首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The tobacco-specific carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are metabolically activated to DNA binding intermediates, partially via 4-(3-pyridyl)-4-oxobutanediazohydroxide (7) or related carbonium ions. Previous studies have shown that generation of 7 from 4-(carbethoxynitrosamino)-1-(3-pyridyl)-1-butanone (11) in the presence of deoxyguanosine yields a major adduct identified as 2'-deoxy-N-[1-methyl-3-oxo-3-(3-pyridyl)propyl]guanosine (adduct 1). These results suggested that adduct 1 should be present in DNA of tissues that can metabolically activate NNK and NNN. In the present study, we evaluate the formation of adduct 1 and its structurally related straight-chain analogue 2'-deoxy-N-[4-oxo-4-(3-pyridyl)butyl]guanosine (adduct 2) in DNA of tissues of rats treated with [5-3H]NNK or [5-3H]NNN, and in DNA of nasal mucosa that had been cultured in medium containing [5-3H]NNK or [5-3H]NNN. Hepatic DNA from rats treated with [5-3H]NNK was enzymatically hydrolyzed to deoxyribonucleosides and analyzed by HPLC. One of the radioactive peaks, peak E, coeluted with adduct 1. However, treatment of peak E with NaBH4 resulted in the formation of products different from those produced by NaBH4 treatment of adduct 1, demonstrating that adduct 1 could not be detected under these conditions. Hydrolysis of peak E with acid produced 4-hydroxy-1-(3-pyridyl)-1-butanone (9), suggesting that peak E might be adduct 2. Therefore, adduct 2 was synthesized by reaction of deoxyguanosine with 1-(3-pyridyl)butane-1,4-dione (5) in the presence of NaCNBH3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 1) and its metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL, 2) are both potent pulmonary carcinogens in rats. The metabolism of NNK to NNAL is stereoselective and reversible, with (S)-NNAL being the major enantiomer formed from NNK. In rats, (R)-NNAL undergoes facile glucuronidation and is rapidly excreted in urine, whereas (S)-NNAL is preferentially retained in tissues and converted to NNK. We hypothesized that the lung carcinogenicity of NNK in the rat is due in part to the preferential retention of (S)-NNAL in the lung, the reconversion to NNK, and then the metabolic activation of NNK to pyridyloxobutyl (POB)-DNA adducts. We tested this hypothesis by treating male F344 rats with 10 ppm of NNK, (R)-NNAL, or (S)-NNAL in drinking water. After 1, 2, 5, 10, 16, or 20 weeks of treatment, POB-DNA adducts in liver and lung DNA were quantified by HPLC-ESI-MS/MS. At each time point, total adduct levels were higher in the lung than in the liver. O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dThd, 13) was the major adduct detected. Total adduct levels in the rats treated with (S)-NNAL were 0.6-1.3 times as great as those in the NNK group in the lung and 0.7-1.4 times in the liver, and 6-14 times higher than those in the (R)-NNAL group in the lung and 11-17 times in the liver. These results suggest that (S)-NNAL is stereoselectively retained in tissues. This study demonstrates for the first time the accumulation and persistence of specific POB-DNA adducts in the rat lung and liver during chronic treatment with NNK, (R)-NNAL, and (S)-NNAL and supports the hypothesis that the preferential retention of (S)-NNAL in the lung, followed by reconversion to NNK and then the metabolic activation of NNK is critical for lung carcinogenesis by NNK and NNAL.  相似文献   

