首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MicroRNAs (miRNAs) are recently discovered regulators of gene expression and are important in the regulation of many cellular events. Evidence collected to date shows that miRNAs are altered after exposure to environmental toxicants. However, the role that miR-21 plays in the gastric tumorigenesis induced by environmental carcinogens remains largely unknown. The aim of this study was to characterize the regulatory role of miR-21 in the carcinogenic processes following exposure to the N-nitroso carcinogen N-methyl-N-nitro-N′-nitrosoguanidine (MNNG). We found a progressive dose- and time-dependent increase in miR-21 expression following treatment with MNNG. Dysregulated miR-21 affected both cell growth in GES-1 cells and the gastric tumorigenesis induced with MNNG. These data demonstrate the involvement of miR-21 in the malignant transformation and tumorigenesis activated by MNNG. We also established that the Fas ligand (FASLG) and B-cell translocation gene 2 (BTG2), regulated by miR-21, contribute to the transformation induced by MNNG in GES-1 cells. This is the first study to show that miR-21 is involved in chemical carcinogenesis in vivo and in vitro. The regulation by miR-21 of the gastric carcinogenesis induced by MNNG highlights the functional roles of miRNAs in chemical carcinogenesis, and offers a new explanation of the mechanisms underlying chemical carcinogenesis.  相似文献   

2.
Cyclooxygenase-2 (COX-2), a rate-limiting enzyme in arachidonic acid cascade, plays a key role in the biosynthesis of prostaglandin E2 (PGE2) upon inflammatory insults. Overproduction of PGE2 stimulates proliferation of various cancer cells, confers resistance to apoptosis of cancerous or transformed cells, and accelerates metastasis and angiogenesis. Excess PGE2 undergoes metabolic inactivation which is catalyzed by NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In this context, 15-PGDH has been speculated as a physiological antagonist of COX-2 and a tumor suppressor. Thus, overexpression of 15-PGDH has been known to protect against experimentally induced carcinogenesis and renders the cancerous or transformed cells susceptible to apoptosis by counteracting oncogenic action of PGE2. In contrast, silence of 15-PGDH is observed in some cancer cells, which is associated with epigenetic modification, such as DNA methylation and histone deacetylation, in the promoter region of 15-PGDH. A variety of compounds capable of inducing the expression of 15-PGDH have been reported, which include the histone deacetylase inhibitors, nonsteroidal anti-inflammatory drugs, and peroxisome proliferator-activated receptor-gamma agonists. Therefore, 15-PGDH may be considered as a novel molecular target for cancer chemoprevention and therapy. This review highlights the role of 15-PGDH in carcinogenesis and its regulation.  相似文献   

3.

BACKGROUND AND PURPOSE

The angiotensin II type 1 receptor (AT1R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT1R signals in a Gαq/11-dependent or -independent manner.

EXPERIMENTAL APPROACH

We performed a global miRNA array analysis of angiotensin II (Ang II)-mediated miRNA regulation in HEK293N cells overexpressing the AT1R and focused on separating the role of Gαq/11-dependent and -independent pathways. MiRNA regulation was verified with quantitative PCR in both HEK293N cells and primary cardiac myocytes and fibroblasts.

KEY RESULTS

Our studies revealed five miRNAs (miR-29b, -129-3p, -132, -132* and -212) that were up-regulated by Ang II in HEK293N cells. In contrast, the biased Ang II analogue, [Sar1, Ile4, Ile8] Ang II (SII Ang II), which selectively activates Gαq/11-independent signalling, failed to regulate miRNAs in HEK293N cells. Furthermore, Ang II-induced miRNA regulation was blocked following Gαq/11 and Mek1 inhibition. The observed Ang II regulation of miRNA was confirmed in primary cultures of adult cardiac fibroblasts. Interestingly, Ang II did not regulate miRNA expression in cardiac myocytes, but SII Ang II significantly down-regulated miR-129-3p.

