首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The European legislation on plant protection products (Regulation (EC) No. 1107/2009) and biocides (Directive 98/8/EC), as well as the regulation concerning chemicals (Regulation (EC) No. 1907/2006 ‘REACH’) only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or non-target species. However, there is currently no agreed guidance on how to identify and evaluate endocrine activity and disruption. Consequently, an ECETOC task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. Specific scientific criteria for the determination of endocrine disrupting properties that integrate information from both regulatory (eco)toxicity studies and mechanistic/screening studies are proposed. These criteria combine the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. The criteria developed are presented in the form of flow charts for assessing relevant effects for both humans and wildlife species. In addition, since not all chemicals with endocrine disrupting properties are of equal hazard, assessment of potency is also proposed to discriminate chemicals of high concern from those of lower concern. The guidance presented in this paper includes refinements made to an initial proposal following discussion of the criteria at a workshop of invited regulatory, academic and industry scientists.  相似文献   

2.
This paper presents a comprehensive review of European Union (EU) legislation addressing the safety of chemical substances, and possibilities within each piece of legislation for applying grouping and read-across approaches for the assessment of nanomaterials (NMs). Hence, this review considers both the overarching regulation of chemical substances under REACH (Regulation (EC) No 1907/2006 on registration, evaluation, authorization, and restriction of chemicals) and CLP (Regulation (EC) No 1272/2008 on classification, labeling and packaging of substances and mixtures) and the sector-specific pieces of legislation for cosmetic, plant protection and biocidal products, and legislation addressing food, novel food, and food contact materials. The relevant supporting documents (e.g. guidance documents) regarding each piece of legislation were identified and reviewed, considering the relevant technical and scientific literature. Prospective regulatory needs for implementing grouping in the assessment of NMs were identified, and the question whether each particular piece of legislation permits the use of grouping and read-across to address information gaps was answered.  相似文献   

3.
The European regulation on plant protection products (1107/2009) (EC, 2009a), the revisions to the biocides Directive (COM[2009]267) (EC, 2009b), and the regulation concerning chemicals (Regulation (EC) No. 1907/2006 ‘REACH’) (EC.2006) only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. In the absence of agreed guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. The resulting ECETOC technical report (ECETOC, 2009a) and the associated workshop (ECETOC, 2009b) presented a science-based concept on how to identify endocrine activity and disrupting properties of chemicals for both human health and the environment. The synthesis of the technical report and the workshop report was published by the ECETOC task force (Bars et al., 2011a and Bars et al., 2011b). Specific scientific criteria for the determination of endocrine activity and disrupting properties that integrate information from both regulatory (eco)toxicity studies and mechanistic/screening studies were proposed. These criteria combined the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. A key element in the data evaluation is the consideration of all available information in a weight-of-evidence approach. However, to be able to discriminate chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes), the task force recognised that the concept needed further refinement. Following a discussion of the key factors at a second workshop of invited regulatory, academic and industry scientists (ECETOC, 2011), the task force developed further guidance, which is presented in this paper. For human health assessments these factors include the relevance to humans of the endocrine mechanism of toxicity, the specificity of the endocrine effects with respect to other potential toxic effects, the potency of the chemical to induce endocrine toxicity and consideration of exposure levels. For ecotoxicological assessments the key considerations include specificity and potency, but also extend to the consideration of population relevance and negligible exposure. It is intended that these complement and reinforce the approach originally described and previously published in this journal (Bars et al., 2011a and Bars et al., 2011b).  相似文献   

4.
The European regulation on plant protection products (1107/2009) and other related legislation only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. This legislation would appear to make the assumption that endocrine active chemicals should be managed differently from other chemicals presumably due to an assumed lack of a threshold for adverse effects. In the absence of agreed scientific criteria and guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation, a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. The first ECETOC technical report and associated workshop, held in 2009, presented a science-based concept on how to identify endocrine activity and disrupting properties of chemicals for both human health and the environment. Specific scientific criteria for the determination of endocrine activity and disrupting properties that integrate information from both regulatory toxicity studies and mechanistic/screening studies were proposed. These criteria combined the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. A key element in the data evaluation is the consideration of all available information in a weight-of-evidence approach.  相似文献   