3.
The contributions of different enzymes to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) biotransformation were assessed in human lung microsomes prepared from peripheral lung specimens obtained from seven subjects. Metabolite formation was expressed as a percentage of total recovered radioactivity from [5-3H]NNK and its metabolites per milligram of protein per minute. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol was the major metabolite formed in the presence of an NADPH-generating system, with production ranging from 0.5186 to 1.268%/mg of protein/min, and total NNK bioactivation (represented by the sum of the four alpha-carbon hydroxylation endpoint metabolites) ranged from 0.002100 to 0.005685% alpha-hydroxylation/mg of protein/min. Overall, production of bioactivation metabolites was greater than that of detoxication (i.e., N-oxidation) products. Based on total bioactivation, subjects could be classified as high or low NNK bioactivators. In the presence of an NADPH-generating system, microsomal formation of the endpoint metabolite 1-(3-pyridyl)-1-butanone-4-carboxylic acid (keto acid) was consistently higher than that of all other alpha-carbon hydroxylation endpoint metabolites. Contributions of cytochrome p450 (p450) enzymes to NNK oxidation were demonstrated by NADPH dependence, inhibition by carbon monoxide, and inhibition by the nonselective p450 inhibitors proadifen hydrochloride (SKF-525A) and 1-aminobenzotriazole (ABT), particularly in lung microsomes from high bioactivators. At 5.0 mM, ABT inhibited total NNK bioactivation by 54 to 100%, demonstrating the importance of ABT-sensitive enzyme(s) in human pulmonary NNK bioactivation. Contributions of CYP2A6 and/or CYP2A13, as well as CYP2B6, to NNK bioactivation were also suggested by selective chemical and antibody inhibition in lung microsomes from some subjects. It is likely that multiple p450 enzymes contribute to human pulmonary microsomal NNK bioactivation, and that these contributions vary between individuals.  相似文献   

4.
Metabolism and disposition of the tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent rodent lung carcinogen, were studied in rhesus monkeys. In three males receiving a single i.v. dose of [5-3H]NNK (0.72 mCi; 4.6-9.8 microg/kg), urine was collected for 10 days. Within the first 24 h, 86.0 +/- 0.7% of the dose was excreted. NNK-derived radioactivity was still detectable in urine 10 days after dosing (total excretion, 92.7 +/- 0.7%). Decay of urinary radioactivity was biexponential with half-lives of 1.7 and 42 h. Metabolite patterns in urine from the first 6 h closely resembled those reported previously for patas monkeys; end products of metabolic NNK activation represented more than 50% of total radioactivity. At later time points, the pattern shifted in favor of NNK detoxification products (60-70% of total radioactivity in urine), mainly 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its O-glucuronide conjugates. One female rhesus monkey received a single i.v. dose of [5-3H]NNK (1.72 mCi; 28.4 microg/kg) under isoflurane anesthesia; biliary excretion over 6 h (0.6% of the dose) was 10 times less than predicted by our previously reported rat model. No preferential excretion of NNAL glucuronide was observed in monkey bile. Collectively, these results suggest that the rhesus monkey could be a useful model for NNK metabolism and disposition in humans.  相似文献   

5.
The tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a strong lung carcinogen in all species tested. To elicit its tumorigenic effects NNK requires metabolic activation which is supposed to take place via α-hydroxylation, whereas N-oxidation is suggested to be a detoxification pathway. The differences in the organ specific metabolism of NNK may be crucial for the organotropy in NNK-induced carcinogenesis. Therefore, metabolism of NNK was investigated in the target organ lung and in liver of Fischer 344 (F344) rats using the model of isolated perfused organs. High activity to metabolize 35 nM [5-3H]NNK was observed in both perfused organs. NNK was eliminated by liver substantially faster (clearance 6.9 ± 1.6 ml/min, half-life 14.6 ± 1.2 min) than by lung (clearance 2.1 ± 0.5 ml/min, half-life 47.9 ± 7.4 min). When the clearance is calculated for a gram of organ or for metabolically active cell forms, the risk with respect to carcinogenic mechanisms was higher in lung than in liver. The metabolism of NNK in liver yielded the two products of NNK α-hydroxylation, the 4-oxo-4-(3-pyridyl)-butyric acid (keto acid) and 4-hydroxy-4-(3-pyridyl)-butyric acid (hydroxy acid). In lung, the major metabolite of NNK was 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide). Substantial amounts of metabolites formed from methyl hydroxylation of NNK, which is one of the two possible pathways of α-hydroxylation, were detected in lung but not in liver perfusion. Formation of these metabolites (4-oxo-4-(3-pyridyl)-butanol (keto alcohol), and 4-hydroxy-4-(3-pyridyl)-butanol (diol) can give rise to pyridyloxobutylating of DNA. When isolated rat livers were perfused with 150 μM NNK, equal to a dosage which is sufficient to induce liver tumors in rat, glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased when compared to the concentration of 35 nM NNK. Nevertheless, the main part of NNK was also transformed via α-hydroxylation for this high concentration of NNK. Received: 13 March 1997 / Accepted: 21 November 1997  相似文献   

