivo. This assay will therefore help elucidate a deeper understanding of the chemokine system in vivo.  相似文献   

7.
Chemokines and Dendritic Cell Traffic   总被引:12,自引:0,他引:12  
Localization in tissues and migration to lymphoid organs are essential steps in the immunobiology of dendritic cells (DC). Chemokines play an important role in guiding the traffic of DC. Receptor expression and responsiveness to constitutively made chemokines account for the presence of DC in normal tissues. Inflammatory chemokines and nonchemokine attractants promote recruitment and localization of DC at sites of inflammation and infection. Upon exposure to maturation signals, DC undergo a chemokine receptor switch, with down-regulation of inflammatory chemokine receptors followed by induction of CCR7. These temporally coordinated events allow DC to leave tissues and to localize in lymphoid organs by responding to CCR7 agonists. DC are also present in tumors that produce chemokines, but their significance remains to be defined. In addition to responding to chemokines, DC are a major source of certain chemokines such as macrophage-derived chemokine. The interaction of DC with chemokines is essential to the function of these cells in normal and pathological conditions and may provide tools for novel therapeutic strategies.  相似文献   

8.
Chemokines (chemoattractant cytokines) are key players in the initiation of inflammatory cell accumulation in the central nervous system (CNS). Mechanisms leading to upregulation of chemokines in CNS pathologic conditions remain largely unknown. Numerous in vitro studies showed that inflammatory cytokines stimulate cultured CNS cells to produce chemokines. The main goal of this study was to analyze if an individual proinflammatory cytokine is sufficient to upregulate the chemokine system in the adult CNS in vivo. We analyzed CC chemokine ligand and receptor expression in brains from two different strains of mice (SJL and BALB) after stereotaxic, intracerebral injection of tumor necrosis factor-alpha (TNF-alpha). In both strains, we detected similarly increased expression of chemokines RANTES/CCL5, macrophage inflammatory protein-1alpha (MIP-1alpha)/CCL3, MIP-1beta/CCL4, and MIP-2, as well as chemokine receptors CCR1, CCR2, and CCR5. Interestingly, we did not observe parenchymal leukocyte infiltrates after local TNF-alpha delivery. This observation shows that upregulation of chemokines by TNF-alpha is not sufficient to cause accumulation of leukocytes in the CNS parenchyma in both strains of mice.  相似文献   

9.
Chemokines direct leukocyte trafficking and positioning within tissues. They thus play critical roles in regulating immune responses and inflammation. The chemokine system is complex involving interactions between multiple chemokines and their receptors that operate in combinatorial cascades with adhesion molecules. The involvement of multiple chemokines and chemokine receptors in these processes brings flexibility and specificity to recruitment. The hepatic vascular bed is a unique low flow environment through which leukocyte are recruited to the liver during homeostatic immune surveillance and in response to infection or injury. The rate of leukocyte recruitment and the nature of cells recruited through the sinusoids in response to inflammatory signals will shape the severity of disease. At one end of the spectrum fulminant liver failure results from a rapid recruitment of leukocytes that leads to hepatocyte destruction and liver failure at the other diseases such as chronic hepatitis C infection may progress over many years from hepatitis to fibrosis and cirrhosis. Chronic hepatitis is charactezised by a T lymphocyte rich infiltrate and the nature and outcome of hepatitis will depend on the T cell subsets recruited, their activation and function within the liver. Different subsets of effector T cells have been described based on their secretion of cytokines and specific functions. These include Th1 and Th2 cells and more recently Th17 and Th9 cells which are associated with different types of immune response and which express distinct patterns of chemokine receptors that promote their recruitment under particular conditions. The effector function of these cells is balanced by the recruitment of regulatory T cells that are able to suppress antigen-specific effectors to allow resolution of immune responses and restoration of immune homeostasis. Understanding the signals that are responsible for recruiting different lymphocyte subsets to the liver will elucidate disease pathogenesis and open up new therapeutic approaches to modulate recruitment in favour of resolution rather than injury.  相似文献   