5.
Recent decades have seen an increasing interest in chemicals that interact with the endocrine system and have the potential to alter the normal function of this system in humans and wildlife. Chemicals that produce adverse effects caused by interaction with endocrine systems are termed Endocrine Disrupters (EDs). This interest has led regulatory authorities around the world (including the European Union) to consider whether potential endocrine disrupters should be identified and assessed for effects on human health and wildlife and what harmonised criteria could be used for such an assessment. This paper reviews the results of a study whereby toxicity data relating to human health effects of 98 pesticides were assessed for endocrine disruption potential using a number of criteria including the Specific Target Organ Toxicity for repeat exposure (STOT-RE) guidance values used in the European Classification, Labelling and Packaging (CLP) Regulation. Of the pesticides assessed, 27% required further information in order to make a more definitive assessment, 14% were considered to be endocrine disrupters, more or less likely to pose a risk, and 59% were considered not to be endocrine disrupters.  相似文献   

6.
Chemistry enables more than 95% of products in the marketplace. Over the past 20 years, various entities began to generate inventories of chemicals (“chemical watch lists”) potentially associated with human or environmental health risks. Some lists included thousands of chemicals, while others listed only a few chemistries with limited properties or toxicological endpoints (e.g., neurotoxicants). Enacted on October 1, 2013, the California Safer Consumer Products Regulation (SCP) utilized data from chemical inventory lists to create one master list. This paper aims to discuss the background and requirements of this regulation. Additionally, we wanted to understand the universe of Candidate Chemicals identified by the Regulation. Data from all 23 chemical lists identified in the SCP Regulation were entered into a database. The most prevalent chemicals among the ∼2900 chemicals are identified, including the most prevalent chemical, lead, appearing on 65% of lists, followed by DEHP (52%), perchloroethylene (48%), and benzene (48%). Our results indicated that the most prevalent Candidate Chemicals were either persistent, bioaccumulative, carcinogenic, or reprotoxic. This regulation will have wide-ranging impact in California and throughout the global supply chain, which is highlighted through selected examples and case studies.  相似文献   

7.
In Europe, the data requirements for the hazard and exposure characterisation of chemicals are defined according to the REACH regulation and its guidance on information requirements and chemical safety assessment (Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), and its guidance documents; available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:396:0001:0849:EN:PDF; and at: http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_en.htm). This is the basis for any related risk assessment. The standard reference for the testing of cosmetic ingredients is the SCCP’s ‘Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation’ (The SCCP’s Notes of Guidance for the testing of cosmetic ingredients and their safety evaluation (2006); available at: http://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_03j.pdf), which refers to the OECD guidelines for the testing of chemicals (The OECD Guidelines for the Testing of Chemicals as a collection of the most relevant internationally agreed testing methods used by government, industry and independent laboratories to assess the safety of chemical products; available at: http://www.oecd.org/topic/0,2686,en_2649_34377_1_1_1_1_37407,00.html). According to the cosmetics directive [76/768/EEC], compounds that are classified as mutagenic, carcinogenic or toxic to reproduction are banned for the use in cosmetic products. Since December 2010, the respective labelling is based on the rules of regulation (EC) No. 1272/2008 (Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006, Official Journal L 353, 31/12/2008, pages 1–1355; available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:353:0001:1355:en:PDF) on classification, labelling and packaging of substances and mixtures (CLP). There is no further impact from the CLP regulation on cosmetic products, because regulation (EC) No. 1223/2009 on cosmetic products defines its own labelling rules (Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products; available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:342:0059:0209:en:PDF). Special notification procedures are mandatory for preservatives, colourants and UV-filters where a safety approval from the European ‘Scientific Committee on Consumer Safety’ (SCCS) is needed prior to marketing. The risk assessment of nanomaterials in consumer products still poses a significant challenge as highlighted by the example of UV-filters in sunscreens since nanomaterials cannot be classified as a homogenous group of chemicals but still need to be addressed in risk characterisation on a case by case basis.  相似文献   

8.
Since the European Commission prohibited the use of bisphenol A in the production of polycarbonate (PC) baby bottles, many other materials have replaced PC for the manufacture of this type of food contact materials. In the present study, the potential migration risks associated with these alternative materials were investigated. First, all substances were evaluated for endocrine disruptive (ED) activity by using different existing lists of (suspected) ED chemicals. Next, the potential non-ED risks were assessed. A distinction was made between migrants listed in Annex I of European Regulation 10/2011 and the unlisted substances (e.g. non-intentionally added substances). For the listed substances, concentrations in the migration solutions were compared to their respective specific migration limits (SML) (when applicable). Migration of all substances was shown to be below their SML. The unlisted substances were evaluated using toxicological information from previous evaluations, or if not available, by applying the Threshold of Toxicological Concern (TTC) approach. In case the estimated exposure to the unlisted substance exceeded the human exposure TTC value, a more indepth risk assessment was performed. Based on the results of both parts of the study, four baby bottles were considered of high concern because of the potential toxicity of migrating compounds.  相似文献   