6.
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN, 1) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 2) are potent carcinogens in rodents. Bioactivation of NNN and NNK by cytochrome P450 enzymes generates a pyridyloxobutylating agent 6, which alkylates DNA to produce pyridyloxobutyl (POB)-DNA adducts. POB-DNA adduct formation plays a critical role in NNN and NNK carcinogenicity in rodents. To further investigate the significance of this pathway, we developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method for quantitative analysis of four POB-DNA adducts with known structures. The corresponding deuterated analogues were synthesized and used as internal standards. DNA samples, spiked with internal standards, were subjected to neutral thermal hydrolysis followed by enzymatic hydrolysis. The hydrolysates were partially purified by solid phase extraction prior to HPLC-ESI-MS/MS analysis. The method was accurate and precise. Excellent sensitivity was achieved, especially for O2-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O2-POB-dThd, 11) with a detection limit of 100 amol per mg DNA. DNA samples treated with different concentrations of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc, 3) were subjected to HPLC-ESI-MS/MS analysis. 7-[4-(3-Pyridyl)-4-oxobut-1-yl]guanine (7-POB-Gua, 12) was the most abundant adduct, followed by O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POB-dGuo, 8), O2-POB-dThd, and O2-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine (O2-POB-Cyt, 13). Lung and liver DNA isolated from NNK-treated rats were analyzed. Consistent with the in vitro data, 7-POB-Gua was the major POB-DNA adduct formed in vivo. However, levels of O6-POB-dGuo were the lowest of the four adducts analyzed, suggesting efficient repair of this adduct in vivo. In contrast to the other three adducts, O6-POB-dGuo was more abundant in lung than in liver. O2-POB-dThd appeared to be poorly repaired in vivo, and its levels were comparable to those of 7-POB-Gua. The results of this study provide a sensitive HPLC-ESI-MS/MS method for comprehensive quantitation of four POB-DNA adducts, support an important role of O6-POB-dGuo in NNK lung tumorigenicity in rats, and suggest that O2-POB-dThd may be a useful tobacco-specific DNA biomarker for future tobacco carcinogenesis studies.  相似文献   

7.
Previous studies have shown that the minor tobacco alkaloid myosmine (5) reacts with NaNO2 in the presence of acid to yield 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB, 8) via 4-(3-pyridyl)-4-oxobutanediazohydroxide (7). Intermediate 7 is also formed in the metabolism of the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN, 1) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, 2), resulting in pyridyloxobutylation of DNA and Hb. These pyridyloxobutyl adducts can be quantified by analyzing HPB released upon acid treatment of DNA or base treatment of Hb. Quantitation of HPB-releasing DNA and Hb adducts has been used to assess the metabolic activation of NNN and NNK in smokers and smokeless tobacco users. Because myosmine is found in the diet as well as in tobacco products, it has been suggested that nitrosation of myosmine could lead to the formation of HPB-releasing adducts in people not exposed to tobacco products. We investigated the nitrosation of myosmine in vitro and in vivo in rats. The reaction of myosmine with NaNO2 under acidic conditions produced HPB, as previously reported. A new product was identified as 3'-oximinomyosmine (11) based on its spectral properties. NNN was not detected. Groups of rats were treated with NNN, NNK, myosmine, NaNO2, or combinations of myosmine and NaNO2. HPB-releasing Hb and DNA adducts were clearly detected in the rats treated with NNN or NNK, but we found no evidence for production of these adducts from the combination of myosmine plus NaNO2. The results of this study do not support the hypothesis that exposure to dietary myosmine could lead to HPB-releasing DNA or Hb adducts in humans.  相似文献   