10.
Role of chemokines in inflammation and immunoregulation   总被引:5,自引:0,他引:5  
Feng L 《Immunologic research》2000,21(2-3):203-210
Chemokines are first noted for their ability to attract and activate leukocytes, as well as their potential role as mediators of inflammation. However, emerging data have shown that various chemokines may exert, other biologic effects both inside and outside the immune system. Inducible chemokines participate primarily in inflammatory responses and comprise the bulk of the chemokine family. Constitutive chemokines are expressed primarily in secondary lymphoid organs and some nonlymphoid organs, where they play amajor role in lymphocyte homing. Studies expanding to areas beyond inflammatory leukocyte recruitment, will likely give us a more complete picture of chemokine function, its regulation in lymphoid and nonlymphoid tissues and ways of utilizing endogenous chemokines to intervene with immune and inflammatory reactions.  相似文献   

11.
In the murine (mdx) model of Duchenne muscular dystrophy, dystrophic changes are much more severe in the diaphragm than in limb muscles, and the diaphragm more closely resembles the human disease phenotype. Chemokines could play a central role in governing such phenotypic differences, as inflammation is an important disease modifier. Here we report that CC chemokine receptors (CCRs 1, 2, 3, 5) and ligands (macrophage inflammatory protein-1alpha, RANTES) are expressed at higher levels in dystrophic than in wild-type muscles across age groups (6, 12, and 24 wk). Moreover, chemokine ligand expression and muscle inflammation are significantly higher in dystrophic diaphragms than in limb muscles of the same animals. In vitro, CCR1 is constitutively expressed by cultured primary diaphragmatic myotubes. Stimulation of myotubes by proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1alpha, interferon-gamma) found within the in vivo dystrophic muscle environment, upregulates CCR1 in mdx and wild-type cultures, and also increases expression of its ligand RANTES to a significantly greater degree in the mdx group. Taken together, our results suggest that CC chemokines may play an important role in sustaining inflammation within the mdx diaphragm, which could help account for its more severe phenotype and also offer a target for therapeutic intervention in Duchenne patients.  相似文献   

12.
Autoimmune diseases represent one of the most challenging clinical entities with unmet medical needs, so the continued development of novel therapeutics is well justified. Most autoimmune diseases are marked by the infiltration of lymphomyeloid cells in target tissues, leading to inflammation and tissue damage. This process is guided by chemokines that act as signaling bridges amidst a complex network of immune cells. For example, monocytes are believed to be the primary cell type responsible for pathology initiation and tissue damage, while T lymphocytes are thought to orchestrate the process by secreting more cytokines/chemokines to amplify leukocyte homing. Many studies have addressed the molecular basis of monocyte recruitment in different autoimmune diseases, and the conclusions pointed to a major role played by monocyte chemoattractant protein 1 (MCP-1), also known as CC chemokine ligand 2 (CCL2), and its cell-surface receptor, CC chemokine receptor (CCR) 2. These findings suggest that by interfering with CCL2 or its receptor, it is possible to inhibit the progression of CCR2-dependent diseases. Therefore, future therapy design targeting a maladapted immune response could target chemokine receptors starting with the CCL2-CCR2 axis.  相似文献   

13.
Chemokines represent a large family of polypeptides that signal through G-protein-coupled receptors and have a role in chemotaxis, leukocyte homing, inflammation, hematopoiesis, angiogenesis and tumor growth. The chemokine/chemokine receptor system acts in coordination with a complex cytokine network to elicit and direct leukocyte infiltration into the inflamed tissue. In addition to promoting movement into the inflamed tissue, the chemokine/chemokine receptor system may also activate infiltrating cells, such as neutrophils and eosinophils, and induce local damage. In recent years, the elucidation of intricate chemokine networks has led to the identification of potential target molecules for therapeutic intervention. Of considerable interest has been the role of chemokine/chemokine receptors in regulating allergic lung inflammation. In this review, techniques to study in situ expression of chemokine receptors in inflamed tissues are presented and discussed.  相似文献   

