首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F1 rats primed with normal parental strain lymphocyte populations and restimulated in culture with parental lymphoblasts generate potent cytotoxic T cell responses to unusual antigen systems. Here we describe in the Lewis (L)/DA anti-DA combination an antigen system most likely of mitochondrial origin with the following properties: it is transmitted maternally from DA strain females, inherited in an extra-chromosomal manner, restricted by class I RT1Aa major histocompatibility complex gene products, extinguished on target cells treated with chloramphenicol, and its pattern of expression in different rat strains correlates with restriction fragment-length polymorphisms of mitochondrial DNA. Sequence analysis of the rat ND1 gene indicates that the maternally transferred factor in the rat is not a homologue of the maternally transmitted factor responsible for the mitochondrial antigen in mice. In keeping with its inheritance from DA females, this antigen is present on target cells from (DA female x L male)F1 donors and all other F1 combinations derived from DA female parents, but absent from target cells from some F1 combinations (L/DA and Wistar-Furth [WF]/DA) derived from DA strain males. The presence of this antigen in other F1 combinations (Brown Norway [BN]/DA, August 2880 [AUG]/DA, and PVG/DA) indicates that this mitochondrial antigen system is shared by the DA, BN, and PVG strains, but not by the L and WF strains.  相似文献   

2.
Lymphocytes from parental strain DA rats can induce potent killer cell responses to atypical antigen systems in F1 Lewis (L)/DA and DA/L recipients. Here, we describe an antigen system, H, present on homozygous parental target cells, but not on F1 cells. This antigen system is unusual in several respects: it does not involve class I RT1A gene products usually used by killer cell responses in the rat, it maps to the major histocompatibility complex (MHC) class I-like RT1C region, and it requires homozygous expression of RT1Cav1 alleles. This may be another example, this time involving the RT1C region, of an MHC gene product antigenically altered by an MHC-linked trans-activating modifier gene.  相似文献   

3.
We investigated the antigenic requirements for restimulation of H-2- restricted cytolytic T lymphocytes (CTL) in vitro to determine whether H-2 I region-restricted helper T cells are required in these responses. In one set of experiments, we studied the in vitro response of (responder x nonresponder)F(1) female T cells to the male antigen H-Y. We chose to examine this response because it has been suggested that the defect in nonresponder strains is a failure of helper T cells to recognize H-Y in association with nonresponder I region determinants. However, we find that nonresponder male stimulator cells are as effective as F(1) male stimulator cells at inducing H-Y-specific CTL responses. This finding calls into question reports that secondary CTL responses to H-Y are dependent upon the activation of H-Y- specific helper T cells restricted to responder type I region determinants. In a second set of experiments, we examined the requirements for restimulation of H-2-restricted T cells specific for minor-histocompatibility antigens from long-term mixed lymphocyte cultures. These cultures were established by repeatedly restimulating cultures of specific T cells with H- 2-matched stimulator cells expressing foreign minor histocompatibility antigens. We found that H-2D-restricted T ceils, including CTL, could be restimulated with cells that were matched with the responding cells at only the D region genes. This response did not appear to result from positive allogeneic effects or from antigen processing and “representation” by responder type APC that might contaminate the cultures. Thus, we find no evidence for a requirement for I region-restricted helper T cells in these CTL responses. However, helper T cells are required because we find that CTL lines derived by limit-dilution cloning from these long-term MLC are absolutely dependent upon exogenous helper factors for growth. The most simple interpretation of these results is that the helper cells are restricted to H-2 antigens other than I region antigens or to antigens that code outside of the H-2 complex. Finally, we show that factor-dependent CTL lines must recognize their specific antigen to proliferate, even in the presence of exogenous factors. The requirement of activated CTL for antigen to proliferate provides an explanation for how specific CTL can be selectively enriched in MLC by specific antigen stimulation. Furthermore, it is at variance with reports that memory CTL or activated CTL require only interleukin 2 for restimulation.  相似文献   