8.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the most important human carcinogens. It is metabolized to produce a variety of methyl and 4-(3-pyridyl)-4-oxo-butyl (POB) DNA adducts. A potentially important POB adduct is O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]thymidine (O(2)-POB-dT) because it is the most abundant POB adduct in NNK-treated rodents. To evaluate the mutagenic properties of O(2)-POB-dT, we measured the rate of insertion of dNTPs opposite and extension past both O(2)-POB-dT and O(2)-methylthymidine (O(2)-Me-dT) by two model polymerases, E. coli DNA polymerase I (Klenow fragment) with the proofreading exonuclease activity inactivated (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4). We found that the size of the alkyl chain only marginally affected the reactivity and that the specificity of adduct bypass was very low. The k(cat)/K(m) for the Kf catalyzed incorporation opposite and extension past the adducts was reduced ~10(6)-fold when compared to undamaged DNA. Dpo4 catalyzed the incorporation opposite and extension past the adducts approximately 10(3)-fold more slowly than undamaged DNA. The dNTP specificity was less for Dpo4 than for Kf. In general, dA was the preferred base pair partner for O(2)-Me-dT and dT the preferred base pair partner for O(2)-POB-dT. With enzyme in excess over DNA, the time courses of the reactions showed a biphasic kinetics that indicates the formation inactive binary and ternary complexes.  相似文献   

9.
N'-Nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), two potent tobacco-specific carcinogens, have been previously found to pyridyloxobutylate DNA. The adducts were found to be unstable and have not been fully characterized. In order to gain an understanding of the chemistry of the pyridyloxobutylating species, five model pyridyloxobutylating agents have been solvolyzed and the products identified. 4-[(Acetoxymethyl)-nitrosamino]-1-(3-pyridyl)-1-butanone (3), 4-(carbethoxynitrosamino)-1-(3-pyridyl)-1-butanone (4), 4-oxo-4-(3-pyridyl)-1-butyl p-toluenesulfonate (16), 2-chloro-2-(3-pyridyl)-2,3,4,5-tetrahydrofuran (17), and 4-[(acetoxymethyl)nitrosamino]-1-(3-pyridyl)-1-butanol (20) were solvolyzed in buffer and in buffer containing 20% MeOH. The solvolyses of 16 and 17 in H2O produced only 4-hydroxy-1-(3-pyridyl)-1-butanone (7). In the presence of 20% MeOH, 7 and 2-methoxy-2-(3-pyridyl)-2,3,4,5-tetrahydrofuran (12) were produced from 16 and 17 in a 4:1 ratio. The solvolysis of 3 and 4 in the presence of esterase gave similar products. 4-Methoxy-1-(3-pyridyl)-1-butanone (8) was not detected as a product. In the absence of MeOH, compound 7, 3-pyridyl cyclopropyl ketone (10), and 1-(3-pyridyl)-but-2-en-1-one (18) were observed. In the presence of MeOH, 12 was also formed and the ratio of 7 to 12 was again about 4:1. The esterase-catalyzed hydrolysis of 20 yielded 1-(3-pyridyl)-1,4-butanediol (22), 1-(3-pyridyl)-1,3-butanediol (27), 1-(3-pyridyl)-but-3-en-1-ol (25), 1-(3-pyridyl)but-2-en-1-ol (26), and 2-(3-pyridyl)-2,3,4,5-tetrahydrofuran (24).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The tobacco specific carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are metabolically activated to 4-oxo-4-(3-pyridyl)-1-butanediazohydroxide (7), which is known to pyridyloxobutylate DNA. A substantial proportion of the adducts in this DNA releases 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB, 11) under various hydrolysis conditions, including neutral thermal hydrolysis. These HPB-releasing DNA adducts have been detected in target tissues of animals treated with NNK and NNN as well as in lung tissue from smokers. Although their presence in pyridyloxobutylated DNA was conclusively demonstrated 15 years ago, their structures have not been previously determined. We investigated this question in the present study by determining the structures of products formed in reactions with dGuo and DNA of 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKCH(2)OAc, 3), a stable precursor to 7. Reaction mixtures from NNKCH(2)OAc and dGuo were analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) with selected ion monitoring at m/z 415. A major peak was detected and identified as 7-[4-oxo-4-(3-pyridyl)but-1-yl]dGuo (37) by its ESI-MS fragmentation pattern and by neutral thermal hydrolysis, which converted it to 11 and 7-[4-oxo-4-(3-pyridyl)but-1-yl]Gua (26). The latter was identified by comparison to synthetic 26 using LC-ESI-MS with selected ion monitoring at m/z 299, M + 1 of 26. Further evidence was obtained by NaBH(4) reduction of 26 to 7-[4-hydroxy-4-(3-pyridyl)but-1-yl]Gua, which was also matched with a standard. Adduct 37 was similarly identified in enzyme hydrolysates of DNA reacted with NNKCH(2)OAc, accounting for 30-35% of the HPB-releasing adducts in this DNA. Several other adducts resulting from pyridyloxobutylation of the N(2)- and O(6)-positions of Gua were also identified as products in the dGuo or DNA reactions by comparison to standards; their concentrations were considerably less than that of 37. These adducts were N(2)-[4-oxo-4-(3-pyridyl)but-1-yl]dGuo (23), N(2)-[4-oxo-4-(3-pyridyl)but-2-yl]dGuo (25), N(2)-[2-(3-pyridyl)tetrahydrofuran-2-yl]dGuo (31a) (or its open chain tautomer 31b), and O(6)-[4-oxo-4-(3-pyridyl)but-1-yl]dGuo (10). Adducts 23, 25, and 10 did not release HPB upon neutral thermal hydrolysis. The results of this study provide the first structural identification of an HPB-releasing DNA adduct of the tobacco specific nitrosamines NNK and NNN.  相似文献   