14.
Inflammation plays an important role in a wide range of human diseases. Chemokines are a group of proteins which control the migration and activation of the immune cells involved in all aspects of the inflammatory response. Chemokines bind to specific receptors of the seven-transmembrane spanning type on target leukocytes and also bind to cell-surface glycosaminoglycans (GAG). Leukocytes express a range of chemokine receptors which can cross-desensitise each other, potentially allowing a single chemokine receptor agonist to desensitise all the chemokine receptors on a cell. If an appropriate single receptor agonist is engineered to be non-chemotactic itself, then a treated cell will lose the potential to migrate in response to chemokines towards any developing site of inflammation. A non-GAG-binding but receptor agonistic form of the chemokine CCL7 can inhibit leukocyte recruitment in response to a diverse range of chemokines in vitro and in vivo. We hypothesise that this modified chemokine mediates its effect by inducing homologous and heterologous receptor desensitisation and further propose that other suitable candidates could include agonistic chemokine receptor-specific antibodies or small molecule chemokine receptor agonists. Hence, an appropriate chemokine receptor agonist could be used to inhibit multiple chemokine receptors, thereby producing a powerful and robust anti-inflammatory effect. This review considers the mechanisms leading to chemokine receptor desensitisation and discusses the potential to develop a new class of anti-inflammatory agents based on targeted stimulation of chemokine receptors.  相似文献   

15.

Background

Chemokines and their cognate receptors play important role in the control of leukocyte chemotaxis, HIV entry and other inflammatory diseases. Developing an effcient method to investigate the functional expression of chemokines and its interactions with specific receptors will be helpful to asses the structural and functional characteristics as well as the design of new approach to therapeutic intervention.

Results

By making systematic optimization study of expression conditions, soluble and functional production of chemokine C-C motif ligand 8 (CCL8) in Escherichia coli (E. coli) has been achieved with approx. 1.5 mg protein/l culture. Quartz crystal microbalance (QCM) analysis exhibited that the purified CCL8 could bind with C-C chemokine receptor type 3 (CCR3) with dissociation equilibrium constant (K D) as 1.2?×?10?7 M in vitro. Obvious internalization of CCR3 in vivo could be detected in 1 h when exposed to 100 nM of CCL8. Compared with chemokine C-C motif ligand 11 (CCL11) and chemokine C-C motif ligand 24 (CCL24), a weaker chemotactic effect of CCR3 expressing cells was observed when induced by CCL8 with same concentration.

Conclusion

This study delivers a simple and applicable way to produce functional chemokines in E. coli. The results clearly confirms that CCL8 can interact with chemokine receptor CCR3, therefore, it is promising area to develop drugs for the treatment of related diseases.
  相似文献   

16.
Inappropriate cell recruitment is a hallmark of all autoimmune, allergic and inflammatory diseases. The prevention of inflammation by interfering with cellular recruitment through the neutralization of cytokines and adhesion molecules has proven to be successful in the clinic. Chemokines are important potential targets owing to their central role in the cell recruitment process. Chemokines are unique among cytokines because they signal through seven transmembrane receptors, thus enabling the identification of small molecule inhibitors through high throughput screening. The object of this Review is to discuss the validity and feasibility of targeting several points of therapeutic intervention offered by the chemokine system and to assess the state of play within the field to date.  相似文献   

17.
Chemokines and leukocyte trafficking in rheumatoid arthritis.   总被引:2,自引:0,他引:2  
Leukocyte infiltration into the joint space and tissues is an essential component of the pathogenesis of rheumatoid arthritis (RA). In this review, we will summarize the current understanding of the mechanisms of leukocyte trafficking into the synovium, focusing on the role of adhesion molecules, chemokines, and chemokine receptors in synovial autoimmune inflammation. The process by which a circulating leukocyte decides to migrate into the synovium is highly regulated and involves the capture, firm adhesion, and transmigration of cells across the endothelial monolayer. Adhesion molecules and chemokine signals function in concert to mediate this process and to organize leukocytes into distinct structures within the synovium. Chemokines play a key regulatory role in organ-specific leukocyte trafficking and activation by affecting integrin activation, chemotaxis, effector cell function, and cell survival. Consequently, chemokines, their receptors, and downstream signal transduction molecules are attractive therapeutic targets for RA.  相似文献   