CONCLUSIONS AND IMPLICATIONS

Five miRNAs were regulated by Ang II through mechanisms depending on Gαq/11 and Erk1/2 activation. These miRNAs may be involved in Ang II-mediated cardiac biology and disease, as several of these miRNAs have previously been associated with cardiovascular disease and were found to be regulated in cardiac cells.  相似文献   

4.
We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203.  相似文献   

5.
ABSTRACT

Exposure to ambient air pollutants such as ozone (O3) and particulate matter (PM) is associated with increased cardiovascular morbidity and rate of mortality, but the underlying biological mechanisms have yet to be described. Emerging evidence shows that extracellular vehicle (EV) microRNAs (miRNAs) may facilitate cell-to-cell and organ-to-organ communications and play a role in the air pollution-induced cardiovascular effects. This study aims to explore the association between air pollutant exposure and miRNA changes related to cardiovascular diseases. Using a panel study design, 14 participants with coronary artery diseases were enrolled in this study. Each participant had up to 10 clinical visits and their plasma samples were collected and measured for expression of miRNA-21 (miR-21), miR-126, miR-146, miR-150, and miR-155. Mixed effects models adjusted for temperature, humidity, and season were used to examine the association between miRNA levels and exposure to 8-hr O3 or 24-hr PM2.5 up to 4 days prior. Results demonstrated that miR-150 expression was positively associated with O3 exposure at 1–4 days lag and 5day moving average while miR-155 expression tracked with O3 exposure at lag 0. No significant association was found between miRNA expression and ambient PM2.5 at any time point. β-blocker and diabetic medication usage significantly modified the correlation between O3 exposure and miR-150 expression where the link was more prominent among non-users. In conclusion, evidence indicated an association between exposure to ambient O3 and circulating levels of EV miR-150 and miR-155 was observed. These findings pointed to a future research direction involving miRNA-mediated mechanisms of O3-induced cardiovascular effects.  相似文献   

6.
Zhao Y  Liu H  Li Y  Wu J  Greenlee AR  Yang C  Jiang Y 《Toxicology letters》2011,205(3):320-326
Growing evidence indicates that the alteration of microRNA (miRNA) expression in tumors that is induced by chemical carcinogens plays an important role in tumor development and progression. However, the mechanism underlying miRNA involvement in lung carcinogenesis induced by anti-benzo[a]pyrene-trans-7,8-dihydrodiol-9,10-epoxide (anti-BPDE) remains unclear. In our study, we used the malignant transformation of human bronchial epithelial cells (16HBE-T) induced by anti-BPDE to explore the mechanisms of human lung carcinogenesis. We found that expression of miR-506 was reduced in 16HBE-T transformed malignant human bronchial epithelial cells compared with 16HBE normal human bronchial epithelial cells. Restoration of miR-506 in 16HBE-T cells led to a decrease in cell proliferation, G0/G1 phase cell cycle arrest, as well as significantly suppressed anchorage-dependent growth in vitro and tumor growth inhibition in a nude mouse xenograft model. In addition, we provided novel evidence regarding the role miR-506 potentially plays in negatively regulating the protein and mRNA expression level of N-Ras in cancer cells. Together, these findings revealed that miR-506 acts as an anti-oncogenic miRNA (anti-oncomir) in malignantly transformed cells. The identification of tumor suppressive miRNAs could provide new insight into the molecular mechanisms of chemical carcinogenesis.  相似文献   

7.
Objectives: We aimed to analyze the differentially-expressed miRNAs in colon cancer cells in order to identify novel potential biomarkers involved in cancer cell resistance.

Design and methods: We investigated the miRNA expression profile of GEO human colon carcinoma cells, sensitive to the EGFR inhibitor Cetuximab (CTX) and their CTX-resistant counterpart (GEO CR) by using a miRNA chip.

Results: We found 27 upregulated and 10 downregulated miRNAs in GEO CR compared with GEO cells with a fold change ≥ 2. Among the upregulated miRNAs, we focused on miR-199a-5p and miR-375. We report that their enforced expression promotes CTX resistance, whereas their silencing sensitizes to the same drug. The ability of miR-199a-5p and miR-375 to target PHLPP1 (PH domain and leucine-rich repeat protein phosphatase 1), a tumor suppressor that negatively regulates the AKT pathway, accounts, at least in part, for their drug-resistance activity. Indeed, restoration of PHLPP1 increases sensitivity of the GEO cells to CTX and reverts the resistance-promoting effect of miR-199a-5p and miR-375.

