首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The cell cycle, which is precisely controlled by a number of regulators, including cyclins and cyclin-dependent kinases (CDKs), is crucial for the life cycle of mammals. Cell cycle dysregulation is implicated in many diseases, including cancer. Recently, compelling evidence has been found that microRNAs play important roles in the regulation of cell cycle progression by modulating the expression of cyclins, CDKs and other cell cycle regulators. Herein, the recent findings on the regulation of the cell cycle by microRNAs are summarized, and the potential implications of miRNAs in anti-cancer therapies are discussed.  相似文献   

4.
Cyclin-dependent kinases (CDKs) have recently raised considerable interest in view of their key role in the regulation of the cell cycle progression. In proliferating cells, distinct CDKs associated with specific cyclins coordinate in an orchestrated way the appropriate transition between different phases of the cell cycle. Mutations and/or aberrant expression of distinct CDKs and their regulatory components lead to uncontrolled proliferation and finally to carcinogenesis. However, in post-mitotic neurons, all CDKs with the exception of CDK5 are silent. CDK5, a proline-directed serine/threonine kinase exhibiting a close structural homology to the mitotic CDKs, binds to p35, the neuron-specific regulatory subunit of CDK5. CDK5 is very abundant in mature neurons and seems to regulate neurotransmitter release through phosphorylation and down-regulation of calcium channel activity. Therefore, the inhibition of CDKs in neurons after oxidative stress and in neurodegenerative disorders has a protective action. Selective CDKs inhibitors were developed as promising drugs for cancer therapy due to their ability to arrest cell cycle progression. The aim of this study was to compare the anti-proliferative effect of roscovitine (ROSC), a potent CDKs inhibitor, with that of cisplatin (CP) on human breast cancer MCF-7 cells. ROSC exerted stronger inhibitory effect on proliferation and cell cycle progression of MCF-7 than CP. Accumulation of G(2)/M arrested cells starting 6 h after onset of ROSC treatment coincided with a strong up-regulation of the p53. Reconstitution with caspase-3 sensitized MCF-7 cells to CP action. It implicates that ROSC inhibits more selectively and efficaciously the proliferation of human breast carcinoma cells.  相似文献   

5.
6.
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Earlier, we have shown that aniline-induced oxidative stress is associated with increased oxidative DNA damage in rat spleen. The base excision repair (BER) pathway is the major mechanism for the repair of oxidative DNA base lesions, and we have shown an up-regulation of 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase involved in the removal of 8-hydroxy-2′-deoxyguanosine (8-OHdG) adducts, following aniline exposure. Nei-like DNA glycosylases (NEIL1/2) belong to a family of BER proteins that are distinct from other DNA glycosylases, including OGG1. However, contribution of NEIL1/2 in the repair of aniline-induced oxidative DNA damage in the spleen is not known. This study was, therefore, focused on evaluating if NEILs also contribute to the repair of oxidative DNA lesions in the spleen following aniline exposure. To achieve that, male SD rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. The BER activity of NEIL1/2 was assayed using a bubble structure substrate containing 5-OHU (preferred substrates for NEIL1 and NEIL2) and by quantitating the cleavage products. Aniline treatment led to a 1.25-fold increase in the NEIL1/2-associated BER activity in the nuclear extracts of spleen compared to the controls. Real-time PCR analysis for NEIL1 and NEIL2 mRNA expression in the spleen revealed 2.7- and 3.9-fold increases, respectively, in aniline-treated rats compared to controls. Likewise, Western blot analysis showed that protein expression of NEIL1 and NEIL2 in the nuclear extract of spleens from aniline-treated rats was 2.0- and 3.8-fold higher than controls, respectively. Aniline treatment also led to stronger immunoreactivity for NEIL1 and NEIL2 in the spleens, confined to the red pulp areas. These studies, thus, show that aniline-induced oxidative stress is associated with an induction of NEIL1/2. The increased NIEL-mediated BER activity is another indication of aniline-induced oxidative damage in the spleen and could constitute another important mechanism of removal of oxidative DNA lesions, especially in transcribed DNA following aniline insult.  相似文献   