11.
12.
4-Hydroxy-1-(3-pyridyl)-1-butanone (HPB) is a metabolite of the tobacco specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). HPB is also a breakdown product of covalently bound pyridyloxobutyl adducts resulting from NNK and NNN exposure. HPB released from DNA or hemoglobin has been used as an important dosimeter of tobacco specific nitrosamine exposure in a variety of studies. This compound is not reactive with cellular nucleophiles under biological conditions. We have discovered that HPB reacts with nucleophiles under acidic conditions to form cyclic tetrahydrofuranyl reaction products. Dithiothreitol, 2-mercaptoethanol, and N-acetylcysteine all reacted with HPB under these reaction conditions. In addition, reactions were observed with buffer chemicals such as 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid and tris(hydroxymethyl)aminomethane. The resulting cyclic adducts were unstable at room temperature. Their half-lives were significantly longer under neutral conditions than under acidic conditions. NMR studies established that the cyclic form of HPB, 2-hydroxy-2-(3-pyridyl)-2,3,4,5-THF, is present at significant concentrations in acidic solutions. The observation of this cyclic compound suggests that the reaction with nucleophiles may occur via a cyclic oxonium ion intermediate. This reaction was significant in our biological samples; there was up to 40% conversion of [5-(3)H]HPB to cyclic DTT-derived compounds when acidic DNA repair reactions containing [5-(3)H]pyridyloxobutylated DNA were stored overnight at -20 degrees C. Therefore, long-term storage of acid hydrolysates of pyridyloxobutylated DNA or protein for the analysis of HPB-releasing adducts could result in an underestimation of HPB-releasing adduct in those samples. In addition, these observations provide a mild synthetic method to prepare large quantities of cyclic 2-(3-pyridyl)-2,3,4,5-THF adducts predicted to result from pyridyloxobutylation of important cellular nucleophiles as a result of NNK and/or NNN exposure.  相似文献   