Conclusion: This study proposes miR-199a-5p and miR-375 as contributors to CTX resistance in colon cancer and suggests a novel approach based on miRNAs as tools for the therapy of this tumor.  相似文献   

8.
MicroRNAs: small but potent oncogenes or tumor suppressors   总被引:3,自引:0,他引:3  
MicroRNAs (miRNAs) are small, non-coding RNAs that modulate the expression of target mRNA. Many miRNAs are known to be up- or downregulated in a variety of cancers, suggesting a role for miRNAs in tumorigenesis. The correlation between the expression of miRNAs and their effects on target oncogenes, on tumorigenesis and on the proliferation of cancer cells is beginning to gain experimental evidence. For example, the miRNA (miR)-17-92 cluster has been characterized as an oncogene, while let-7 represses Ras and miR-15a/-16-1 represses Bcl-2, thereby acting as tumor suppressors. Thus, an oncogenic or tumor suppressive miRNA may have potential as a therapeutic target to control cancers. This review will discuss the relationship between miRNAs and tumorigenesis, and the potential for modulating miRNAs for the treatment of cancer.  相似文献   

9.
10.
Phospholipase A2 (PLA2) are esterases that cleave glycerophospholipids to release fatty acids and lysophospholipids. Several studies demonstrate that PLA2 regulate growth and signaling in several cell types. However, few of these studies have focused on Ca2+-independent phospholipase A2 (iPLA2 or Group VI PLA2). This class of PLA2 was originally suggested to mediate phospholipid remodeling in several cell types including macrophages. As such, it was labeled as a housekeeping protein and thought not to play as significant of roles in cell growth as its older counterparts cytosolic PLA2 (cPLA2 or Group IV PLA2) and secretory PLA2 (sPLA2 or Groups I-III, V and IX-XIV PLA2). However, several recent studies demonstrate that iPLA2 mediate cell growth, and do so by participating in signal transduction pathways that include epidermal growth factor receptors (EGFR), mitogen activated protein kinases (MAPK), mdm2, and even the tumor suppressor protein p53 and the cell cycle regulator p21. The exact mechanism by which iPLA2 mediates these pathways are not known, but likely involve the generation of lipid signals such as arachidonic acid, lysophosphatidic acid (LPA) and lysophosphocholines (LPC). This review discusses the role of iPLA2 in cell growth with special emphasis placed on their role in cell signaling. The putative lipid signals involved are also discussed.  相似文献   

11.
This study aims to evaluate the role of microRNAs (miRNAs) in chemical tumorigenesis by evaluating genomic gene expression in miRNA knockout mice. Previous studies showed that mice without mature miRNAs due to hepatocyte‐specific Dicer1 knockout (KO) had a much higher liver tumor incidence than wild‐type mice. In this study, Dicer1 KO or the wild‐type mice were treated intraperitoneally with genotoxic carcinogen N‐ethyl‐N‐nitrosourea (ENU) at a single dose (150 mg kg–1 that resulted in liver tumorigenesis) or the vehicle at 3 weeks of age. The animals were killed 2 weeks after treatment and the liver samples were collected for the gene expression study. Principal components analysis and hierarchical cluster analysis showed that gene expression was globally altered by the Dicer1 KO and ENU exposure. There were 5621, 3286 and 2565 differentially expressed genes for Dicer1 disruption, ENU treatment in wild‐type mice and ENU treatment in Dicer1 KO mice, respectively. Functional analysis of the differentially expressed genes suggests that the Dicer1 KO mouse liver lost their capability to suppress the carcinogenesis induced by ENU exposure in genomic level. In addition, the miRNA‐mediated BRCA1 and P53 signaling pathways were identified as the main pathways responsible for the tumorigenesis. We conclude that the mouse livers in the absence of mature miRNAs could not appropriately respond to carcinogenic insults from ENU treatment, indicating that miRNAs play a critical role in chemical carcinogenesis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
The activin/transforming growth factor-β (TGF-β) pathway plays an important role in tumorigenesis either by its tumor suppressor or tumor promoting effect. Loss of members of the TGF-β signaling by somatic mutations or epigenetic events, such as DNA methylation or regulation by microRNA (miRNA), may affect the signaling process. Most members of the TGF-β pathway are known to be targeted by one or more miRNAs. In addition, the biogenesis of miRNAs is also regulated by TGF-β both directly and through SMADs. Based on these interactions, it appears that autoregulatory feedback loops between TGF-β and miRNAs influence the fate of tumor cells. Our aim is to review the crosstalk between TGF-β signaling and the miRNA machinery to highlight potential novel therapeutic targets.  相似文献   