4.
Murine thymus derived (T) lymphocytes primed in vivo to mouse 129 (H-2bc) derived H-2-negative F9 embryonal carcinoma cells and rechallenged in vitro with X-irradiated F9 stimulator cells differentiated into anti-F9 cell immune cytotoxic T lymphocytes (CTL). Using CBA mouse derived splenic responder T cells, F9 stimulator cells triggered a primary cytotoxic anti-F9 response. The CTL generated lysed the F9 antigen-positive target cells F9. PCC3 and PCC4, but not the F9 antigen-negative mouse 129 derived PYS tumor cells, nor LPS induced H-2bc blast cells. Mouse 129 anti-F9 cell antisera but not H-2k anti-H-2bc antisera blocked the lytic interaction with F9 target cells. Similarily unlabeled F9 cells but not H-2bc blast cells inhibited the anti-F9 cell cytotoxicity H-2k anti-F9 cell immune CTL were found to be cytotoxic for syngeneic spermatogonia, known to express the F9 antigen. The results suggest not only that CTL can recognize and lyse H-2-negative target cells, but also that CTL precursors can be sensitized against H-2-negative stimulator cells. From the data available it may be inferred that anti-F9 Cell immune CTL recognize the F9 antigen, known to be linked with the T/t locus. Since anti-F9 cell immune CTL lyse syngeneic spermatogonia, the system may be useful to analyze in vitro the induction and effector phase of a T-cell-mediated cytotoxic autoimmune orchitis.  相似文献   

5.
Anomalous killer cells are Thy-1(+) blasts that are cytolytic to the natural killer (NK)-sensitive lymphoma YAC-1, and that can be detected early (day 3-4) in the period preceeding the allospecific cytotoxic T lymphocyte (CTL) response in (CBA x A)F1 {arrow} C57B1 mixed leukocyte culture (MLC). We have investigated the origin and nature of anomalous killing (AK), with special emphasis on its relation to NK-and allospecific CTL-activity. AK was shown to be distinct from the previously described “NK(c)-cells” induced by cultivation in fetal calf serum (FCS)-supplemented medium when these two reactivities were examined in parallel. AK was detected in either FCS- or normal mouse serum (NMS)-supplemented allogeneic MLC, indicating that the response was not dependent on mitogenic or antigenic properties of heterologous serum. In addition to several H-2-incompatible combinations, AK was also observed in an Mls-incompatible (but H-2 compatible) and two F(1)- antiparental MLC responder/stimulator combinations. AK cells showed a similar selectivity pattern to NK cells, as demonstrated in cold target inhibition and direct cytotoxicity assays using variant or interferon-modulated YAC-1 cells with low expression of NK target structures. The AK-cells were NK- 1.2(-/weak). Thy-l.2(+), although they seem to be derived from non-adherent radiosensitive cells which are closely related, if not identical, to NK-cells (NK-1.2(+). Thy-l.2(-/weak)), as they could not be readily induced in responder populations with low NK-activity but normal allospecific CTL potential. Conversely, an in vivo thymectomy protocol or treatment of normal spleen cells with monoclonal anti-Thy-1.2 + C reduced the allospecific CTL response drastically but did not affect the AK response. Anomalous killers were not observed when MLC were prepared with responder as well as stimulator cells devoid of mature T cells. In such a combination, the AK response could be partially restored by the addition of irradiated +/nu (but not nu/nu) responder cells to the cultures. When normal (non-nude) spleen cells were used as responders, induction of AK did not require the presence of T cells in the stimulator population, whereas the removal of adherent and phagocytic cells from stimulators abrogated the response. Taken together, the results suggest that AK represents activation, blast transformation, and surface marker modulation of NK cells induced by alloantigen-stimulated T cells, resulting in Thy-1(+) cytolytic cells with similar properties to those described for NK lines, Although AK cells may be regarded as a more T cell-like NK phenotype, their induction is neither necessary, nor sufficient for generation of specific CTL in MLC.  相似文献   