7.
《Toxicology in vitro》2010,24(3):928-935
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules with profound impact on various biological processes. Some miRNAs are involved in tumorigenesis by regulation of cell cycle progression. Here, we cultured primary murine bronchial epithelial cells and then examined the expression of miR-320 and miR-494 in cells exposed to benzo[a]pyrene (B[a]P). To better characterize roles of miR-320 and miR-494 in cell cycle progression, we used miRNA inhibitors to downregulate expression of miRNAs and determined cell cycle distribution and expression of cyclin-dependent kinases 6 (CDK6) by flow cytometric analysis. Treating cells with 1 μM B[a]P for 24 h resulted in time-dependent increases in miR-320 and miR-494 expression. Moreover, G1 arrest and downregulated expression of CDK6 were shown in the treated cells. Flow cytometric analysis indicated a relief of G1 arrest and an elevated expression of CDK6 after inhibition of the expressions of miR-320 and miR-494 in cells exposed to B[a]P. These results suggest that expression levels of miRNA-320 and miR-494, which regulate B[a]P-exposed cell cycle progression, may impact G1/S transition through CDK6, and provide further insights into functions of miRNAs in cell cycle of primary murine bronchial epithelial cells exposed to B[a]P.  相似文献   

8.
The eukaryotic cell division cycle is coordinated by cyclin-dependent protein kinases (CDKs) and cyclin subunits specific for the different phases of the cycle. These complexes phosphorylate target substrates, including the retinoblastoma susceptibility gene product (pRb) and related proteins. Cellular neoplastic transformations are accompanied by loss of regulation of cell cycle checkpoints, frequently through aberrant expression of CDKs and cyclins, as well as loss or mutation of their negative regulators. Consequently, one strategy in the development of mechanism-based anticancer therapeutics has been to halt malignant cellular proliferation through inhibition of the enzymatic activity of CDKs. The development of inhibitors selective for the ATP binding sites of particular protein kinases is a comparatively recent medicinal chemistry endeavor. Advances relevant to CDK inhibition are reviewed critically and alternative approaches to CDK inhibition, as well as applications of CDK inhibitors to therapeutic areas other than oncology, are also discussed.  相似文献   

9.
Cyclin-dependent kinases (CDKs) are serine/threonine kinases that play a key role in the regulation of the cell cycle progression. In proliferating cells, distinct CDKs activated upon complexing with specific cyclins and upon site-specific phosphorylation coordinate in an orchestrated way the appropriate transition between consecutive phases of the cell cycle. Aberrant expression or altered activity of distinct CDK complexes results in escape of cells from the cell cycle control and leads to malignant transformation. Therefore, the inhibition of CDKs in malignant cells provides a new strategy in the fight against cancer. Recently, selective CDK inhibitors targeting distinct CDKs were developed. They represent promising anti-cancer drugs due to their strong anti-proliferative efficacy combined with a relative low direct cytotoxicity. The aim of this study was to compare the effect of two related CDK inhibitors: roscovitine (ROSC) and olomoucine (OLO) on the cell cycle progression in human breast cancer MCF-7 cells. Both examined CDK inhibitors differentially affected the cell cycle progression in MCF-7 cels. Whereas ROSC arrested cells in G(2)/M, OLO inhibited cells at S to G(2) transition and increased the number of cells residing in the S-phase. Moreover, both CDK inhibitors modulated the cell cycle progression with distinct kinetics. Accumulation of G(2)/M-arrested cells beginning 6 h after exposure of cells to ROSC coincided with a strong up-regulation of the p53. Interestingly, ROSC triggered apoptosis in MCF-7 cells by activation of mitochondrial pathway. Loss of the integrity of mitochondrial membrane observed after exposure of cells to ROSC for 6 h led to release of distinct mitochondrial proteins, e.g. apoptosis inducing factor (AIF). In contrast to ROSC, OLO-induced cell cycle changes could be detected after 12 h of the treatment. OLO did not up-regulate p53 protein. It indicates that both examined CDK inhibitors are selective and block the cell cycle progression of human breast carcinoma cells at different phases.  相似文献   