9.
Guidance for determining the sensitizing potential of chemicals is available in EC Regulation No. 1272/2008 Classification, Labeling, and Packaging of Substances; REACH guidance from the European Chemicals Agency; and the United Nations Globally Harmonized System (GHS). We created decision trees for evaluating potential skin and respiratory sensitizers. Our approach (1) brings all the regulatory information into one brief document, providing a step-by-step method to evaluate evidence that individual chemicals or mixtures have sensitizing potential; (2) provides an efficient, uniform approach that promotes consistency when evaluations are done by different reviewers; (3) provides a standard way to convey the rationale and information used to classify chemicals. We applied this approach to more than 50 chemicals distributed among 11 evaluators with varying expertise. Evaluators found the decision trees easy to use and recipients (product stewards) of the analyses found that the resulting documentation was consistent across users and met their regulatory needs. Our approach allows for transparency, process management (e.g., documentation, change management, version control), as well as consistency in chemical hazard assessment for REACH, EC Regulation No. 1272/2008 Classification, Labeling, and Packaging of Substances and the GHS.  相似文献   

10.
(1) In 2004, the European Commission proposed a draft European Regulation on paediatric medicines. This draft was more closely oriented towards defending drug companies' interests than with meeting children's medical needs. (2) Despite pressure from drug companies and their allies, several major improvements were made to the draft at its first reading in the European Parliament, thanks especially to the efforts of the Medicines in Europe Forum. (3) In particular, European deputies pushed for a better definition of children's needs and paediatric research priorities, greater transparency at various important stages of the market authorization procedure, and strengthened pharmacovigilance. (4) Yet the incentives and rewards offered to companies fail to take into account the notion of true therapeutic advantages and R&D expenditure. (5) Unfortunately the Commission refused some important amendments and published a new draft proposal, which was accepted by the Council of Health Ministers at the end of 2005. The new draft will come before the Parliament for a second reading in 2006.  相似文献   

11.
Industrial chemicals have been in use for many decades and new products are regularly invented and introduced to the market. Also for decades, many different chemical laws have been introduced to regulate safe handling of chemicals in different use patterns. The patchwork of current regulation in the European Union is to be replaced by the new regulation on industrial chemical control, REACH. REACH stands for registration, evaluation, and authorization of chemicals. REACH entered force on June 1, 2007. REACH aims to overcome limitations in testing requirements of former regulation on industrial chemicals to enhance competitiveness and innovation with regard to manufacture safer substances and to promote the development of alternative testing methods. A main task of REACH is to address data gaps regarding the properties and uses of industrial chemicals. Producers, importers, and downstream users will have to compile and communicate standard information for all chemicals. Information sets to be prepared include safety data sheets (SDS), chemical safety reports (CSR), and chemical safety assessments (CSA). These are designed to guarantee adequate handling in the production chain, in transport and in use and to prevent the substances from being released to and distributed within the environment. Another important aim is to identify the most harmful chemicals and to set incentives to substitute them with safer alternatives. On one hand, REACH will have substantial impact on the basic understanding of the evaluation of chemicals. However, the toxicological sciences can also substantially influence the workability of REACH that supports the transformation of data to the information required to understand and manage acceptable and non acceptable risks in the use of industrial chemicals. The REACH regulation has been laid down in the main document and 17 Annexes of more than 849 pages. Even bigger technical guidance documents will follow and will inform about the rules for application and work out of dossiers. The following article gives a comprehensive overview on the concept of REACH to give deeper insight into this document. Members of the scientific community will have to define their own position as researchers, teachers, and experts to support the efforts to protect human health and the environment. The concept of REACH as well as new approaches to adapt standard testing regimes to foster a risk oriented approach in required work load to decrease animal based tests and to strengthen weight of evidence are explained in detail in this article.  相似文献   

12.
Electronic transmission of information is a key component of the Future System for medicines regulation in the European Union (EU). Data sets and terminology will have to be standardized in order to ensure effective information exchange between organizations. The M edical D ictionary for D rug R egulatory A ffairs (MEDDRA) is a medical terminology being prepared by an international Working Party for use by regulatory authorities, pharmaceutical companies and other relevant organizations. It incorporates terms relevant to all areas of drug regulation, including the marketing authorization (MA) process, MA maintenance/renewal and pharmacovigilance.  相似文献   

13.
Endocrine disrupters--testing strategies to assess human hazard.   总被引:9,自引:0,他引:9  
V A Baker 《Toxicology in vitro》2001,15(4-5):413-419
  相似文献   