6.
Radiation chimeras prepared by injecting H-2 heterozygous F1 stem cells into lethally irradiated parental hosts show a marked, but not absolute, preference for host-type H-2 antigens in the H-2-restricted cytotoxic T lymphocyte (CTL) response to minor histocompatibility (minor H) antigens. We have selected for the anti-minor HCTL that are restricted to the parental H-2 type absent from the chimeric host and found that in two out of eight cases, such CTL lysed target cells of either parental H-2 type. From one of these CTL populations that lysed H-2d and H-2k target cells expressing BALB minor H antigens, clones were derived and further analyzed. The results showed that: (a) lysis of both H-2d and H-2k target cells was H-2 restricted; (b) H-2d restriction mapped to Dd, and H-2k restriction mapped to Kk; (c) testing against various H-2d and H-2k strains of different and partially overlapping minor H backgrounds as well as against the appropriate F1 crosses revealed that in Dd- and Kk-restricted killing, different minor H antigens were recognized. In a second system, a CTL population was selected from normal (H-2d x H-2k)F1 mice that was specific for H-2d plus minor H antigens and for H-2k plus trinitrophenylated bovine serum albumin. We interpret these findings in terms of the altered-self hypothesis: The association of one H-2 antigen with one conventional antigen X may be recognized by the same T cell receptor specific for the complex formed by a different H-2 antigen in association with a second conventional antigen Y. The implications of these observations for the influence of self H-2 on the generation of the T cell receptor repertoire are discussed.  相似文献   

7.
Recipient-antidonor alloreactivity before HLA genotypically identical bone marrow transplantation (BMT) between donor-recipient pairs that are negative in the mixed lymphocyte reaction (MLR), the cell-mediated lympholysis (CML) assay, and the lymphocyte crossmatch was not detectable in the majority of cases, using recipient peripheral blood lymphocytes (PBL) collected before BMT as responder cells and donor PBL as stimulator cells. However, when donor bone marrow mononuclear cells (BMMNC) instead of PBL were used as stimulator cells, we could detect donor-specific alloreactivity in 7 of 10 HLA genotypically identical donor-recipient pairs. To demonstrate that this alloreactivity was minor histocompatibility (mH) antigen specific and not directed against HLA class I splits or variants, two cytotoxic T lymphocyte (CTL) lines were tested in further detail against phytohemagglutinin (PHA) blasts from pairs of HLA genotypically identical siblings positive for the HLA class I restriction molecule. Both CTL lines recognized mH antigens, as illustrated by the differential recognition of PHA blasts of one of the two siblings from several pairs. The potential role of these mH antigen-specific CTLs in bone marrow graft rejection was demonstrated by the mH antigen-specific growth inhibition of hematopoietic progenitor cells from the original bone marrow donor and from HLA class I restriction molecule-positive individuals who expressed the mH antigens on their PBL and BMMNC. Our assay can be used in HLA genotypically identical BMT to detect a recipient-antidonor response, directed against cellularly defined mH antigens expressed on donor HPC, BMMNC, and PBL, before transplantation.  相似文献   

8.
The technique of antigen-driven, 5-bromo-deoxyuridine and light suicide has been adapted to eliminate the precursors of cytotoxic effector cells both for alloantigen and for 2,4,6-trinitrophenyl(TNP)-modified stimulator and target cells. Using this technique, the following observations have been made. Precursors of killer cells specific for alloantigen can be suicided independently of precursors of killer cells specific for TNP-modified self cells. The loss of activity during this procedure is not due to either specific or nonspecific suppressor cells, as judged by mixing experiments. With responder cells from F1 animals, it has been possible to show that precursors specific for TNP-modified cells from one parent are suicided independently of precursors specific for TNP-modified cells of the other parent, but only if the parental strains differ in the K and D regions of the H-2 complex. Cells of F1 mice derived from K and D identical, I region different, parental strains were specifically suicided by TNP-modified stimulator cells from either parent. However, the cross-reactive killing of TNP-self targets induced by stimulation with allogeneic cells is not eliminated by first suiciding with TNP-parental cells, suggesting that the precursors of these two types of TNP-self killer cells are different. This is compatible with reported differences in their specificity, as confirmed in this report. Finally, deletion of alloreactive cells by this technique reveals little or no reactivity specific for TNP-modified allogeneic stimulator cells. In summary, these results strongly suggest that recognition of self MHC antigens is preprogrammed in peripheral T cells of normal animals, and is not acquired during the immunization process. They also suggest that cells specific for modified alloantigen are relatively rare in the strains of mice studied.  相似文献   

