首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phthalic acid esters or phthalates are ubiquitous environmental pollutants known for their adverse health effects in test animals and, of late, in humans. Thus, in this molecular docking study – using Glide (Schrödinger) – the molecular interactions of 31 ligands, including 12 diphthalates, their monophthalates and phthalic acid with selected human ketosteroid receptors, i.e., androgen (hAR), progesterone (hPR) and glucocorticoid (hGR) receptors were explored and their binding affinities were compared with that of corresponding natural steroids and a known endocrine disrupting xenobiotic, bisphenol A (BPA). Mostly, diphthalates and monophthalates showed the potential for antisteroidal activity by interacting with hAR, hPR and hGR. Of them, diphenyl phthalate showed the highest G score (–7.70 kcal mol–1) with hAR, and the crucial amino acid (aa) residues in the ligand binding domain (LBD) of this receptor involved in the molecular interactions were Phe 764, Leu 704, Asn 705 and Thr 877. The mono‐iso‐decyl phthalate showed the highest G score (–8.36) with the hPR, and the crucial aa residues in the LBD interactions were Arg 766 Gln 725 and Phe 778. The mono‐iso‐decyl phthalate also showed more affinity (–8.44) towards hGR than the natural ligand, and the aa residues in the LBD interactions were Gln 570 and Met 604. In addition to these, some other phthalates established comparable interactions with certain aa residues located in the LBD of these receptors, which resulted in higher G scores. Contrastingly, BPA and some natural ligands tested in this study showed lower G scores with these receptors than certain phthalates reported herein, i.e., certain phthalates are more toxic than the proven toxic BPA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Bisphenols are a group of chemicals structurally similar to bisphenol-A (BPA) in current use as the primary raw material in the production of polycarbonate and epoxy resins. Some bisphenols are intended to replace BPA in several industrial applications. This is the case of bisphenol-S (BPS), which has an excellent stability at high temperature and resistance to sunlight. Studies on the endocrine properties of BPS have focused on its interaction with human estrogen receptor alpha (hERα), but information on its interaction with other nuclear receptors is scarce. The aim of this study was to investigate interactions of BPS, BPF, BPA and its halogenated derivatives, tetrachlorobisphenol A (TCBPA), and tetrabromobisphenol A (TBBPA), with human estrogen receptors (hERα and hERβ), androgen receptor (hAR), and pregnane X receptor (hPXR), using a panel of in vitro bioassays based on competitive binding to nuclear receptors (NRs), reporter gene expression, and cell proliferation assessment. BPS, BPF, and BPA efficiently activated both ERs, while TCBPA behaved as weak hERα agonist. Unlike BPF and BPA, BPS was more active in the hERβ versus hERα assay. BPF and BPA were full hAR antagonists (BPA > BPF), whereas BPA and BPS were weak hAR agonists. Only BPA, TCBPA, and TBBPA, were hPXR agonists (TCBPA > TBBPA > BPA). These findings provide evidence that BPA congeners and derivatives disrupt multiple NRs and may therefore interfere with the endocrine system. Hence, further research is needed to evaluate the potential endocrine-disrupting activity of putative BPA substitutes.  相似文献   

3.
Thyroid hormones play a critical role in the proper development of brain function and cell growth. Several epidemiological studies have been conducted to assess potential associations between pre- and post-natal exposure to dioxins or dioxin-like compounds (DLCs) and the levels of circulating thyroid hormones during early development. Dioxins and DLCs include chlorinated dibenzo-p-dioxins, chlorinated dibenzofurans, and mono- and non-ortho polychlorinated biphenyls (PCBs). We identified a total of 23 relevant epidemiological studies (21 cohort studies and 1 case–control study) that measured exposures to various types of dioxins and DLCs as well as markers of thyroid function, such as thyroid stimulating hormone (TSH), total thyroxine (T4), free T4, total triiodothyroxine (T3), free T3, and thyroid-binding globulin concentrations in cord blood or circulation. While some of the studies reported associations between concentrations of dioxins and/or DLCs and some biomarkers of thyroid function, the majority of the observed associations were not statistically significant. Moreover, there were no clear and consistent effects across studies for any of the hormone levels examined, and while a number of studies showed a statistically significant association with exposure for a given marker of thyroid function, other studies showed either no change or changes in the opposite direction for the same thyroid function marker. Similarly, when the results were analyzed considering developmental stage, there generally were no clear and consistent effects at any age from birth through 12 years of age. The absence of a clear correlation between background exposures to dioxins and DLCs and thyroid function biomarkers during development is not consistent with the hypothesis that background exposures to these chemicals cause effects on thyroid function during development.  相似文献   

