首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NAD(P)H:quinone oxidoreductase (NQO1) is a flavoprotein which catalyzes the two-electron reduction of quinones and azo-dyes and thus prevents the formation of free radicals and toxic oxygen metabolites that may be generated by the one-electron reductions catalyzed by cytochrome P450 reductase. Analysis of RNA indicated 20- to 50-fold higher levels of NQO1 gene expression in the liver tumors and in the tissue surrounding the tumors of patients with hepatocarcinoma than in normal individuals. An approximately 50-fold higher level of NQO1 mRNA was also observed in human hepatoblastoma (Hep-G2) cells than in normal liver. By deletion mutagenesis in the human NQO1 gene promoter and subsequent transfection into hepatic and nonhepatic cell lines, a 1.42 kb DNA segment has been identified to contain cis-acting elements responsible for high levels of expression of the NQO1 gene in tumor cells.  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze the reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene, and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione, and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion, and hydrogen peroxide formation established that ROS were produced as a result of the redox cycling. When compared with human recombinant NAD(P)H:quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and last CBR1 and CBR3. In A549 cells, two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol, suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones.  相似文献   

3.
NQO1 (DT-diaphorase) and its truncated isoenzyme, the metalloenzyme NQO2, can reduce quinone substrates by two-electron transfer. While NQO1 is a known detoxification enzyme, the function of NQO2 is less well understood. Both rat NQO1 and human NQO2 reductively bioactivate the dinitroarene CB 1954 to a cytotoxic product that behaves as a difunctional DNA-crosslinking species with potent anti-tumour activity, although human NQO1 is much less effective. A FMN-dependent nitroreductase from E. coli B also reduces quinones and reductively bioactivates CB 1954. However, this enzyme reduces CB 1954 to the 2- and 4-hydroxylamines in equivalent yield, whereas NQO1 and NQO2 generate only the 4-isomer. The reduction profile is a key factor in the development of anti-tumour prodrugs, where distinct delivery strategies are being evaluated: prodrug therapy, antibody-, macromolecule and gene-directed enzyme prodrug therapy (ADEPT, MDEPT or GDEPT). The flavoprotein enzymes are explored in terms of structure and bioreduction mechanism, particularly for use in the design of novel prodrugs with potential application as chemotherapeutic agents.  相似文献   

4.
Quinones represent a large and diverse class of antitumor drugs and many quinones are approved for clinical use or are currently undergoing evaluation in clinical trials. For many quinones reduction to the hydroquinone has been shown to play a key role in their antitumor activity. The two-electron reduction of quinones by NQO1 has been shown to be an efficient pathway to hydroquinone formation. NQO1 is expressed at high levels in many human solid tumors making this enzyme ideally suited for intracellular drug activation. Cellular levels of NQO1 are influenced by the NQO1*2 polymorphism. Individuals homozygous for the NQO1*2 allele are NQO1 null and homozygous NQO1*2*2 cell lines have been shown to be more resistant to antitumor quinones when compared to isogenic cell lines overexpressing NQO1. In this review we will discuss the role of NQO1 in the sensitivity and resistance of human cancers to the quinone antitumor drugs mitomycin C, β-lapachone and the benzoquinone ansamycin class of Hsp90 inhibitors including 17-AAG. The role of NQO1 in the bioreductive activation of mitomycin C remains controversial but pre-clinical data strongly suggests a role for NQO1 in the activation of β-lapachone and the benzoquinone ansamycin class of Hsp90 inhibitors. Despite a large volume of preclinical data demonstrating that NQO1 is an important determinant of sensitivity to these antitumor quinones there is little information on whether the clinical response to these agents is influenced by the NQO1*2 polymorphism. The availability of simple assays for the determination of the NQO1*2 polymorphism should facilitate clinical testing of this hypothesis.  相似文献   