9.
Negatively selected mouse and rat lymphocyte populations, specifically deprived of alloreactivity to a particular major histocompatibility complex (MHC) haplotype, are nevertheless fully capable of responding to trinitrophenyl (TNP)-modified allogeneic stimulator cells and developing cytotoxic T-lymphocyte activity to TNP-altered allogeneic target cells. As for syngeneic systems, lytic expression of those responder killer cells also requires MHC identity between the target and stimulator cell populations. Such a finding argues strongly against two variations of the dual recognition hypothesis: like-like interactions and adaptive differentiation. Instead, these data favor either the altered self model or a third variation of the dual receptor model, where one of the relevent receptors is specific for the modifying antigen and the second is a low affinity receptor unable to be triggered in the absence of a modifying antigen.  相似文献   

10.
To detect a strong cytotoxic T lymphocyte (CTL) response to minor histocompatibility (H) antigens in a 5-d mixed lymphocyte culture, it is necessary to use a responder that has been primed in vivo with antigen-bearing cells. It has previously been shown that minor-H- specific CTL can be primed in vivo both directly by foreign spleen cells and by presentation of foreign minor H antigens on host antigen- presenting cells. This latter route is evident in the phenomenon of cross-priming, in which H-2 heterozygous (A x B)F1 mice injected 2 wk previously with minor H-different H-2A (A') spleen cells generate both H-2A- and H-2B-restricted minor-H-specific CTL. In a study of the kinetics of direct- vs. cross-priming to minors in F1 mice, we have found that minor H-different T cells actually suppress the induction of virgin CTL capable of recognizing them. CTL activity measured from F1 mice 3-6 d after injection with viable A' spleen cells is largely H-2B restricted. The H-2A-restricted response recovers such that roughly equal A- and B-restricted activity is detected in mice as early as 8-10 d postinjection. This temporary hyporeactivity does not result from generalized immunosuppression--it is specific for those CTL that recognize the foreign minor H antigen in the context of the H-2 antigens on the injected spleen cells. The injected spleen cells that mediate this suppression are radiosensitive T cells; Lyt-2+ T cells are highly efficient at suppressing the induction of CTL in vivo. No graft vs. host reaction by the injected T cells appears to be required, as suppression of direct primed CTL can be mediated by spleen cells that are wholly tolerant of both host H-2 and minor H antigens. Suppression cannot be demonstrated by in vitro mixing experiments. Several possible mechanisms for haplotype-specific suppression are discussed, including inactivation of responding CTL by veto cells and in vivo sequestration of responding CTL by the injected spleen cells.  相似文献   

11.
The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for education of I region-restricted T cells.  相似文献   

12.
Bone marrow (BM)-derived antigen-presenting cells (APCs) are potent stimulators of T cell immune responses. We investigated the requirements for antigen presentation by these cells in priming cytotoxic T lymphocyte (CTL) responses to intracellular bacterial and viral pathogens. [Parent-->F(1)] radiation BM chimeras were constructed using C57BL/6 donors and (C57BL/6 x BALB/c)F(1) recipients. Infection of chimeric mice with either Listeria monocytogenes or vaccinia virus expressing the nucleoprotein (NP) antigen from lymphocytic choriomeningitis virus (LCMV) primed H2-D(b)-restricted, but not H2-K(d)-restricted CTL responses, demonstrating the requirement for BM-derived APCs for successful priming of CTL responses to these pathogens. Surprisingly, this did not hold true for chimeric mice infected with LCMV itself. LCMV-infected animals developed strong CTL responses specific for both H2-D(b)- and H2-L(d)-restricted NP epitopes. These findings indicate that in vivo priming of CTL responses to LCMV is remarkably insensitive to deficiencies in antigen presentation by professional BM-derived APCs.  相似文献   