4.
1. The toxicity of cis-and trans-cypermethrin to rainbow trout was investigated and the concentrations of the two isomers in brain associated with toxic signs (excitability and loss of equilibrium) were determined. cis-Cypermethrin and trans-cypermethrin were equally toxic and showed similar brain levels associated with toxic signs (cis:0.25 μg/g, mean (range 0.07-0-53); trans:0.17 μg/g (0-07-0-31)).

2. Orally administered cypermethrin was less toxic than predicted, probably due to poor intestinal uptake. Toxicity was due to absorption via the gills of unchanged pyrethroid excreted from the intestine into the water.

3. The metabolism of the radiolabelled insecticides, [14C-cyclopropyl]- and [14C-benzyl]-cis- and trans-cypermethrin has been investigated in vivo and in vitro.

4. The principal route of elimination in vivo was the bile, with 20-28% dose excreted as biliary metabolites in 24h. No difference in the rates of elimination of the cis and trans isomers was observed.

5. cis-Cypermethrin was metabolized primarily to the glucuronide of 4′-hydroxy-cypermethrin (80% total bile radioactivity), together with dichlorovinyldimethyl-cyclopropanecarboxylic acid and its glucuronide, 3-(4-hydroxyphenoxy)benzoic acid (4′-hydroxy-3BPA) and its ester and ether glucuronides, 3-phenoxybenzoyl glucuronide and 4′-hydroxy-3BPA sulphate were detected. trans-Cypermethrin was metabolized to the same products, but with only 36% as 4′-hydroxy-cypermethrin glucuronide.  相似文献   

5.
6.
The xenoestrogen bisphenol A (2,2-bis-(p-hydroxyphenyl)-2-propane, BPA) is a known endocrine-disrupting chemical used in the fabrication of plastics, resins and flame retardants, that can be found throughout the environment and in numerous every day products. Human exposure to this chemical is extensive and generally occurs via oral route because it leaches from the food and beverage containers that contain it. Although most of the effects related to BPA exposure have been linked to the activation of the estrogen receptor (ER), the mechanisms of the interaction of BPA with protein targets different from ER are still unknown. Therefore, the objective of this work was to use a bioinformatics approach to identify possible new targets for BPA. Docking studies were performed between the optimized structure of BPA and 271 proteins related to different biochemical processes, as selected by text-mining. Refinement docking experiments and conformational analyses were carried out using LigandScout 3.0 for the proteins selected through the affinity ranking (lower than −8.0 kcal/mol). Several proteins including ERR gamma (−9.9 kcal/mol), and dual specificity protein kinases CLK-4 (−9.5 kcal/mol), CLK-1 (−9.1 kcal/mol) and CLK-2 (−9.0 kcal/mol) presented great in silico binding affinities for BPA. The interactions between those proteins and BPA were mostly hydrophobic with the presence of some hydrogen bonds formed by leucine and asparagine residues. Therefore, this study suggests that this endocrine disruptor may have other targets different from the ER.  相似文献   