13.
To understand the regulation of genetic damage by epigenetics at the early stage of carcinogenesis after hexavalent chromium (Cr(VI)) and assessed genetic damage to explore their association with DNA repair genes mediated by differently expressed miRNA. Genetic damages were evaluated using cytokinesis-block micronucleus assay (CBMN) and serum 8-hydroxyguanine (8-OHdG) ELISA assay. Blood Cr level showed significant association with plasma miR-3940-5p level (r = −0.33, P = 0.001) and non-linear relationship with micronuclei frequency in CBMN and serum 8-OHdG level (βstd = 0.29, P = 0.039; βstd = 0.35, P = 0.001), with micronuclei frequency not increasing apparently under high Cr exposure. In contrast, no significant association was found between plasma miR-3940-5p level and the two genetic indicators. However, plasma miR-3940-5p level was linked to micronuclei frequency under high blood Cr level (βstd = 0.18, P = 0.015). To explore the effect of miR-3940-5p on genetic damage under high Cr exposure, the protein expression levels of miR-3940-5p-mediated DNA repair genes in leukocytes were quantified using enzyme-linked immunosorbent assay for subjects with high blood Cr level. The results showed that XRCC2 and BRCC3 protein levels were statistically associated with miR-3940-5p level respectively (βstd = −0.31, P = 0.010; βstd = −0.24, P = 0.037). Meanwhile, a weak but statistically negative association between XRCC2 level and micronuclei frequency was found (βstd = −0.15, P = 0.027). These data suggests that high Cr(VI) does not always aggravate genetic damage after reaching a high Cr(VI) exposure in real situation, which may be due to the regulation of miRNA on DNA repair genes responsive to high Cr(VI) exposure.  相似文献   

14.
ABSTRACT

Previously an increased risk for monoclonal gammopathy of undetermined significance (MGUS), a precursor of multiple myeloma (MM), was reported among Vietnam veterans exposed to Agent Orange and its contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Dysregulated expression of certain microRNAs (miRNAs) was demonstrated in MGUS and MM. Given the important role of miRNAs in cellular homeostasis, the aim of this study was to determine if there was an association between serum levels of selected miRNAs and TCDD in 47 MGUS cases identified in our previous investigation using serum specimens and exposure data archived by the Air Force Health Study (AFHS). A total of 13 miRNA levels (let-7a, let-7i, miR-16, miR-20a, miR-21, miR-34a, miR-106b, miR-146a, miR-181a, miR-192, miR-205, miR-335, and miR-361) was measured in serum stored during the 2002 AFHS follow-up and the relationship to lipid-adjusted serum TCDD levels in 1987 was determined. miR-34a showed the strongest relationship with TCDD; after age-adjustment, this positive association was more pronounced. In contrast, the other 12 miRNAs displayed absolute values of age adjusted coefficient estimates below 1.16 and non-significant p-values. The observed strong positive association between high body burdens of TCDD and miR-34a, a tumor suppressor regulated by p53, in this MGUS population warrants clarification of the TCDD-miR-34a relationship and its role in the pathogenesis of MGUS and risk for MM.  相似文献   