13.
The objectives of this study were to determine the contributions of CYP2A13 and CYP2A6 to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism in human peripheral lung microsomes and to determine the influence of the genetic polymorphism, CYP2A13 Arg257Cys, on NNK metabolism. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), the keto-reduced metabolite of NNK, was the major metabolite produced, ranging from 0.28 to 0.9%/mg protein/min. Based on total bioactivation of NNK and NNAL by alpha-carbon hydroxylation, subjects could be classified as either high (17 subjects) or low (12 subjects) bioactivators [(5.26 +/- 1.23) x 10(-2) and (6.49 +/- 5.90) x 10(-3)% total alpha-hydroxylation/mg protein/min, P < 0.05]. Similarly, for detoxification, subjects could be grouped into high (9 subjects) and low (20 subjects) categories [(2.03 +/- 1.65) x 10(-3) and (2.50 +/- 3.04) x 10(-4)% total N-oxidation/mg protein/min, P < 0.05]. When examining data from all individuals, no significant correlations were found between levels of CYP2A mRNA, CYP2A enzyme activity, or CYP2A immunoinhibition and the degree of total NNK bioactivation or detoxification (P > 0.05). However, subgroups of individuals were identified for whom CYP2A13 mRNA correlated with total NNK and NNAL alpha-hydroxylation and NNAL-N-oxide formation (P < 0.05). The degree of NNAL formation and CYP2A13 mRNA was also correlated (P < 0.05). Subjects (n = 84) were genotyped for the CYP2A13 Arg257Cys polymorphism, and NNK metabolism for the one variant (Arg/Cys) was similar to that for other subjects. Although results do not support CYP2A13 or CYP2A6 as predominant contributors to NNK bioactivation and detoxification in peripheral lung of all individuals, CYP2A13 may be important in some.  相似文献   

14.
Richter E  Tricker AR 《Toxicology》2002,179(1-2):95-103
The effect of nicotine, cotinine and phenethyl isothiocyanate (PEITC) on metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) was studied in the Syrian golden hamster. Urinary metabolite profiles were determined in 24 h urine after a single subcutaneous (s.c.) administration of [5-(3)H]NNK (80 nmol/kg, s.c.). Co-administration of either a 500-fold higher dose of nicotine (40 micromol/kg, s.c.) or a 5000-fold higher dose of cotinine (400 micromol/kg, s.c.) significantly (P<0.001) reduced metabolic activation of NNK by alpha-hydroxylation to 85 and 71% of control, respectively. Co-administration of a 300-fold higher dose of PEITC (1 micromol/g diet) slightly reduced alpha-hydroxylation of NNK (94% of control). Metabolism of NNK by reduction to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased by nicotine (155%), and significantly increased by cotinine (670%, P<0.001) and PEITC (219%, P<0.01). Detoxification of NNAL by glucuronidation was also increased by all three test agents. Detoxification of NNK and NNAL by N-oxidation was marginally increased by nicotine, reduced by PEITC, and significantly reduced by cotinine. The urinary metabolite profiles suggest that nicotine, which occurs in concentrations up to 30000-fold higher than NNK in mainstream cigarette smoke, and cotinine, its proximal metabolite, may have a significant protective effect against in vivo metabolic activation of NNK.  相似文献   

15.
Hemoglobin adducts of the carcinogenic tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) release 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) upon mild base or acid hydrolysis. HPB has been detected in hydrolysates of human hemoglobin and has been proposed as a dosimeter of exposure to and metabolic activation of NNK in people exposed to tobacco products. In this study, labeling experiments were carried out with Na18OH which provide strong evidence that the globin adduct which releases HPB upon base hydrolysis is a carboxylic acid ester. Globin was isolated from rats treated with NNK. This globin was reacted with NaCNBH3, followed by hydrolysis at room temperature with 0.2 N NaOH. Analysis of the products demonstrated the presence of 4-hydroxy-1-(3-pyridyl)-1-butanol (7), but not HPB. These results demonstrate that the adduct in globin has a free carbonyl group and is not a Schiff base. This sequence of reactions was then carried out with Na18OH, under conditions which would have resulted in incorporation of 18O into 7 if nucleophilic displacement at carbon 4 of the adduct had occurred. Analysis of the products by GC-MS showed no detectable incorporation of 18O into 7. These results demonstrate that the globin adduct which releases HPB upon base hydrolysis is a 4-(3-pyridyl)-4-oxobutyl carboxylic ester. Consistent with this conclusion, a model ester, alpha-methyl beta-[4-(3-pyridyl)-4-oxobutyl] N-(carbobenzyloxy)-L-aspartate (13), hydrolyzed in base and acid in a manner similar to that observed with globin from NNK-treated rats.  相似文献   