10.
Wang Q  Su L  Liu N  Zhang L  Xu W  Fang H 《Current medicinal chemistry》2011,18(13):2025-2043
Cyclin dependent kinases (CDKs) are a family of proteins involved in the regulation of cell cycle progression and attractive targets in oncology. The regulation of CDKs activities is achieved by their association with cyclin partners and kinases, phosphatases and specific inhibitors. Different CDKs complexes exert their functions at different phases. CDK1 is a master modulator in the initiation and transition process through mitosis of the cell cycle. Previous studies have shown that loss of CDK1 activity or the aberrant expression of CDK1 involved in G2 phase arrest and many tumor types, thereby validating CDK1 as a therapeutic target. Therefore, a surge of interest has been devoted to searching for potent CDK1 inhibitors as effective chemotherapeutic agents. Herein we focus, in this review, mainly on the studies about the structure, functions and different structure classes of potent CDK1 inhibitors.  相似文献   

11.
In current models of cell cycle control, the transition between different cell cycle states is regulated at checkpoints. Transition through the cell-cycle is induced by a family of protein kinase holoenzymes, the cyclin-dependent kinases (CDKs) and their heterodimeric cyclin partner. Orderly progression through the cell-cycle involves co-ordinated activation of the CDKs, which in the presence of an associated CDK-activating kinase, phosphorylate target substrates including members of the 'pocket protein' family. This family includes the product of the retinoblastoma susceptibility gene (the pRb protein) and the related p107 and p130 proteins. Activity of these holoenzymes is regulated by post-translational modification. Phosphorylation of inhibitory sites on a conserved threonine residue within the activation segment is regulated by CDK7/cyclin H, referred to as CDK-activating kinase [1]. In addition, the cdc25 phosphatases activate the CDKs by dephosphorylating their inhibitory tyrosine and threonine phosphorylated residues [2,3]. Among the many roles for endogenous inhibitors (CDKIs), including members of the p21(CIP1/Waf1) family and the p16 family, one role is to regulate cyclin activity. Cellular neoplastic transformation is accompanied by loss of regulation of cell cycle checkpoints in conjunction with aberrant expression of CDKs and/or cyclins and the loss or mutation of the negative regulators (the CDKIs or the pocket protein pRb). One strategy to inhibit malignant cellular proliferation involves inhibiting CDK activity or enhancing function of the CDKI. Novel inhibitors of CDKs showing promise in the clinic include flavopiridol and UCN-01, which show early evidence of human tolerability in clinical trials. This review examines pertinent advances in the field of CDK inhibitors.  相似文献   

12.
The cyclin-dependent kinases (CDKs), as complexes with their respective partners, the cyclins, are critical regulators of cell cycle progression. Because aberrant regulations of CDK4/cyclin D1 lead to uncontrolled cell proliferation, a hallmark of cancer, small-molecule inhibitors of CDK4/cyclin D1 are attractive as prospective antitumor agents. The series of 4-(phenylaminomethylene)isoquinoline-1,3(2H,4H)-dione derivatives reported here represents a novel class of potent inhibitors that selectively inhibit CDK4 over CDK2 and CDK1 activities. In the headpiece of the 4-(phenylaminomethylene)isoquinoline-1,3(2H,4H)-dione, a basic amine substituent is required on the aniline ring for the CDK4 inhibitory activity. The inhibitory activity is further enhanced when an aryl or heteroaryl substituent is introduced at the C-6 position of the isoquinoline-1,3(2H,4H)-dione core. We present here SAR data and a CDK4 mimic model that explains the binding, potency, and selectivity of our CDK4 selective inhibitors.  相似文献   

13.
In current models of cell cycle control, the transition between different cell cycle states is regulated at checkpoints. Transition through the cell-cycle is induced by a family of protein kinase holoenzymes, the cyclin-dependent kinases (CDKs) and their heterodimeric cyclin partner. Orderly progression through the cell-cycle involves co-ordinated activation of the CDKs, which in the presence of an associated CDK-activating kinase, phosphorylate target substrates including members of the ‘pocket protein’ family. This family includes the product of the retinoblastoma susceptibility gene (the pRb protein) and the related p107 and p130 proteins. Activity of these holoenzymes is regulated by post-translational modification. Phosphorylation of inhibitory sites on a conserved threonine residue within the activation segment is regulated by CDK7/cyclin H, referred to as CDK-activating kinase [1]. In addition, the cdc25 phosphatases activate the CDKs by dephosphorylating their inhibitory tyrosine and threonine phosphorylated residues [2,3]. Among the many roles for endogenous inhibitors (CDKIs), including members of the p21CIP1/Waf1 family and the p16 family, one role is to regulate cyclin activity. Cellular neoplastic transformation is accompanied by loss of regulation of cell cycle checkpoints in conjunction with aberrant expression of CDKs and/or cyclins and the loss or mutation of the negative regulators (the CDKIs or the pocket protein pRb). One strategy to inhibit malignant cellular proliferation involves inhibiting CDK activity or enhancing function of the CDKI. Novel inhibitors of CDKs showing promise in the clinic include flavopiridol and UCN-01, which show early evidence of human tolerability in clinical trials. This review examines pertinent advances in the field of CDK inhibitors.  相似文献   