15.
Human bronchial epithelial (HBE) cells and c-fos-silenced HBE cells were first exposed to fine particulate matter (PM2.5) and the resulting miRNA sequenced. Thereafter, a weighted gene co-expression network analysis was performed using Cytoscape software to visualize the interactions between identified hub miRNAs and their target genes. Nine differentially expressed miRNAs in hub miRNAs were identified in the different treatment groups, of which miR-25−3p, miR-215−5p, and miR-145−5p were selected for further study. Following qPCR validation, both miR-25−3p and miR-215−5p were found to be significantly up-regulated whilst, miR-145−5p was significantly down-regulated (p < 0.05) in the PM2.5 group. Furthermore, miR-25−3p and miR-145−5p were also significantly down-regulated in the untreated group of c-fos silenced HBE cells. However, miR-215−5p was significantly down-regulated in both the untreated and PM2.5-treated groups of c-fos silenced HBE cells. Subsequent analysis of their target genes also illustrated differential gene expression when comparing the treatment groups of the two cell types. The present data indicated that the c-fos gene has an important effect on the miRNA expression profiles and the related signaling pathways in PM2.5-treated HBE cells. Therefore, each of miR-25−3p, miR-145−5p, and miR-215−5p may potentially provide future research information for additional exploration of a PM2.5-induced carcinogenesis mechanism.  相似文献   

16.
Li D  Wang Q  Liu C  Duan H  Zeng X  Zhang B  Li X  Zhao J  Tang S  Li Z  Xing X  Yang P  Chen L  Zeng J  Zhu X  Zhang S  Zhang Z  Ma L  He Z  Wang E  Xiao Y  Zheng Y  Chen W 《Toxicological sciences》2012,125(2):382-391
Identification of aberrant microRNA (miRNA) expression during chemical carcinogen-induced cell transformation will lead to a better understanding of the substantial role of miRNAs in cancer development. To explore whether aberrant miRNAs expression can be used as biomarkers of chemical exposure in risk assessment of chemical carcinogenesis, we analyzed miRNA expression profiles of human bronchial epithelial cells expressing an oncogenic allele of H-Ras (HBER) at different stages of transformation induced by benzo(a)pyrene (BaP) by miRNA array. It revealed 12 miRNAs differentially expressed in HBER cells at both pretransformed and transformed stages. Differentially expressed miRNAs were confirmed in transformed cells and examined in 50 pairs of primary human non-small-cell lung cancer (NSCLC) tissues using real-time PCR. Among these miRNAs, downregulation of miR-638 was found in 68% (34/50) of NSCLC tissues. However, the expression of miR-638 in HBER cells increased upon treatment of BaP in a dose-dependent manner. The expression of miR-638 was also examined in peripheral lymphocytes from 86 polycyclic aromatic hydrocarbons (PAHs)-exposed (PE) workers. We found that the average expression level of miR-638 in peripheral lymphocytes from 86 PE workers increased by 72% compared with control group. The levels of miR-638 were correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) and external levels of PAHs. Overexpression of miR-638 aggravated cell DNA damage induced by BaP, which might be mediated by suppression of breast cancer 1 (BRCA1), one of the target genes of miR-638. In summary, we suggest that miR-638 is involved in the BaP-induced carcinogenesis by targeting BRCA1.  相似文献   

17.
Tumor progression is the continual selection of variant subpopulations of malignant cells that have acquired increasing levels of genetic instability (Nowell Science 1976, 194, 23–28). This instability is manifested as chromosomal aneuploidy or translocations, viral integration or somatic mutations that typically affect the expression of a gene (oncogene) that is especially damaging to the proper function of a cell. With the recent discovery of non-coding RNAs such as microRNAs (miRNAs), the concept that a target of genetic instability must be a protein-encoding gene is no longer tenable. Over the years, we have conducted several studies comparing the location of miRNA genes to positions of genetic instability, principally retroviral integration sites and chromosomal translocations in the mouse as a means of identifying miRNAs of importance in carcinogenesis. In this current study, we have used the most recent annotation of the mouse miRome (miRBase, release 16.0), and several datasets reporting the sites of integration of different retroviral vectors in a variety of mouse strains and mouse models of cancer, including for the first time a model that shows a propensity to form solid tumors, as a means to further identify or define, candidate oncogenic miRNAs. Several miRNA genes and miRNA gene clusters stand out as interesting new candidate oncogenes due to their close proximity to common retroviral integration sites including miR-29a/b/c and miR106a~363. We also discussed some recently identified miRNAs including miR-1965, miR-1900, miR-1945, miR-1931, miR-1894, and miR-1936 that are close to common retroviral integration sites and are therefore likely to have some role in cell homeostasis.  相似文献   