14.
15.
The challenge of reproductive and developmental toxicology under REACH.   总被引:2,自引:0,他引:2  
The European Union's REACH regulation has explicit requirements for reproductive and developmental toxicity data on all substances manufactured in or imported into the European Union at > or = 10 metric tons/year. Meeting the data requirements with whole-animal testing could result in the use of almost 22 million vertebrate animals for the registration of existing chemicals and cost up to several hundred thousand dollars per registered substance. The requirement for financial and animal resources can be reduced by the use of in vitro testing, quantitative structure-activity relationship models, and grouping of related substances. Although REACH strongly encourages these methods of avoiding vertebrate animal testing, it does not appear that in vitro testing or quantitative structure-activity relationship analysis will be able to replace whole-animal reproductive and developmental toxicity testing. Grouping of related compounds offers the possibility, perhaps in conjunction with in vitro testing and structure-activity analysis, of reducing vertebrate animal testing provided there is sufficient information on the related compounds and sufficient reason to believe that the related compounds will have similar toxicological properties. The designation of a substance as a reproductive or developmental toxicant follows criteria that do not consider the dose level of the substance at which reproductive or developmental effects occur, as long as excessive generalized toxicity does not occur. This method of labeling substances without consideration of effective dose level does not provide information on the actual risk of the chemical. Designation of a substance as a reproductive or developmental toxicant may have important implications under REACH and can be expected to result in the need to obtain authorization for marketing of the substance in the European Union.  相似文献   

16.
Research continues to support the theory of endocrine disruption. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. The University of Tennessee, Knoxville (UTN), developed a method for hazard scoring chemicals for the aquatic ecosystem. The Indiana Clean Manufacturing Technology and Safe Materials Institute at Purdue University (CMTI) later expanded the scoring system to include terms for worker hazard as well as terms for contamination of soil and air quality, and for stratospheric ozone depletion. We call the CMTI chemical hazard score the Purdue score. At West Virginia University, two improvements of the Purdue chemical hazard score are developed, a normalizing of the term for soil contamination, and addition of hazard score terms for ecosystem endocrine disruption. The results of incorporating endocrine disruption terms into the hazard scoring equations resulted in increased hazard rankings, often substantially increased, for 26 endocrine disrupting chemicals (EDCs) among 200 Superfund chemicals. Because data suggesting human endocrine disruption from such chemicals is still controversial, no endocrine disruptor term has been added to the human toxicity portions of the chemical hazard scoring system at this time. The third product of this work is assembly of a current consolidated list of (1) established or probable, mostly synthetic, industrial chemical and medication EDCs and (2) suspect (less certain) synthetic and natural (phytoestrogen) possible endocrine disrupting chemicals, with the goal of contributing to future development of quantitative structure activity relationship software for predicting whether an untested chemical is likely to be an endocrine disruptor. We conclude that enough endocrine disrupting chemicals are now identified to make an attempt at developing structure activity estimates of disrupting potential worthwhile. Further, we conclude that within a group of 200 chemicals of concern to the US EPA, the addition of endocrine disrupting terms to the Purdue score substantially increases its representativeness in reflecting ecological exposure hazard. We have developed this enhanced Purdue score risk management tool to be of assistance to industry.  相似文献   

17.
(1) Worldwide, there are an estimated 6000 to 7000 rare diseases. Patients face special difficulties in obtaining an accurate diagnosis, adequate information about the disease, and access to qualified specialists. (2) Drug companies do not spontaneously conduct research on drugs for rare diseases, mainly because of the limited market for each indication. Only a few dozen of these drugs were available in France before 2000. (3) In 2000 the European Union adopted a Regulation, based on experience in the United States, aimed at promoting the development of drugs for patients suffering from rare diseases, i.e. 'orphan drugs'. (4) In Europe, orphan drug status can be granted when the prevalence of the disease does not exceed 5 cases per 10 000 inhabitants (or when it is more frequent but profitability is likely to be inadequate). (5) Companies that market an orphan drug receive a variety of financial assistance as well as a 10-year marketing monopoly. (6) Between April 2000 and April 2005, 268 medicinal products received European orphan drug status and 22 were granted European marketing authorization. (7) Access to these drugs varies greatly from one European Union Member State to another, mainly because of the high annual treatment costs (up to 300 000 euros per patient). Worldwide sales of the orphan drug imatinib reached more than two thousand million dollars in 2005. (8) Our systematic analyses (see the New Products column of our French edition la revue Prescrire) show that only 5 drugs which received European orphan drug status before May 2005 were for diseases for which there had previously been no treatment. (9) Clinical evaluation of orphan drugs is hindered by the small number of patients available for clinical trials. Some orphan drugs are adequately tested before being brought to market. Others are not compared to existing treatments. In many cases, surrogate criteria are used instead of clinical endpoints. These methodological flaws are in no way limited to orphan drugs. (10) Not all orphan drugs represent therapeutic advances. Clinical research and evaluation should continue after marketing authorization has been granted. (11) More drugs, with better-documented efficacy and safety, are now available for patients who previously had no effective treatment options. Yet there is too much duplication and too little evaluation, and too many drugs are extremely expensive, meaning that patients in many European countries cannot benefit. And many rare diseases are still neglected.  相似文献   