18.
Chemokines play an important role in determining cellular composition at inflammatory sites, and as such, influence disease outcome. In this study, we investigated the expression profile and splenic cellular source of various inflammatory chemokines and their receptors in human visceral leishmaniasis (VL). The expression of chemokines or their receptors was measured at the gene and protein level by employing real time qPCR and a cytometric bead array assay, respectively. In addition, the cellular source of chemokines and their receptors in the spleen was identified employing gene expression analyses in sequentially selected cell subsets. We identified elevated expression of CXCL10, CXCL9, CXCL8, and decreased CCL2 from VL patients. Further, we found reduced expression of the chemokine receptors CXCR1, CXCR2, CXCR3 and CCR2, but increased expression of CCR7 on VL PBMC, compared to endemic healthy controls. Additionally, splenic monocytes were found to be the major source of CXCL10, CXCL9 and CCR2, whereas T cells were the main source of CXCR3 and CCR7. We also report a strong association between plasma IFN-γ and CXCL-10, CXCL-9 levels. Enhanced parasite burden positively correlates with increased expression of CXCL10, CXCL9, IFN-γ and IL-10. Overall our result indicates that VL patients have an elevated inflammatory chemokine milieu which correlated with disease severity. However, expression of their chemokine receptors was significantly impaired, which may have contributed to reduced frequencies of blood monocytes and neutrophils in peripheral blood. In contrast, enhanced expression of CCR7 was associated with increased numbers of activated T cells in circulation. These findings highlight the importance of chemokines for recruitment of various cell populations in VL, and the knowledge gained may help in global understandings of the complex interaction between chemokines and pathological processes, and therefore will contribute towards the design of novel chemokine based immunological therapies against VL.  相似文献   

19.
The interaction between chemokines and their receptors is an important step in the control of leukocyte migration into sites of inflammation. Chemokines also mediate a variety of effects independent of chemotaxis, including induction and enhancement of Th1- and Th2-associated cytokine responses. Recent studies have shown that human Th1 and Th2 clones, activated under polarizing conditions with polyclonal stimuli in vitro, display distinct patterns of chemokine receptor expression: Th1 clones preferentially express CCR5 and CXCR3, while many Th2 clones express CCR4, CCR8 and, to a lesser extent, CCR3. These differential patterns of chemokine receptor expression suggest a mechanism for selective induction of migration and activation of Th1- and Th2-type cells during inflammation and, perhaps, normal immune homoeostasis. Studies have begun to examine T cell chemokine receptor expression in vivo to determine the relevance of these in vitro observations to human Th1- and Th2-associated diseases. In this review, we critically examine recent reports of T cell chemokine receptor expression in human autoimmune disorders (multiple sclerosis and rheumatoid arthritis) and atopic disorders (allergic rhinitis and asthma) which are believed to arise from inappropriate Th1- and Th2-dominated responses, respectively.  相似文献   

20.
Chemokines represent a major mediator of innate immunity and play a key role in the selective recruitment of cells during localized inflammatory responses. Beyond critical extracellular mediators of leukocyte trafficking, chemokines and their cognate receptors are expressed by a variety of resident and infiltrating cells (monocytes, lymphocytes, NK cells, mast cells, and NKT cells). Chemokines represent ideal candidates for mechanistic studies (particularly in murine models) to better understand the pathogenesis of chronic inflammation and possibly become biomarkers of disease. Nonetheless, therapeutic approaches targeting chemokines have led to unsatisfactory results in rheumatoid arthritis, while biologics against pro-inflammatory cytokines are being used worldwide with success. In this comprehensive review we will discuss the evidence supporting the involvement of chemokines and their specific receptors in mediating the effector cell response, utilizing the autoimmune/primary biliary cholangitis setting as a paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号