14.
Epirubicin is widely used in osteosarcoma chemotherapy. Growing evidence indicates that the microRNA (miRNA) expression levels which are induced by chemotherapeutic agents play an important role in osteosarcoma development and progression. In this study we investigate the alterations of miRNA expression in the osteosarcoma cells after epirubicin treatment and whether miRNAs can enhance its anti-osteosarcoma effect. After epirubicin exposure, microarray shows 40 miRNAs are differentially expressed in osteosarcoma cells including 24 down-regulated miRNAs. Notably, miR-302b, which is stably low-expressed in osteosarcoma, could be induced by the epirubicin. Furthermore, we find that miR-302b can inhibit the osteosarcoma cell proliferation, promote cell apoptosis and cell cycle arrest MiR-302b can activate caspase-3 and regulate the Akt/pAkt, Bcl-2, Bim expression to increase the cell apoptosis. Meanwhile, miR-302b also attenuates cyclin D1 and CDKs expression to induce cell cycle arrest. Therefore, our results suggest miR-302b can play an essential role in osteosarcoma treatment as a potential tumor suppressor.  相似文献   

15.
The mechanisms by which aniline exposure elicits splenotoxic response, especially the tumorigenic response, are not well-understood. Splenotoxicity of aniline is associated with iron overload and generation of reactive oxygen species (ROS) which can cause oxidative damage to DNA, proteins and lipids (oxidative stress). 8-Hydroxy-2′-deoxyguanosine (8-OHdG) is one of the most abundant oxidative DNA lesions resulting from ROS, and 8-oxoguanine glycosylase 1 (OGG1), a specific DNA glycosylase/lyase enzyme, plays a key role in the removal of 8-OHdG adducts. This study focused on examining DNA damage (8-OHdG) and repair (OGG1) in the spleen in an experimental condition preceding a tumorigenic response. To achieve that, male Sprague-Dawley rats were subchronically exposed to aniline (0.5 mmol/kg/day via drinking water for 30 days), while controls received drinking water only. Aniline treatment led to a significant increase in splenic oxidative DNA damage, manifested as a 2.8-fold increase in 8-OHdG levels. DNA repair activity, measured as OGG1 base excision repair (BER) activity, increased by ∼ 1.3 fold in the nuclear protein extracts (NE) and ∼ 1.2 fold in the mitochondrial protein extracts (ME) of spleens from aniline-treated rats as compared to the controls. Real-time PCR analysis for OGG1 mRNA expression in the spleen revealed a 2-fold increase in expression in aniline-treated rats than the controls. Likewise, OGG1 protein expression in the NEs of spleens from aniline-treated rats was ∼ 1.5 fold higher, whereas in the MEs it was ∼ 1.3 fold higher than the controls. Aniline treatment also led to stronger immunostaining for both 8-OHdG and OGG1 in the spleens, confined to the red pulp areas. It is thus evident from our studies that aniline-induced oxidative stress is associated with increased oxidative DNA damage. The BER pathway was also activated, but not enough to prevent the accumulation of oxidative DNA damage (8-OHdG). Accumulation of mutagenic oxidative DNA lesions in the spleen following exposure to aniline could play a critical role in the tumorigenic process.  相似文献   