18.
McGarry HF 《Toxicology》2007,238(2-3):71-89
From June 2007, new chemicals legislation on the registration, evaluation, authorization and restriction of chemicals (REACH) will come into force across the European Union. This will require the submission of data on human health effects of chemicals, including chemical safety assessments which will require measurements of potency. For skin sensitization hazard identification, REACH states that the first-choice in vivo assay is the local lymph node assay (LLNA). This test has also been the UK competent authority's preferred test for skin sensitization since 2002, and has now replaced guinea pig tests in dossiers submitted to it under the Notification of New Substances Regulations. Advantages of the LLNA over guinea pig tests include improvements in animal welfare, a more scientific approach to hazard identification, and the inclusion of a dose-response element in the endpoint, which enables an estimation of potency. However, notifiers to the UK competent authority have sometimes been reluctant to use the assay because of concerns over false-positive reactions. Across Europe, these concerns have been heightened in the lead-up to the introduction of REACH, since the use of in vivo alternatives to the LLNA will require scientific justification. This review will address some of these concerns from a regulatory perspective.  相似文献   

19.
Industrial chemicals are needed for chemical synthesis or technical purposes. These beneficial effects are counterbalanced by the potential health risks for all who come into contact with them. The new chemical legislation of the EU, Registration, Evaluation and Authorization of Chemicals (REACH) will force the responsibility of manufacturers and importers of chemical substances to gather the right information needed to decide on the right circumstances of use and control of chemical substances and products.In order to understand the roots of REACH, experiences gained with regard to existing chemicals legislation, particularly in Germany, will be reviewed. Since Council Directive 67/548/EEC all chemicals placed on the market need a set of standard information and provisions for safe transportation. This directive and its amendments (Council Directive(s) 79/831/EEC and 92/32/EEC) have established for new substances a sound information data basis for classification of dangerous properties. Under Council Regulation 793/93/EEC, regulations and administrative provisions have established the requirement to assess the risk to man and the environment of existing substances. So far, only 119 substances have been evaluated under the forces of this regulation. This separation has led to a substantial imbalance between existing substances and new substances with respect to available data needed to recognize hazards for health. The register of produced and imported chemical substances under REACH should eliminate some of this separation and will also be the key for selection of substances of very high concern by the authorization process to restrict the use and distribution accordingly.  相似文献   

20.
Research continues to support the theory of endocrine disruption. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. The University of Tennessee, Knoxville (UTN), developed a method for hazard scoring chemicals for the aquatic ecosystem. The Indiana Clean Manufacturing Technology and Safe Materials Institute at Purdue University (CMTI) later expanded the scoring system to include terms for worker hazard as well as terms for contamination of soil and air quality, and for stratospheric ozone depletion. We call the CMTI chemical hazard score the Purdue score. At West Virginia University, two improvements of the Purdue chemical hazard score are developed, a normalizing of the term for soil contamination, and addition of hazard score terms for ecosystem endocrine disruption. The results of incorporating endocrine disruption terms into the hazard scoring equations resulted in increased hazard rankings, often substantially increased, for 26 endocrine disrupting chemicals (EDCs) among 200 Superfund chemicals. Because data suggesting human endocrine disruption from such chemicals is still controversial, no endocrine disruptor term has been added to the human toxicity portions of the chemical hazard scoring system at this time. The third product of this work is assembly of a current consolidated list of (1) established or probable, mostly synthetic, industrial chemical and medication EDCs and (2) suspect (less certain) synthetic and natural (phytoestrogen) possible endocrine disrupting chemicals, with the goal of contributing to future development of quantitative structure activity relationship software for predicting whether an untested chemical is likely to be an endocrine disruptor. We conclude that enough endocrine disrupting chemicals are now identified to make an attempt at developing structure activity estimates of disrupting potential worthwhile. Further, we conclude that within a group of 200 chemicals of concern to the US EPA, the addition of endocrine disrupting terms to the Purdue score substantially increases its representativeness in reflecting ecological exposure hazard. We have developed this enhanced Purdue score risk management tool to be of assistance to industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号