5.
NAD(P)H:(quinone acceptor) oxidoreductase 1 (NQO1) is a cytosolic flavoenzyme that catalyses the obligatory two-electron reduction of several quinones to their corresponding hydroquinones by using both NADH and NADPH. NQO1 has relevance in chemotherapy because bioreductive drugs require enzymatic activation prior to conversion into cytotoxic compounds. Because levels of NQO1 are elevated in some tumours, the enzyme provides an opportunity to develop improved new chemotherapeutic drugs that are bioactivated by this enzyme. The classical NQO1-directed drugs are quinone-containing alkylating agents, such as the prototypical bioreductive agent mitomycin C, and different azirinidylbenzoquinones, such as 2,5 bis-[1-aziridyl]-1,4 benzoquinone, that target DNA crosslinks and strand breaks after reduction. New analogues of those quinones, such as EO9 and RH1, have been developed to overcome the poor substrate specificity and poor solubility in aqueous solution in order to improve its therapeutic utilisation. Also, NQO1 is implied in the activation of new drugs that act as inhibitors of different proteins. β-Lapachone is not a DNA damaging agent and preclinical studies have shown very promising results. The benzoquinone ansamycins, 17-allylamino,17-demethoxygeldanamycin and 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin, which exhibit anticancer activity by binding to heat-shock protein 90 (Hsp90), are also in clinical trials. NQO1 activity needs a threshold value to induce cytotoxicity. As a polymorphism in NQO1, known as NQO1*2, results in dramatically decreased NQO1 enzyme activity, NQO1 polymorphism should be carefully monitored in the patients before the use of NQO1-directed drugs.  相似文献   

6.
The specific involvement of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the bioactivation of quinone prodrugs has been shown through the use of the inhibitor of NQO1, dicoumarol. Disadvantages of using dicoumarol to inhibit NQO1 include its lack of specificity and its competitive mechanism of inhibition. The concentration of dicoumarol required for inhibition of NQO1 varies according to the substrate under evaluation, which may lead to either false conclusions of the involvement of NQO1 or the alteration of other cellular processes. We have reported previously on the chemical and biochemical properties of ES936, a mechanism-based inhibitor of NQO1 in cell-free systems. In this study, we investigated the effects of ES936 in cellular systems. ES936 (100 nM) inhibits more than 95% of NQO1 activity within 30 min and is stable in complete media at this concentration for a minimum of 2 h. The duration of inhibition is cell line-specific because a new protein must be generated for resumption of activity. ES936 abrogates the toxicity of streptonigrin, with greater effects seen in cell lines expressing higher levels of NQO1. ES936 does not inhibit other cellular reductases, nor does it alter cellular levels of acid-soluble thiols. Some evidence of DNA strand breaks was observed at the concentrations of ES936 required for the inhibition of NQO1 activity. From our studies, we propose the use of ES936 (100 nM) as a mechanism-based inhibitor of NQO1 in cellular systems and for use as a component of the routine activity assay for NQO1.  相似文献   

7.
The effects of quercetin on viability and proliferation of Chinese Hamster Ovary (CHO) cells and CHO cells overexpressing human quinone reductase (CHO+NQO1) were studied to investigate the involvement of the pro-oxidant quinone chemistry of quercetin. The toxicity of menadione was significantly reduced in CHO+NQO1 cells compared to wild-type CHO cells, validating the NQO1-overexpression in the CHO+NQO1 transfectant. Quercetin inhibited the proliferation of wild-type CHO and CHO+NQO1 cells to a similar extent without affecting cell viability, indicating that NQO1 enrichment of CHO cells did not provide increased protection. On the other hand, inhibition of NQO1 in both types of cells by dicoumarol significantly potentiated the inhibitory effect of quercetin on cell proliferation, revealing the role of NQO1 in cellular protection against quercetin. Altogether, these results can be explained by the hypothesis that both wild-type CHO and CHO+NQO1 cells contain sufficient NQO1 activity for optimal protection against the pro-oxidant effect of quercetin on cell proliferation. The results also point at a cellular NQO1 threshold for optimal protection against quercetin. This NQO1 threshold seems to be in the range of NQO1 activities already present in various tissues.  相似文献   