16.
Our earlier studies with aniline suggested the involvement of oxidative stress as an early toxic event in the spleen. In order to understand the status and consequences of the damaging oxidative reactions, especially during the progression of characteristic splenic lesions, time-dependent subchronic studies were conducted in rats. Male Sprague-Dawley rats were treated with 65 mg/kg/day aniline in the drinking water, while control rats received drinking water only. The animals were euthanized after 1, 2, or 3 months of aniline exposure. Total iron content was remarkably greater in the aniline-treated rats than in age-matched controls. There were time-dependent increases in splenic lipid peroxidation of aniline-treated rats. Malondialdehyde-protein adducts were quantitated by a competitive ELISA and showed greater concentrations in the spleens of aniline-treated rats, further substantiating our lipid peroxidation results. Protein oxidation in the spleens of aniline-treated rats was also greater, with a maximum increase of approximately 76% at 3 months. Western blot analysis for oxidized proteins showed two distinct protein bands at approximately 114 kD and approximately 69 kD in both post-nuclear and mitochondrial fractions of the spleens. Furthermore, densitometric analysis of the blot showed increased band intensities of the oxidized proteins in both these spleen fractions from aniline-treated rats, suggesting the susceptibility of these proteins to aniline-induced oxidative stress. The most prominent morphological changes in the spleens of aniline-treated rats included thickening of the capsule, and capsular cells with nuclear prominence and hyperchromia indicative of capsular hyperplasia. These capsular changes and fibrosis of capsule, splenic trabeculae, and red pulp were noted at all three time points after aniline exposure. Our studies thus suggest that aniline-induced oxidative stress in the spleen is an ongoing event that leads to oxidative modifications of biomolecules. Such oxidative modifications, directly or indirectly, could contribute to the splenic toxicity leading to deleterious consequences, including capsular hyperplasia and fibrosis, as observed in this study, and possibly tumorigenesis in chronic aniline exposure conditions.  相似文献   

17.
18.
Cell cycle molecular targets in novel anticancer drug discovery   总被引:10,自引:0,他引:10  
A number of potential molecular targets for novel anticancer drug discovery have been identified in cell cycle control mechanisms. Prominent among these are the regulatory proteins, cyclins and their effector counterparts the cyclin dependent kinases (CDKs). Aberrant expression of these proteins, particularly cyclins involved in the G1 phase of the cell cycle, namely the D and E cyclins, has been associated with a variety of human cancers, including breast and colorectal cancer, B-lymphoma, prostate and non-small cell lung cancer. Inhibition of CDK kinase activity has turned out to be the most productive strategy for the discovery and design novel anticancer agents specifically targeting the cell cycle. Other potentially useful cell cycle areas for exploration include cyclin-CDK interactions, Cdc25 activation of cyclin-CDK complexes, ubiquitin-mediated proteolysis of cyclins, cell cycle check point kinases like Chk1, and recently identified oncogenic cell cycle-related aurora and polo-like kinases. Potent specific inhibitors have been identified that bind to the ATP site of CDKs, mainly cyclin B-CDK1, cyclin A-CDK2, and cyclin D-CDK4 complexes, and inhibit kinase activity. X-ray crystallographic data of CDKs, and their complexes with inhibitors have played a major role in the success of drug discovery efforts. Combinatorial chemistry, highthroughput screening, functional genomics and informatics have also contributed. CDK inhibitors currently under investigation include flavopiridol, olomoucine, roscovitine, puvalanol B, the dihydroindolo[3,2-d][1]benzazepinone kenpaullone, indirubin-3 -monoxime and novel diaminothiazoles such as AG12275. The anticancer therapeutic potential of CDK inhibitors has been demonstrated in preclinical studies, and Phases I and II clinical trials in cancer patients are currently underway.  相似文献   

19.
20.
In our previous study, a novel phenylbutenoid dimer (+/-)-trans-3-(3,4-dimethoxyphenyl)-4-[(E)-3,4-dimethoxystyryl]cyclohex-1-ene (PSC), isolated from Zingiber cassumunar ROXB. (Zingiberaceae), inhibited proliferation of various human cancer cells with the IC(50) values ranging 10 to 30 microM. Prompted by these anti-proliferative effects, we performed additional studies in A549 human lung cancer cells in order to investigate the mechanism of action. PSC arrested cell cycle progression at the G0/G1 phase in a concentration- and time-dependent manner. PSC dose-dependently induced cyclin-dependent kinase (CDK) inhibitor p21 expression, whereas the expression of cyclin D1, cyclin A, CDK4, CDK2, and proliferating cell nuclear antigen (PCNA) were decreased by treatment with PSC. These results suggest that one of the anti-proliferative mechanisms of PSC is to suppress cell cycle progression by increasing p21 expression and down-regulating cyclins and CDKs. This study characterizes additional biological activity of this novel phenylbutenoid dimer and expands its therapeutic potential for cancer as a chemotherapeutic agent derived from natural products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号