16.
The tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are potent carcinogens in animal models and likely human carcinogens. Both NNK and NNN can be activated to a pyridyloxobutylating agent. This alkylating agent contributes to the carcinogenic effects of NNK and NNN via the formation of miscoding DNA adducts. One of these adducts, O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG) has been characterized as a mutagenic adduct which is a substrate for the repair protein O6-alkylguanine-DNA alkyltransferase (AGT). Repair of O6-alkylguanine adducts by AGT protects cells from the mutagenic and carcinogenic effects of alkylating agents and is likely to play a similar role in shielding cells from the adverse effects of pyridyloxobutylating agents. Therefore, we examined the mutagenicity of the model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc), in Salmonella typhimurium YG7108 expressing hAGT. Expression of hAGT protected cells from NNKOAc-induced mutagenicity. Interestingly, hAGT did not shield cells from the toxicity of this agent. To confirm that the repair of O6-pobG was increased in the bacteria expressing hAGT, we measured levels of this adduct in NNKOAc-treated cultures. The levels of O6-pobG were lower in DNA from bacteria expressing hAGT. This work establishes an important role for O6-pobG in mediating the mutagenic, and possibly carcinogenic, effects of pyridyloxobutylating compounds.  相似文献   

17.
The scope of the present study was to investigate whether nicotine or cotinine will affect the metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in isolated perfused rat lungs and livers and to study the effect of starvation on pulmonary metabolism of NNK. NNK metabolism was investigated in isolated perfused liver and lung of male F344 rats perfused with 35 nM [5-3H]NNK in presence of a 1400-fold excess of the main tobacco alkaloid nicotine and its metabolite cotinine. In perfused rat livers, nicotine and cotinine inhibited NNK elimination and metabolism and led to a substantial increase of elimination half-life from 14.6 min in controls to 25.5 min after nicotine and 36.6 min after cotinine co-administration, respectively. In parallel, the pattern of NNK metabolites was changed by nicotine and cotinine. The pathway of α-hydroxylation representing the metabolic activation of NNK was decreased to 77% and 85% of control values, whereas N-oxidation of NNK and glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) was increased 2.6- and 1.2-fold in presence of nicotine and cotinine, respectively. When isolated rat lungs were perfused with 35 nM NNK for 3 h neither the elimination nor the pattern of metabolites were substantially affected due to co-administration of 50 μM nicotine or cotinine. Cytochrome P450 2E1 is known to participate in the activation of NNK and can be induced by starvation. However, isolated rat lungs from male Sprague Dawley rats perfused with [1-14C]NNK at about 2 μM for 3 h, revealed only small differences in pulmonary elimination and pattern of NNK metabolites between fed and starved animals. These results suggest that nicotine and its main metabolite cotinine inhibit the metabolic activation of NNK predominantly in the liver whereas activation in lung, a main target organ of NNK induced carcinogenesis, remained almost unaffected. Received: 13 March 1997 / Accepted: 21 November 1997  相似文献   

18.
The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), is a potent pulmonary carcinogen. This unsymmetric nitrosamine can be metabolically activated to lung DNA methylating and pyridyloxobutylating intermediates. The methyl DNA adducts are well characterized. The pyridyloxobutyl adducts are unstable under DNA hydrolysis conditions and decompose to release 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB). One of the HPB-releasing adducts,O6-[4-oxo-4-(3-pyridyl)butyl]guanine (O6-pobG), has been detected in DNA reacted in vitro with the model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). To determine whether this adduct was formed in vivo, A/J mice were treated with 10 mumol of [5-3H]NNK and sacrificed 24 h postinjection. The mutagenic O6-pobG was detected in liver but not lung DNA from these animals. Since 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) is a major metabolite of NNK, it is also possible that these animals are activating NNAL to a pyridylhydroxybutylating agent. Therefore, we also measured the levels of O6-[4-hydroxy-4-(3-pyridyl)butyl]guanine (O6-phbG) in these DNA samples. While radioactivity did coelute with synthetic standard for this potential NNAL adduct in one lung DNA sample, significant levels of O6-phbG were not detected in any other lung or liver DNA samples. The pyridyloxobutyl adduct, O6-pobG, was also observed in lung and liver DNA from mice treated with 4.2 mumol of [5-3H]NNKOAc in the presence but not absence of 2.5 mumol of O6-benzylguanine, a known depletor of the repair protein O6-alkylguanine-DNA alkyltransferase (AGT). These data indicate that this adduct is formed in vivo but is repaired in part by AGT. Cell-free extracts from A/J mouse lung and liver were used to determine the relative rate of O6-alkylguanine repair. O6-mG and O6-pobG were removed from DNA to the same extent in a competitive assay, suggesting that low levels of O6-pobG in lungs of NNK-treated mice did not result from preferential repair of O6-pobG by AGT. It is more likely that initial levels of O6-pobG are much lower than initial levels of O6-mG in lung DNA from NNK-treated A/J mice. These data are consistent with previous studies, which indicate that DNA methylation is the critical pathway for NNK-induced lung carcinogenesis in A/J mice.  相似文献   