8.
Glycerol enhances pulmonary tumorigenesis in mice treated with 4-nitroquinoline 1-oxide (4NQO). The present study shows that active oxygen formation by glycerol may be responsible for this enhanced tumorigenesis. Male ddY mice were treated with 4NQO and given a 5% glycerol solution instead of drinking water for up to 4 weeks after 4NQO injection. There was no difference in NADH-dependent active oxygen formation of the mitochondria between the 4NQO- and 4NQO-plus-glycerol-treated groups but the ratios of NADH- and NADPH-dependent active oxygen formation of the microsomes and nuclei of the 4NQO-plus-glycerol-treated group to the 4NQO-treated group increased with increasing time after 4NQO injection. Significant differences in the maximum NADH- and NADPH-dependent active oxygen formation were observed 2 or 4 weeks after 4NQO injection.  相似文献   

9.
NQO1-/- mice, along with Chinese hamster ovary (CHO) cells, were used to determine the in vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in cellular protection against quinone cytotoxicity, membrane damage, DNA damage, and carcinogenicity. CHO cells permanently expressing various levels of cDNA-derived P450 reductase and NQO1 were produced. Treatment of CHO cells overexpressing P450 reductase with menadione, benzo[a]pyrene-3,6-quinone (BPQ), and benzoquinone led to increased cytotoxicity as compared with CHO cells expressing endogenous P450 reductase. In a similar experiment, overexpression of NQO1 significantly protected CHO cells against the cytotoxicity of these quinones. Knockout (NQO1-/-) mice deficient in NQO1 protein and activity had been generated previously in our laboratory and were used in the present studies. Wild-type (NQO1+/+) and knockout (NQO1-/-) mice were given i.p. injections of menadione and BPQ, followed by analysis of membrane damage and DNA damage. Both menadione and BPQ induced lipid peroxidation in hepatic and non-hepatic tissues, indicating increased membrane damage. Exposure to BPQ also resulted in increased hepatic DNA adducts in NQO1-/- mice as compared with NQO1+/+ mice. The skin application of BPQ alone and BPQ + 12-O-tetradecanoylphorbol-13-acetate (TPA) failed to induce papillomas, or other lesions, for up to 50 weeks in either NQO1+/+ or NQO1-/- mice. The various results from CHO cells and NQO1-/- mice indicated that NQO1 protects against quinone-induced cytotoxicity, as well as DNA and membrane damage. The absence of BPQ-induced skin carcinogenicity in NQO1-/- mice may be related to the strain (C57BL/6) of mice used in the present study and/or due to poor BPQ absorption into the skin and/or due to detoxification of BPQ by cytosolic NRH:quinone oxidoreductase 2 (NQO2).  相似文献   

10.
11.
The multiple functions of NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) in the cell are reviewed. NQO1 has long been viewed as a chemoprotective enzyme involved in cellular defense against the electrophilic and oxidizing metabolites of xenobiotic quinones. It also participates in reduction of endogenous quinones, such as vitamin E quinone and ubiquinone, generating antioxidant forms of these molecules. NQO1 has recently been shown to interact with superoxide and may be involved in scavenging superoxide within the cell. In addition, the possible role of NQO1 in p53 stabilization and consequently in contributing to p53-dependent stress responses is summarized. Such protein multitasking is a good strategy in terms of cellular economy. NQO1 can also be exploited in the design of NQO1-directed antitumor agents such as the new aziridinylbenzoquinone RH1 and Hsp90 inhibitors such as 17AAG. Polymorphisms in NQO1 which have profound influence on phenotype such as the NQO1*2 polymorphism may influence the chemoprotective actions of NQO1, and should be considered when NQO1-directed antitumor quinones are used for therapy in patients.  相似文献   