13.
Spleen cells from H-2b,k,d C57Bl/10 congenic mice were sensitized in vitro to trinitrobenzenesulfonate (TNBS)-modified autologous spleen cells. Cold target competition studies at the lytic phase demonstrated three distinct patterns of cytotoxic responsiveness: (a) H-2b spleen cells generated approximately equivalent CTL responses against Kb and Db modified self products, (b) H-2d spleen cells generated preferential responses against Dd modified self products, and (c) H-2k spleen cells generated cytotoxic responses which could only be detected against Kk self products in association with TNP. F1 spleen cells were sensitized against autologous TNBS-treated cells. The results showed that, although H-2b parental cells generated approximately equivalent Kb-TNP- and Db-TNP-specific CTL, the presence of the H-2b haplotype did not result in the generation of (a) Dk-TNP CTL response by (H-2b x H-2k) spleen cells, nor (b) a Db CTL response by (H-2b x H-2a) F1 spleen cells. Additionally, (H-2d x H-2k) F1 cells failed to generate detectable Dd-TNP-specific CTL, although H-2d parental cells generated D-regional-specific CTL. The findings demonstrated that these F1 response patterns paralleled those of the H-2k and H-2a parents, i.e. weak or no D-region TNP-specific CTL were induced. Because (H-2d x H-2a) F1 responders stimulated with H-2d TNBS-treated cells did generate good Dd TNP responses, the results illustrated that the presence of responder genes was not sufficient to result in a D-region TNP CML. It is suggested that the absence of Kk alleles on the stimulating population is necessary for the generation of D-region TNP CTL in these F1's. Mechanisms which could account for these response patterns in parental F1 mice are discussed including immunodominance, suppression, T-cell response , and Ir-gene defects.  相似文献   

14.
Detergent-solubilized murine cytolytic T lymphocytes (CTL) clones were incorporated into Sendai virus-containing synthetic liposomes. When these liposomes were then fused with other CTL clones possessing a different non-cross-reacting specificity, the fusion products were observed to lyse target cells recognized by both parental CTL clones. This method was then used with two H-2-restricted CTL clones of different, non-cross-reacting specificities (anti-H-2b-H-Y or anti-H-2b Moloney leukemia virus). Once again, the fusion products were found to be lytic against both target cells recognized by the parental clones, but in no instance was there any observable lysis of target cells bearing the same nominal antigen in the context of different H-2 molecules. These results provide strong evidence that antigen recognition by H-2-restricted CTL is not mediated by two independent antigen receptors.  相似文献   

15.
Human T cells stimulated in secondary allogeneic mixed lymphocyte culture (MLC) were cloned under limiting conditions in microculture systems using T cell growth factor and irradiated allogeneic cells. Clones with lytic activity against either phytohemagglutinin-induced blast cells bearing the stimulating alloantigen(s) (cytotoxic T lymphocyte [CTL] activity), L1210 mouse lymphoma cells coated with rabbit antibody (antibody-dependent cell-mediated cytotoxicity [ADCC]), or K562 human target cells were selected, expanded, and then analyzed for different surface markers, including rosette formation with sheep erythrocytes (E rosettes), receptors for the fc portion of IgG or IgM (Fc gamma R and Fc mu R), and a group of antigens recognized by monoclonal antibodies including Ia, 4F2, OKT8,a nd OKT4. All the cytotoxic cells were E rosette+, Ia+ and 4f2+. Expression of Fc gamma R was restricted to the clones active in ADCC. CTL clones were either OKT8+ or OKT8-. Furthermore, three of the OKT8- CTL clones were OKT4+. In addition, some cytolytic clones devoid of specific CTL activity were OKT8+. It thus appears that the claim that human CTL are OKT8+, OKT4-, and Ia- is not supported by the analysis of their phenotype at the clonal level.  相似文献   