7.
《Toxicology in vitro》2010,24(1):201-207
Some phenols have been suspected to modulate the endocrine systems of wildlife and humans, but less is known about their interactions with different types of nuclear receptors. In this study, the ability of 2-tert-butylphenol, 2-isopropylphenol, 4-tert-octylphenol (4-t-OP), 2,4-dichlorophenol (2,4-DCP), 3,4-dichlorophenol (3,4-DCP), pentachlorophenol (PCP), bisphenols A (BPA), tetrabromobisphenol A (TBBPA), tetrachlorobisphenol A (TCBPA) and 4-phenylphenol to activate estrogen receptor (ER), androgen receptor (AR), progesterone receptor (PR) and estrogen-related receptor (ERR) were determined using a set of recombined yeast strains. It was found that 4-t-OP, 3,4-DCP, PCP, BPA, TBBPA, TCBPA and 4-phenylphenol were ERα agonists, while 4-t-OP, PCP and 4-phenylphenol showed ERα antagonistic activities. 2-tert-Butylphenol, 4-t-OP, 2-isopropylphenol, 2,4-DCP, 3,4-DCP, BPA, TCBPA and 4-phenylphenol were antagonists for AR, whereas none of the compounds studied were found to be an AR agonist. TCBPA, TBBPA and PCP were PR antagonists, and 2-tert-butylphenol, 3,4-DCP, 4-t-OP, 4-phenylphenol and 2-isopropylphenol were weak inhibitors on expression under control of the PR. None of the phenols were PR agonists. 2-tert-Butylphenol, 4-t-OP and PCP were ERRγ inverse agonists, while 2,4-DCP, 3,4-DCP, PCP, BPA, TBBPA and TCBPA exhibited the ability to reverse the ERR inhibition induced by 4-hydroxytamoxifen. Based on the functional agonistic or antagonistic receptor-mediated effects, we further discussed the possible action mechanisms of these phenols as endocrine disrupting chemicals.  相似文献   

8.
Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.  相似文献   

9.
10.
Bisphenol A [BPA; 2,2-bis(4-hydroxyphenyl)propane], which is mainly used in the production of epoxy resins and polycarbonate plastics, is a known endocrine disruptor and is acutely toxic to aquatic organisms. Due to intensified usage of these products, exposure of organisms to BPA via several routes, such as the environment and food, has increased. The aquatic environment is an important area for the study of BPA. This report reviews the literature concerning contamination routes and degradation of BPA in the aquatic environment and its endocrine-disruptive effects on aquatic organisms.  相似文献   

11.
Human exposure to bisphenol A   总被引:3,自引:0,他引:3  
Kang JH  Kondo F  Katayama Y 《Toxicology》2006,226(2-3):79-89
Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl)propane, is made by combining acetone and phenol. It has estrogenic activity and is acutely toxic to aquatic organisms. BPA is used mainly as a material for the production of epoxy resins and polycarbonate plastics. Due to an increase in products based on epoxy resins and polycarbonate plastics, human exposure to BPA has increased. The environment (aquatic environment, air and soil) can be one source of human BPA exposure, but the primary route of human exposure is foods. The daily human intake of BPA is <1 microg/kg body weight/day on the basis of several studies, and whether these doses can have an adverse endocrine disruptive effect on humans, especially fetuses, needs to be studied carefully.  相似文献   

12.
In this study, we investigated the effects of endocrine disrupters bisphenol A (BPA) and nonylphenol (NP) on insulin secretion from rat pancreatic islets. Following acute exposure to BPA and NP, neither BPA nor NP (0.1, 1, 10, 100 and 1000 microg/l) affected insulin secretion in concentrations of 16.7 mM glucose. However, insulin secretion following long-term exposure to BPA or NP for 24 h in 16.7 mM glucose was significantly higher than without exposure. To determine whether increased insulin secretion resulting from long-term exposure to BPA and NP is induced via intracellular estrogen receptors, we blocked the cytosolic/nuclear estrogen receptors, using actinomycin-D (Act-D), an inhibitor of RNA synthesis, and ICI 182,780 (ICI), an estrogen receptor inhibitor. Following long-term exposure to BPA (10 microg/l) or NP (10 microg/l), Act-D or ICI treatment eliminated the facilitation of insulin secretion. In conclusion, we have demonstrated for the first time that long-term exposure to endocrine disrupters, such as BPA and NP, promotes in vitro insulin secretion from the pancreatic islets, via cytosolic/nuclear estrogen receptors.  相似文献   

13.
Bisphenol A (BPA) has been acknowledged as an estrogenic chemical able to interact with human estrogen receptors (ER). Many lines of evidence reveal that BPA has an impact as an endocrine disruptor even at low doses. However, its binding to ER and hormonal activity is extremely weak, making the intrinsic significance of low dose effects obscure. We thus supposed that BPA might interact with nuclear receptor(s) other than ER. Here we show that BPA strongly binds to human estrogen-related receptor gamma (ERRgamma), an orphan receptor and one of 48 human nuclear receptors. In a binding assay using [3H]4-hydroxytamoxifen (4-OHT) as a tracer, BPA exhibited a definite dose-dependent receptor binding curve with the IC50 value of 13.1 nM. 4-Nonylphenol and diethylstilbestrol were considerably weaker (5-50-fold less than BPA). When examined in the reporter gene assay for ERRgamma using HeLa cells, BPA completely preserved ERRgamma's high constitutive activity. Notably, BPA exhibited a distinct antagonist action to reverse the inverse agonist activity of 4-OHT, retaining high basal activity. ERRgamma is expressed in a tissue-restricted manner, for example very strongly in the mammalian brain during development, and in the adult in the brain, lung and other tissues. It will now be important to evaluate whether BPA's hitherto reported low dose effects may be mediated through ERRgamma.  相似文献   