12.
13.
3-Nitrobenzanthrone (3-NBA), a suspected human carcinogen occurring in diesel exhaust and air pollution, and its human metabolite 3-aminobenzanthrone (3-ABA) were investigated for their ability to induce biotransformation enzymes in rat liver and the influence of such induction on DNA adduct formation by the compounds. Rats were treated (i.p.) with 0.4, 4, or 40 mg/kg body weight 3-NBA or 3-ABA. When hepatic cytosolic fractions from rats treated with 40 mg/kg body weight 3-NBA or 3-ABA were incubated with 3-NBA, DNA adduct formation, measured by 32P-postlabeling analysis, was 10-fold higher in incubations with cytosols from pretreated rats than with controls. The increase in 3-NBA-derived DNA adduct formation corresponded to a dose-dependent increase in protein levels and enzymatic activity of NAD(P)H:quinone oxidoreductase (NQO1). NQO1 is the major enzyme reducing 3-NBA in human and rat livers. Incubations of 3-ABA with hepatic microsomes of rats treated with 3-NBA or 3-ABA (40 mg/kg body weight) led to as much as a 12-fold increase in 3-ABA-derived DNA adduct formation compared with controls. The observed stimulation of DNA adduct formation by both compounds was attributed to their potential to induce protein expression and enzymatic activity of cytochromes P450 1A1 and/or -1A2 (CYP1A1/2), the major enzymes responsible for 3-ABA activation in human and rat livers. Collectively, these results demonstrate for the first time, to our knowledge, that by inducing hepatic NQO1 and CYP1A1/2, both 3-NBA and 3-ABA increase the enzymatic activation of these two compounds to reactive DNA adduct-forming species, thereby enhancing their own genotoxic potential.  相似文献   

14.
Novel lavendamycin analogues with various substituents were synthesized and evaluated as potential NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor agents. Pictet-Spengler condensation of quinoline- or quninoline-5,8-dione aldehydes with tryptamine or tryptophans yielded the lavendamycins. Metabolism studies with recombinant human NQO1 revealed that addition of NH2 and CH2OH groups at the quinolinedione-7-position and indolopyridine-2'-position had the greatest positive impact on substrate specificity. The best and poorest substrates were 37 (2'-CH2OH-7-NH2 derivative) and 31 (2'-CONH2-7-NHCOC3H7-n derivative) with reduction rates of 263 +/- 30 and 0.1 +/- 0.1 micromol/min/mg NQO1, respectively. Cytotoxicity toward human colon adenocarcinoma cells was determined for the lavendamycins. The best substrates for NQO1 were also the most selectively toxic to the NQO1-rich BE-NQ cells compared to NQO1-deficient BE-WT cells with 37 as the most selective. Molecular docking supported a model in which the best substrates were capable of efficient hydrogen-bonding interactions with key residues of the active site along with hydride ion reception.  相似文献   

15.
NAD(P)H:quinone oxidoreductase 1 (NQO1) has often been suggested to be involved in cancer prevention by means of detoxification of electrophilic quinones. In the present study, a series of Chinese hamster ovary (CHO) cell lines expressing various elevated levels of human NQO1 were generated by stable transfection. The level of NQO1 over-expression ranged from 14 to 29 times the NQO1 activity in the wild-type CHO cells. This panel of cell lines, allowed investigation of the protective role of NQO1 in quinone cytotoxicity. It could be demonstrated that menadione toxicity was significantly reduced in all NQO1-transfected CHO clones compared to the wild-type cells, but the clones did not show differences in their level of protection against menadione. This observation pointed at a critical threshold concentration of NQO1 above which a further increase does not provide further protection against quinone cytotoxicity. Additional studies in which the NQO1 activity was inhibited by dicoumarol showed that only dicoumarol concentrations of about five times the EC(50) for NQO1 inhibition were able to reduce NQO1 levels below the apparent threshold, making the cells more sensitive. The level of this threshold was estimated to be in the range of base line NQO1 activities observed in several tissues and species. Thus, the results of the present study indicate that beneficial effects of NQO1 induction by, for example, cruciferous vegetables might be absent or present depending on the NQO1 activity threshold for optimal protection and the basal level of NQO1 expression in the tissue and species of interest.  相似文献   