16.
Thymocytes cultured with irradiated, allogeneic stimulator cells yield no cytotoxic effector cells after a period in culture. If, however, a population of irradiated spleen cells syngeneic to the responder cells are added to these cultures, cytotoxicity is generated. The helper activity present in the irradiated syngeneic spleen cells was found to be mediated by a cell bearing theta antigens. Furthermore, it was found to be antigen specific; helper cells which were tolerant of the stimulator cell antigens were unable to help the thymocyte responder cells, although these tolerant cells did contain helpers specific for a third party antigen. These experiments are consistent with a requirement for associative recognition of linked determinants in the induction of killer precursors which is thus strictly analogous to the induction of B-cell precursors via collaboration with helper T cells. In more extensive studies, it was found that histoincompatible helper cells (H-2b, H-2p, H-2q) were able to help a cytotoxic T cell (H-2k) response to a third party stimulator cell antigen (H-2d); that is, the helper T cells which interact with cytotoxic T-cell precursors are not strain specific. It seems likely that the histocompatible helper cells induce killer precursors in an antigen-specific cooperation event similar or identical to normal syngeneic cooperation.  相似文献   

17.
B6.T1a(a) (Qa-1(a)) mice that are primed in vivo and restimulated in vitro with Qa-1 congenic spleen cells from B6 (Qa-1(b)) animals are unable to generate anti-Qa-1(b) cytotoxic T lymphocytes (CTL). This nonresponsive pattern was observed regardless of the route of immunization or the time of testing in vitro. Although B6.T1a(a) mice are nonresponders to Qa-1(b) when presented on B6 cells, these mice can generate anti-Qa-1(b) CTL when primed in vivo with Qa-1 and H-Y alloantigens (females primed with B6 male cells) or Qa-1 and minor-H- alloantigens (primed with sex-matched A.BY cells). Therefore, the inability to generate anti-Qa-1(b) CTL is due to a lack of helper or accessory antigens on B6 immunizing cells obligatory during in vivo priming, rather than an absence of anti-Qa-1(b) CTL precursors (CTL-P). Demonstration that the additional determinants required during in vivo priming actually function as carrier or helper determinants was shown by the requirement for linked recognition of Qa-1 and the helper determinants (H-Y) in vivo, and the fact that H-Y was not present on susceptible target ceils. Animals primed in vivo with H-Y only could not generate anti-Qa-1 CTL activity when challenged in vitro with both Qa-1 and H-Y, indicating that recognition of the helper determinant causes in vivo priming of CTL-P rather than generating helper activity that might activate unprimed CTL-P in vitro. Whereas unprimed peripheral CTL-P require the presence of both Qa-1 (CTL) and H-Y (helper) determinants for successful in vivo priming, helper determinants were not required in vitro because primed CTL-P from B6.T1a(a) mice could be driven to CTL in vitro using sex-matched B6 stimulator cells. The generation of anti-Qa-1(b) CTL is under immune response (Ir) gene control because F(1) mice, obtained by crossing responder A/J with nonresponder B6.T1a(a) animals, generated CTL to the Qa-1(b) alloantigen when presented on B6 spleen cells. Progeny testing of backcross mice further demonstrated that the Ir gene(s) is linked to the H-2 complex. These data indicate that an H-2-linked Ir gene controls the recognition of helper determinants required for CTL priming in vivo. These helper determinants can be distinguished from CTL determinants and both must be recognized together for successful priming of CTL-P.  相似文献   