14.
Pharmacokinetics of bisphenol A in neonatal and adult Sprague-Dawley rats   总被引:1,自引:0,他引:1  
Bisphenol A (BPA) is an important industrial chemical used in the manufacture of polycarbonate plastic products and epoxy resin-based food can liners. The presence of BPA in urine of > 90% of Americans aged 6-60 suggests ubiquitous and frequent exposure. The current study used LC/MS/MS to measure serum pharmacokinetics of aglycone (active) and conjugated (inactive) BPA in adult and neonatal Sprague-Dawley rats by oral and injection routes. Deuterated BPA was used to avoid issues of background contamination. Linear pharmacokinetics were observed in adult rats treated orally in the range of 0-200 μg/kg bw. Evidence for enterohepatic recirculation of conjugated, but not aglycone, BPA was observed in adult rats. Significant inverse relationships were observed between postnatal age and measures of internal exposures to aglycone BPA and its elimination. In neonatal rats treated orally, internal exposures to aglycone BPA were substantially lower than from subcutaneous injection. The results reinforce the critical role for first-pass Phase II metabolism of BPA in gut and liver after oral exposure that attenuates internal exposure to the aglycone form in rats of all ages. The internal exposures to aglycone BPA observed in adult and neonatal rats following a single oral dose of 100 μg/kg bw are inconsistent with effects mediated by classical estrogen receptors based on binding affinities. However, an impact on alternative estrogen signaling pathways that have higher receptor affinity cannot be excluded in neonatal rats. These findings emphasize the importance of matching aglycone BPA internal dosimetry with receptor affinities in experimental animal studies reporting toxicity.  相似文献   

15.
This study examines the effects of neonatal exposure to the endocrine disruptor bisphenol A (BPA) on the neural network that controls estrous cyclicity. From postnatal day 1 (PND1) to PND7, female pups were injected with vehicle (control) or BPA (BPA.05: 0.05mg/kg-d, BPA20: 20mg/kg-d). At PND100 BPA.05-females showed alterations in estrous cyclicity and BPA20-females were incapable of producing an estradiol-induced LH surge. By real-time PCR we determined that hypothalamic expression of mature LH-releasing hormone (LHRH) mRNA was increased in BPA.05 and decreased in BPA20-females. Furthermore, unprocessed intron A-containing LHRH RNA was decreased in the cytoplasm of hypothalamic cells of both groups. Immunohistochemistry revealed that estrogen receptor alpha protein was up-regulated in anteroventral periventricular and down-regulated in arcuate nucleus of both groups. Our results show that BPA permanently disrupts hypothalamic LHRH pre-mRNA processing and steroid receptors expression in nuclei that control estrous cyclicity in adult rats.  相似文献   

16.
1. Metabolism in vivo of 3,4,3′,4′-tetrachlorobiphenyl (TCB) and toxicological assessment of the metabolites were investigated in the rat.

2. Four metabolites were isolated from faeces of rats dosed with 3,4,3′,4′-TCB. Two were identified as 5-hydroxy-3,4,3′,4′-TCB and a chlorine-shift metabolite, 4-hydroxy-3,5,3′,4′-TCB, by comparison of melting points, chromatographic mobilities and spectral features with those of the synthetic samples. A dihydroxy-TCB and monohydroxy-trichlorobiphenyl were also indicated by mass spectrometry to be excreted in faeces as minor metabolites.

3. Faecal excretion of unchanged 3,4,3′,4′-TCB, 5-hydroxy-3,4,3′,4′-TCB and 4-hydroxy-3,5,3′,4′-TCB was 0.8%, 19.6% and 11.6% of dose, respectively, in 5 days after i.p. injection of 3,4,3′,4′-TCB at a dose of 50mg/kg.