16.
To investigate the importance of NAD(P)H:quinone oxidoreductase 1 (or DT-diaphorase; NQO1) in the bioactivation of antitumor quinones, we established a series of stably transfected cell lines derived from BE human colon adenocarcinoma cells. BE cells have no NQO1 activity due to a genetic polymorphism. The new cell lines, BE-NQ, stably express wild-type NQO1. BE-NQ7 cells expressed the highest level of NQO1 and were more susceptible [determined by the thiazolyl blue (MTT) assay] to known antitumor quinones and newer clinical candidates. Inhibition of NQO1 by pretreatment with an irreversible inhibitor, ES936 [5-methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)methyl]indole-4,7-dione], protected BE-NQ7 cells from toxicity induced by streptonigrin, ES921 [5-(aziridin-1-yl)-3-(hydroxymethyl)-1,2-dimethylindole-4,7-dione], and RH1 [2,5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone]. RH1 was evaluated further by clonogenic assay for cytotoxic response and was more cytotoxic to BE-NQ7 cells than to BE cells. Cytotoxicity was abrogated by inhibition of NQO1 with ES936 pretreatment. Using a comet assay to evaluate DNA cross-linking, BE-NQ7 cells demonstrated significantly higher DNA cross-links than did BE cells in response to RH1 treatment. DNA cross-linking in BE-NQ7 cells was observed at very low concentrations of RH1 (5 nM), confirming that NQO1 activates RH1 to a potent cross-linking species. Further studies using streptonigrin, ES921, and RH1 were undertaken to analyze the relationship between NQO1 activity and quinone toxicity. Toxicity of these compounds was measured in a panel of BE-NQ cells expressing a range of NQO1 activity (23-433 nmol/min/mg). Data obtained suggest a threshold for NQO1-induced toxicity above 23 nmol/min/mg and a sharp dose-response curve between the no effect level of NQO1 (23 nmol/min/mg) and the maximal effect level (>77 nmol/min/mg). These data provide evidence that NQO1 can bioactivate antitumor quinones in this system and suggest that a threshold level of NQO1 activity is required to initiate toxic events.  相似文献   

17.
3-Nitrobenzanthrone (3-NBA) is a carcinogen occurring in diesel exhaust and air pollution. Using the (32)P-postlabelling method, we found that 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), are activated to species forming DNA adducts by cytosols and/or microsomes isolated from rat lung, the target organ for 3-NBA carcinogenicity, and kidney. Each compound generated identical five DNA adducts. We have demonstrated the importance of pulmonary and renal NAD(P)H:quinone oxidoreductase (NQO1) to reduce 3-NBA to species that are further activated by N,O-acetyltransferases and sulfotransferases. Cytochrome P450 (CYP) 1A1 is the essential enzyme for oxidative activation of 3-ABA in microsomes of both organs, while cyclooxygenase plays a minor role. 3-NBA was also investigated for its ability to induce NQO1 and CYP1A1 in lungs and kidneys, and for the influence of such induction on DNA adduct formation by 3-NBA and 3-ABA. When cytosols from rats treated i.p. with 40mg/kg bw of 3-NBA were incubated with 3-NBA, DNA adduct formation was up to 2.1-fold higher than in incubations with cytosols from control animals. This increase corresponded to an increase in protein level and enzymatic activity of NQO1. Incubations of 3-ABA with microsomes of 3-NBA-treated rats led to up to a fivefold increase in DNA adduct formation relative to controls. The stimulation of DNA adduct formation correlated with the potential of 3-NBA to induce protein expression and activity of CYP1A1. These results demonstrate that 3-NBA is capable to induce NQO1 and CYP1A1 in lungs and kidney of rats thereby enhancing its own genotoxic and carcinogenic potential.  相似文献   

18.
2,5-Diaziridinyl-3-(hydroxymethyl)-6-methyl-1,4-benzoquinone (RH1) is a novel antitumor diaziridinyl benzoquinone derivative designed to be bioactivated by the two-electron reductase NAD(P)H:quinone oxidoreductase (NQO1) and is currently in clinical trials. NQO1 is expressed at high levels in many solid tumors. RH1 cytotoxicity has been shown previously to be NQO1-dependent. The purpose of this study was to investigate whether other reducing enzymes such as cytochrome b(5) reductase (b5R), cytochrome P450 reductase (P450R), dihydronicotinamide riboside:quinone oxidoreductase 2 (NQO2), and xanthine oxidase/xanthine dehydrogenase (XO/XDH) also contribute to the bioactivation and cytotoxicity of RH1 in human tumor cells. For these studies, we established a series of stable MDA468 breast cancer cell lines overexpressing various levels of NQO1, b5R, P450R, and NQO2 and compared RH1-induced growth inhibition [3-(4,5-dimethylthiazol-2,5-diphenyl)tetrazolium and sulforhodamine B analysis] and interstrand DNA cross-linking (comet analysis) in both parental MDA468 cells and transfected clones. RH1 toxicity correlated with NQO1 and NQO2 but not with either b5R or P450R activity levels in the respective series of transfected MDA468 cell clones. Enzymatic assays showed that RH1 was an in vitro substrate for xanthine oxidase. However, XO/XDH protein and activity could not be detected in a variety of human tumor cell lines. These studies suggest that NQO1 and NQO2 are the principal enzymatic determinants of RH1 bioactivation in MDA468 tumor cells and that b5R, P450R, and XDH/XO are unlikely to play major roles. Our studies also suggest that NQO2 may be particularly relevant as a bioactivation system for RH1 in NQO1-deficient tumors such as leukemias and lymphomas.  相似文献   