18.
microRNAs(miRNAs)是一类含量丰富的非蛋白编码小分子RNA,miRNAs主要是与靶mRNA的3′UTR区域结合,抑制mRNA的翻译或直接使mRNA降解,能调节多种生物功能。一些miRNAs,如miR-17-92,可能作为致癌基因;而另一些miRNAs,如miR-15,可作为抑癌基因,它们在肿瘤的发生、发展过程中起着重要作用。同时它们在肿瘤干细胞中也发挥着重要的作用。因此miRNAs正成为肿瘤的诊断和治疗的新靶点。  相似文献   

19.
miRNAs are small endogenous non-coding RNAs, approximately 21-nucleotides in length, which are shown to regulate an array of cellular processes such as differentiation, cell cycle, cell proliferation, apoptosis, and angiogenesis which are important in cancer. miRNAs can function as both tumor promoters (oncomiRs) or tumor suppressors by their ability to target numerous biomolecules that are important in carcinogenesis. Aberrant expression of miRNAs is correlated with the development and progression of tumors, and the reversal of their expression has been shown to modulate the cancer phenotype suggesting the potential of miRNAs as targets for anti-cancer drugs. Several chemopreventive phytochemicals like epigallocatechin-3-gallate, curcumin, isoflavones, indole-3-carbinol, resveratrol, and isothiocyanate have been shown to modulate the expression of numerous miRNAs in cancer cells that lead to either abrogation of tumor growth or sensitization of cancer cells to chemotherapeutic agents. This review focuses on the putative role(s) of miRNAs in different aspects of tumorigenesis and at various stages of early drug discovery that makes them a promising class of drug targets for chemopreventive intervention in cancer. We summarize the current progress in the development of strategies for miRNA-based anti-cancer therapies. We also explore the modulation of miRNAs by various cancer chemopreventive agents and the role of miRNAs in drug metabolism. We will discuss the role of miRNAs in cancer stem cells and epithelial-to-mesenchymal transition; and talk about how modulation of miRNA expression relates to altered glycosylation patterns in cancer cells. In addition, we consider the role of altered miRNA expression in carcinogenesis induced by various agents including genotoxic and epigenetic carcinogens. Finally, we will end with a discussion on the potential involvement of miRNAs in the development of cancer chemoresistance. Taken together, a better understanding of the complex role(s) of miRNAs in cancer may help in designing better strategies for biomarker discovery or drug targeting of miRNAs and/or their putative protein targets.  相似文献   

20.
Introduction: The results of cancer-associated miRNA research have yielded surprising insights into the pathogenesis of a range of different cancers. Many of the dysregulated miRNAs are involved in the regulation of genes that are essential for carcinogenesis.

Areas covered: This review discusses the latest discovery of miRNAs acting as oncogenes and tumor suppressor genes, as well as the potential applications of miRNA regulations in cancer therapy. Several translational studies have demonstrated the feasibility of targeting oncogenic miRNAs and restoring tumor-suppressive miRNAs for cancer therapy using in vivo model systems.

Expert opinion: miRNAs are extensive regulators of cancer progression. With increasing understanding of the miRNA target genes and the cellular behaviors influenced by them, modulating the miRNA activities may provide exciting opportunities for cancer therapy. Despite the hurdles incurred in acquiring effective systemic drug delivery systems, in vivo delivery of miRNAs for therapeutic purposes in preclinical animal models is rapidly developing. Accumulating evidences indicate that using miRNA expression alterations to influence molecular pathways has the potential of being translated into clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号