首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
The plant mitochondrial thioredoxin (Trx) system has been described as containing an NADPH-dependent Trx reductase and Trx o. In addition to the mitochondrial isoform, Trx o, plants are known to contain several chloroplastic Trx isoforms and the cytosolic Trx h isoforms. We report here the presence in plant mitochondria of a Trx isoform (PtTrxh2) belonging to the Trx h group. Western blot analyses with mitochondrial proteins isolated from both poplar and GFP fusion constructs indicate that PtTrxh2 is targeted to plant mitochondria. The recombinant protein, PtTrxh2, has been shown to be reduced efficiently by the mitochondrial Trx reductase AtNTRA. PtTrxh2 is also able to reduce alternative oxidase homodimers and to allow its activation by pyruvate. In contrast, neither PtTrxh2 nor AtTrxo1 exhibits activity with several poplar glutathione peroxidases and especially a putative mitochondrial isoform. Incubation of PtTrxh2 with glutathione disulfide led to the formation of glutathionylated Trx, identified by mass spectrometry. The formation of a glutathione adduct increases the redox potential of PtTrxh2 from -290 to -225 mV. In addition to Trx o, this study shows that Trx h could also be present in mitochondria. This previously unrecognized complexity is not unexpected, considering the multiple redox-regulated processes found in plant mitochondria.  相似文献   

2.
Five different clones encoding thioredoxin homologues were isolated from Arabidopsis thaliana cDNA libraries. On the basis of the sequences they encode divergent proteins, but all belong to the cytoplasmic thioredoxins h previously described in higher plants. The five proteins obtained by overexpressing the coding sequences in Escherichia coli present typical thioredoxin activities (NADP(+)-malate dehydrogenase activation and reduction by Arabidopsis thioredoxin reductase) despite the presence of a variant active site, Trp-Cys-Pro-Pro-Cys, in three proteins in place of the canonical Trp-Cys-Gly-Pro-Cys sequence described for thioredoxins in prokaryotes and eukaryotes. Southern blots show that each cDNA is encoded by a single gene but suggest the presence of additional related sequences in the Arabidopsis genome. This very complex diversity of thioredoxins h is probably common to all higher plants, since the Arabidopsis sequences appear to have diverged very early, at the beginning of plant speciation. This diversity allows the transduction of a redox signal into multiple pathways.  相似文献   

3.
Tight control of cellular redox homeostasis is essential for protection against oxidative damage and for maintenance of normal metabolism as well as redox signaling events. Under oxidative stress conditions, the tripeptide glutathione can switch from its reduced form (GSH) to oxidized glutathione disulfide (GSSG), and thus, forms an important cellular redox buffer. GSSG is normally reduced to GSH by 2 glutathione reductase (GR) isoforms encoded in the Arabidopsis genome, cytosolic GR1 and GR2 dual-targeted to chloroplasts and mitochondria. Measurements of total GR activity in leaf extracts of wild-type and 2 gr1 deletion mutants revealed that ≈65% of the total GR activity is attributed to GR1, whereas ≈35% is contributed by GR2. Despite the lack of a large share in total GR activity, gr1 mutants do not show any informative phenotype, even under stress conditions, and thus, the physiological impact of GR1 remains obscure. To elucidate its role in plants, glutathione-specific redox-sensitive GFP was used to dynamically measure the glutathione redox potential (EGSH) in the cytosol. Using this tool, it is shown that EGSH in gr1 mutants is significantly shifted toward more oxidizing conditions. Surprisingly, dynamic reduction of GSSG formed during induced oxidative stress in gr1 mutants is still possible, although significantly delayed compared with wild-type plants. We infer that there is functional redundancy in this critical pathway. Integrated biochemical and genetic assays identify the NADPH-dependent thioredoxin system as a backup system for GR1. Deletion of both, NADPH-dependent thioredoxin reductase A and GR1, prevents survival due to a pollen lethal phenotype.  相似文献   

4.
In plants, as in most eukaryotic cells, import of nuclear-encoded cytosolic tRNAs is an essential process for mitochondrial biogenesis. Despite its broad occurrence, the mechanisms governing RNA transport into mitochondria are far less understood than protein import. This article demonstrates by Northwestern and gel-shift experiments that the plant mitochondrial voltage-dependent anion channel (VDAC) protein interacts with tRNA in vitro. It shows also that this porin, known to play a key role in metabolite transport, is a major component of the channel involved in the tRNA translocation step through the plant mitochondrial outer membrane, as supported by inhibition of tRNA import into isolated mitochondria by VDAC antibodies and Ruthenium red. However VDAC is not a tRNA receptor on the outer membrane. Rather, two major components from the TOM (translocase of the outer mitochondrial membrane) complex, namely TOM20 and TOM40, are important for tRNA binding at the surface of mitochondria, suggesting that they are also involved in tRNA import. Finally, we show that proteins and tRNAs are translocated into plant mitochondria by different pathways. Together, these findings identify unexpected components of the tRNA import machinery and suggest that the plant tRNA import pathway has evolved by recruiting multifunctional proteins.  相似文献   