19.
Metabolic redox cycling between the stilbene estrogen diethylstilbestrol (DES) and diethylstilbestrol-4',4"-quinone (DES Q) has been demonstrated previously. The xanthine and xanthine oxidase-catalyzed reduction of estrogen quinone has been studied in this work to understand the role of metabolic redox cycling in estrogen metabolism. Xanthine and xanthine oxidase catalyzed the reduction of DES Q to 44% Z-DES and 9% E-DES. This reaction was inhibited by the addition of superoxide dismutase or by a lack of oxygen (under anaerobic conditions). DES Q was also reduced in a non-enzymatic reaction by superoxide radicals generated by potassium superoxide and crown ether. The reaction between the O2-. and DES Q was also investigated by an electron spin resonance spin-trapping technique. The superoxide anion generated in an oxygen-saturated xanthine and xanthine oxidase system was detected as 5,5-dimethyl-1-pyrroline-1-oxide-superoxide adduct. The addition of DES Q or 2,3-estradiol quinone totally inhibited the formation of this adduct. The reduction of DES Q by superoxide radicals was taken as evidence that this reaction was one possible mechanism of xanthine and xanthine oxidase-mediated reduction. In addition, reduction of DES Q by direct electron transfer to quinone by the enzyme may also occur. The intermediate formation of semiquinone free radicals in the reduction is implied by the nature of the single electron transfer reactions and, in addition, has been demonstrated for the catechol estrogen by electron spin resonance measurements. It is concluded that the reduction of estrogen quinones to their hydroquinones by xanthine oxidase occurs by both one electron transfer to the quinone and by formation of superoxide which then reduces the quinone.  相似文献   

20.
In human liver, the two-electron reduction of quinone compounds, such as menadione is catalyzed by cytosolic carbonyl reductase (CBR) and NAD(P)H:quinone oxidoreductase (NQO1) activities. We assessed the relative contributions of CBR and NQO1 activities to the total menadione reducing capacity in liver cytosols from black (n=31) and white donors (n=63). Maximal menadione reductase activities did not differ between black (13.0+/-5.0 nmol/min mg), and white donors (11.4+/-6.6 nmol/min mg; p=0.208). In addition, both groups presented similar levels of CBR activities (CBR(blacks)=10.9+/-4.1 nmol/min mg) versus CBR(whites)=10.5+/-5.8 nmol/min mg; p=0.708). In contrast, blacks showed higher NQO1 activities (two-fold) than whites (NQO1(blacks)=2.1+/-3.0 nmol/min mg versus NQO1(whites)=0.9+/-1.6 nmol/min mg, p<0.01). To further explore this disparity, we tested whether NQO1 activity was associated with the common NQO1(*)2 genetic polymorphism by using paired DNA samples for genotyping. Cytosolic NQO1 activities differed significantly by NQO1 genotype status in whites (NQO1(whites[NQO1*1/*1])=1.3+/-1.7 nmol/min mg versus NQO1(whites[NQO1*1/*2+NQO1*2/*2])=0.5+/-0.7 nmol/min mg, p<0.01), but not in blacks (NQO1(blacks[NQO1*1/*1])=2.6+/-3.4 nmol/min mg versus NQO1(blacks[NQO1*1/*2])=1.1+/-1.2 nmol/min mg, p=0.134). Our findings pinpoint the presence of significant interethnic differences in polymorphic hepatic NQO1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号