18.
Monoclonal antibodies to I-Ak were injected into neonatal H-2k mice for a period of 3 wk. The spleens of such mice are devoid of Ia-positive cells. Allo- and trinitrophenyl (TNP)-self-specific cytotoxic T lymphocyte (CTL) responses in such anti-I-A-treated mice were almost completely abrogated at the end of the 2-3 wk in vivo treatment period. Development of suppressor cells, carry-over of blocking antibodies, lack of responder accessory cells, or defective CTL function were not responsible for the observed defect. As concanavalin A supernatant could restore the defect, it is more likely that the defect is due to the absence of competent Ia-specific T helper cells. In addition, anti-I-A-treated mice exhibit reduced I-A antigen expression in the thymus and defective Ia-bearing accessory cell function in the spleen. It is postulated that, for development of Ia-specific T cells to occur, precursor T cells need to interact with Ia-encoded products in the thymus, and anti-Ia treatment interferes with this process. Finally, the mechanism of this interference was shown to be due to actual removal or functional inactivation of those I-A-positive elements responsible for the education of I-A-recognizing T cells, since in (H-2b X H-2k)F1 mice, treatment with anti-I-Ak antibodies results in abrogation of CTL responses to TNP in association with both parental haplotypes, while in the thymus of these mice expression of both I-Ak and I-Ab was reduced.  相似文献   

19.
We have studied the properties of helper T cells specific for sheep erythrocytes (SRBC), keyhole limpet hemocyanin (KLH), or poly-L-(Tyr,Glu)-poly-DL-Ala-poly-L-Lys [(T,G)-A--L]. These T cells differentiated and were primed in vivo in irradiation chimeras constructed of various combinations of F1 and parental bone marrow donors and irradiated recipients. Primed T cells were then tested for helper activity in the in vitro response of B cells and macrophages (Mphi) of parental or F1 origin to the hapten trinitrophenol coupled to the priming antigen. When testing either SRBC or KLH-specific T cells of parental H-2 type which had differentiated in F1 hosts, we found that they cooperated equally well with B cells and Mphi of either parental H-2 type. On the other hand, when testing F1 T cells which had differentiated in parental hosts, we found that they cooperated well only with B cells and Mphi which had the K-IA region type of the parental host. In similar experiments we found that (T,G)-A--L-specific T cells of low responder H-2 type which had differentiated in (high responder X low responder) F1 hosts induced high responses in high responder B cells and Mphi (T,G)-A--L-specific F1 T cells which differentiated in high responder but not those which differentiated in low responder hosts induced high responses in high responder B cells and Mphi. Low responder B cells and Mphi yielded low responses in all cases regardless of the source of (T,G)-A--L-specific T cells with what they were tested. Our results support the conclusion that I-region and Ir genes function via their expression in B cells and Mphi and in the host environment during helper T-cell differentiation, but not, at least under the conditions of these experiments, via their expression in the helper T cell itself. These findings place constraints upon models which attempt to explain the apparent dual recognition of antigen and I-region gene products by helper T cells.  相似文献   

20.
MHC class I-restricted T lymphocyte responses are usually directed to cellular antigenic components resulting from endogenous gene expression. Exogenous, non-replicating antigens, such as soluble proteins, usually fail to enter the class I pathway of antigen processing and presentation. Consistent with this notion, we have recently shown that soluble, exogenous proteins can be efficiently processed for class I presentation in vitro only if they are introduced directly into the target cell cytoplasm. In this report we extend this work to the in vivo situation by introducing soluble protein into the cytoplasm of mouse splenocytes via the osmotic lysis of pinosomes and then using these cells for in vivo immunization. Our results show that cytoplasmic loading of OVA and beta-GAL into H-2b and H-2d splenocytes respectively, resulted in effective in vivo immunogens for class I-restricted CTL. To our surprise, control spleen cell preparations simply incubated with the exogenous, native protein for 10 min at 37 degrees C in isotonic medium and then washed could also induce a comparable class I-restricted CTL response following intravenous injection. Experiments using (H-2b X H-2d)F1 mice showed that protein pulsed splenocytes from one parental strain could effectively "cross prime" T cells restricted to the MHC of the other parental strain. In all cases, target cell recognition by the effector CTL generated by immunization with spleen cell-associated antigen required the antigen to be present in the cell cytoplasm. Thus the CTL do not recognize target cells exposed to soluble, exogenous antigen. These results, reminiscent of analogous experiments with cross priming by minor histocompatibility antigens, argue that class I-restricted processing and presentation of exogenous antigen can occur in vivo following immunization with cell-associated antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号