19.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a tobacco-specific lung carcinogen which may play an important role as a cause of lung cancer in smokers. NNK is extensively metabolized to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), which like NNK is a potent pulmonary carcinogen. NNAL in turn is glucuronidated, and both NNAL and its glucuronides are excreted in human urine. Previous studies have clearly demonstrated the presence in human urine of 4-(methylnitrosamino)-1-(3-pyridyl)-1-(O-beta-D-glucopyranuronosyl)butane (NNAL-O-Gluc), but did not exclude the presence of 4-(methylnitrosamino)-1-(3-pyridyl-N-beta-D-glucopyranuronosyl)-1-butanolonium inner salt (NNAL-N-Gluc). In this study, we quantified NNAL, NNAL-N-Gluc, and NNAL-O-Gluc in the urine of smokers, snuff-dippers, and people who used the oral tobacco product "toombak". The presence of NNAL-N-Gluc in the urine of toombak users was confirmed by LC-ESI-MS/MS. In smokers' urine, NNAL-N-Gluc, NNAL-O-Gluc, and NNAL comprised (mean +/- SD) 26.5 +/- 6.2, 32.1 +/- 17.6, and 41.4 +/- 16.6%, respectively, of total NNAL. In snuff-dippers' urine, the corresponding figures were 13.6 +/- 5.1, 46.6 +/- 11.7, and 36.6 +/- 9.3%. NNAL-N-Gluc comprised 50 +/- 25% of total glucuronidated NNAL in smokers and 24 +/- 12% in snuff-dippers. This difference was significant (P = 0.01), suggesting that smoking induces glucuronidation of NNAL. The results of this study demonstrate that NNAL-N-Gluc contributes substantially to NNAL-glucuronides in human urine. These results are important for a clearer understanding of mechanisms of detoxification of NNK in humans.  相似文献   

20.
Detoxication of the tobacco-specific carcinogen 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in humans is mainly due to carbonyl reduction to the chiral alcohol 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL), which undergoes glucuronidation and excretion. NNAL has a carcinogenic potential with (S)-NNAL being more tumorigenic in the mouse. Therefore, the enantioselectivity of NNK reductases seems toxicologically relevant. NNAL enantiomers were measured by a novel high-performance liquid chromatography procedure. The aldo-keto reductases AKR1C1, 1C2, and 1C4 and carbonyl reductase purified from human liver cytosol produced NNAL with >90% (S)-enantiomer in accordance with the enantioselectivity of NNK reduction by cytosol from liver, placenta, and lung. In contrast, the (R)-NNAL content was 35% on NNK reduction with 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) purified from human liver microsomes, but around 70% with human microsomes. The selectivity for (R)-NNAL formation was still higher with microsomes from placenta (87%) and lung (89% in 10 of 11 surgical samples). Microsomes from lung of one patient reduced NNK at a much lower rate, with production of 14% (R)-NNAL. This points to predominant reduction in microsomes by an enzyme with selectivity for (R)-NNAL formation that was apparently absent from the lung of one patient. Experiments with 18beta-glycyrrhetinic acid, a potent inhibitor of 11beta-HSD1, also indicated a minor or no role for 11beta-HSD1. Rat liver and lung microsomes produced NNAL with about 33% and 55% (R)-enantiomer and a mean contribution of 11beta-HSD1 of 12% and 32%, respectively. Multiple enzymes seem to participate in NNK reduction in human and rat tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号