4. From the inability to cause the liver hypertrophy and thymus atrophy, both monohydroxy-metabolites of 3,4,3′,4′-TCB are much less toxic than the parent 3,4,3′,4,-TCB. In addition, these phenolic metabolites did not induce the activities of benzo[a]pyrene hydroxylase and DT-diaphorase, whereas 3,4,3′,4′-TCB greatly induced these activities. These results indicated that unlike PCB congeners with phenobarbital-type inducing ability, 3,4,3′,4′-TCB, a prototype of 3-methylcholanthrene-type inducers. is detoxified by metabolic hydroxylation.  相似文献   

17.
Novel methods that predict the sensitivity of avian embryos to the toxic effects of dioxin-like compounds (DLCs) using either (1) knowledge of the identity of amino acids at key sites within the ligand binding domain of aryl hydrocarbon receptor 1 (AHR1) or (2) a luciferase reporter gene assay that measures AHR1 activation were recently reported. Results from both methods predict that European starling (Sturnus vulgaris) and domestic chicken (Gallus gallus domesticus) embryos have similar sensitivity to the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Chicken embryos are highly sensitive to DLC toxicity, and the prediction that starlings are equally sensitive is surprising given their widespread distribution and large population size. In an attempt to learn more about starling sensitivity to DLCs, we determined concentration-dependent effects of TCDD, PeCDF and TCDF on cytochrome P4501A4 and 1A5 (CYP1A4 and 1A5) mRNA levels in primary cultures of hepatocytes prepared from embryonic European starlings. It has been demonstrated that the sensitivity of avian hepatocytes to CYP1A4/5 induction is well correlated with LD50 values of DLCs for several avian species. The results of the present study indicate that European starling hepatocytes are indeed as sensitive as chicken hepatocytes to CYP1A4/5 induction after exposure to TCDD. However, starling hepatocytes are less sensitive than chicken hepatocytes to CYP1A4/5 induction by PeCDF and TCDF.  相似文献   

18.
Bisphenol A (BPA) is a chemical compound used in massive amounts in the production of synthetic polymers and thermal paper. In this review, the sources of BPA, which influence its occurrence in the environment and human surrounding will be presented. Data concerning BPA occurrence in food, water and indoor environments as well as its appearance in tissues and body fluids of human body will be shown. The results of in vitro and in vivo studies and the results of epidemiological surveys showing toxic, endocrine, mutagenic and cancerogenic action of BPA will also be discussed. Moreover, data suggesting that exposure of human to BPA may elevate risk of obesity, diabetes and coronary heart diseases will be presented. Finally, biotransformation of BPA in animals, plants and microorganisms (bacteria, fungi, algae), resulting in the formation of various metabolites that exhibit different from BPA toxicity will be described.  相似文献   

19.
Dioxins cause various adverse effects in animals including teratogenesis, induction of drug metabolizing enzymes, tumor promotion, and endocrine disruption. Above all, endocrine disruption is known to disturb reproduction in adult animals and may, also seriously impact their offspring. However, most previous studies have quantified the species-specific accumulation of dioxins, whereas few studies have addressed the physiological impacts of dioxins on wildlife, such as reduced reproductive function. Here we clarify an effect of endocrine disruption caused by dioxins on the Japanese field mouse, Apodemus speciosus. Japanese field mice collected from various sites polluted with dioxins accumulated high concentrations of dioxins in their livers. Some dioxin congeners, especially, 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin, 3,3′,4,4′,5-pentachloro biphenyl, 1,2,3,4,6,7,8-heptachlorodibenzofuran, and octachlorodibenzo-p-dioxin, which showed high biota-soil accumulation factors, contributed to concentration of dioxins in mouse livers with an increase of accumulation of total dioxins. As for physiological effects on the Japanese field mouse, high levels of cytochrome P450 1A1 (CYP1A1) mRNA, a drug metabolizing enzyme induced by dioxins, were found in the livers of mice captured at polluted sites. Furthermore, at such sites polluted with dioxins, increased CYP1A1 expression coincided with reduced numbers of active spermatozoa in mice. Thus, disruption in gametogenesis observed in these mice suggests that dioxins not only negatively impact reproduction among Japanese field mice, but might also act as a kind of selection pressure in a chemically polluted environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号