5.
The maturation of c-type cytochromes requires the covalent ligation of the heme cofactor to reduced cysteines of the CXXCH motif of apocytochromes. In contrast to mitochondria of other eukaryotes, plant mitochondria follow a pathway close to that found in alpha- and gamma-proteobacteria. We identified a nuclear-encoded protein, AtCCMH, the Arabidopsis thaliana ortholog of bacterial CcmH/CycL proteins. In bacteria, CcmH and the thioredoxin CcmG are components of a periplasmic thio-reduction pathway proposed to maintain the apocytochrome c cysteines in a reduced state. AtCCMH is located exclusively in mitochondria. AtCCMH is an integral protein of the inner membrane with the conserved RCXXC motif facing the intermembrane space. Reduction assays show that the cysteine thiols in the RCXXC motif of AtCCMH can form a disulfide bond that can be reduced by enzymatic thiol reductants. A reduced form of AtCCMH can reduce the intra-disulfide bridge of a model peptide of apocytochrome c. When expressed in Escherichia coli, AtCCMH coimmunoprecipitates with the bacterial CcmF, a proposed component of the heme lyase. Blue-native PAGE of mitochondrial membrane complexes reveals the colocalization of AtCCMH and AtCcmF(N2) in a 500-kDa complex. Yeast two-hybrid assays show an interaction between the AtCCMH intermembrane space domain and A. thaliana apocytochrome c. A. thaliana ccmh/ccmh knockout plants show lethality at the torpedo stage of embryogenesis. Our results show that AtCCMH is an essential mitochondrial protein with characteristics consistent with its proposed apocytochrome c-reducing and heme lyase function.  相似文献   

6.
A CO-binding heme protein was solubilized and partially purified from the inner membrane fraction of rat liver mitochondria by a modification of a method [Imai, Y. & Sato, R. (1974) Biochem. Biophys. Res. Commun. 60, 8-14] developed to purify cytochrome P-450 from liver microsomes. The partially purified preparation contained protoheme and its spectral properties are characteristic of the heme proteins of the cytochrome P-450 family. The isolated cytochrome P-450 preparation could reconstitute a CO-sensitive, NADPH-dependent 26-hydroxylation activity for 5beta-cholestane-3alpha,7alpha,-12alpha-triol when supplemented with NADPH-adrenodoxin reductase and adrenodoxin, both purified from bovine adrenocortical mitochondria. Unlike a cytochrome P-450 purified from liver microsomes of drug-untreated rats, however, the liver mitochondrial cytochrome P-450 could not catalyze NADPH-dependent benzphetamine N-demethylation in the presence of adrenodoxin reductase and adrenodoxin or function with the purified microsomal NADPH-cytochrome c reductase plus Emulgen 913 as an electron-donating system. It is concluded that the rat liver inner mitochondrial membrane houses a species of cytochrome P-450 functional in 5beta-cholestane-3alpha,7alpha,12alpha-triol 26-hydroxylation.  相似文献   

7.
In approximately one-third of primary hyperoxaluria type 1 patients, disease is associated with a unique protein sorting defect in which hepatic L-alanine:glyoxylate aminotransferase (AGT; EC 2.6.1.44), which is normally peroxisomal, is mistargeted to mitochondria. In all such patients analyzed to date, the gene encoding the aberrantly targeted AGT carries three point mutations, each of which specifies an amino acid substitution. In this paper we show that one of these substitutions, a proline-to-leucine at residue 11, is necessary and sufficient for the generation of a mitochondrial targeting sequence in the AGT protein. AGT with this substitution appears to interact specifically with the mitochondrial protein import machinery, via a discrete N-terminal domain of the AGT protein. The N-terminal 19 amino acids of AGT with this substitution are sufficient to direct mouse cytosolic dihydrofolate reductase to mitochondria, and a synthetic peptide corresponding to this same 19-amino acid region reversibly inhibits mitochondrial protein import, not only of AGT but also of ornithine transcarbamoylase, a genuine cytoplasmically synthesized mitochondrial protein. We have extended these studies to analyze a region of normal human AGT cDNA directly upstream of the coding region. This sequence appears to correspond to an ancestral mitochondrial targeting sequence deleted from the human coding region by point mutation at the initiation codon. We show that reestablishment of this initiation codon produces an active mitochondrial targeting sequence that is different to that found in the hyperoxaluria patients. These results are discussed with reference to the AGT targeting defect in primary hyperoxaluria and also in relation to the highly unusual species specificity of subcellular distribution of AGT among mammals.  相似文献   

8.
We have cloned the gene encoding the protein Mas22p, which spans the outer membrane of yeast mitochondria. Cells that completely lack Mas22p are inviable. The plasmid-borne MAS22 gene suppresses several defects resulting from the deletion of one or more of the mitochondrial protein import receptors. Defects of Mas20p-deficient cells are explained by the reduced level of Mas22p in these mutants. Mas22p has one acidic domain in the cytosol and a second acidic domain in the mitochondrial intermembrane space. We suggest that these domains of Mas22p on either side of the outer membrane function as a relay system for transferring the basic targeting sequences of precursor proteins into the mitochondria.  相似文献   

9.
In plants, protein synthesis occurs in the cytosol, mitochondria, and plastids. Each compartment requires a full set of tRNAs and aminoacyl-tRNA synthetases. We have undertaken a systematic analysis of the targeting of organellar aminoacyl-tRNA synthetases in the model plant Arabidopsis thaliana. Dual targeting appeared to be a general rule. Among the 24 identified organellar aminoacyl-tRNA synthetases (aaRSs), 15 (and probably 17) are shared between mitochondria and plastids, and 5 are shared between cytosol and mitochondria (one of these aaRSs being present also in chloroplasts). Only two were shown to be uniquely chloroplastic and none to be uniquely mitochondrial. Moreover, there are no examples where the three aaRS genes originating from the three ancestral genomes still coexist. These results indicate that extensive exchange of aaRSs has occurred during evolution and that many are now shared between two or even three compartments. The findings have important implications for studies of the translation machinery in plants and on protein targeting and gene transfer in general.  相似文献   

10.
The mitochondrial genomes of flowering plants possess a promiscuous proclivity for taking up sequences from the chloroplast genome. All characterized chloroplast integrants exist apart from native mitochondrial genes, and only a few, involving chloroplast tRNA genes that have functionally supplanted their mitochondrial counterparts, appear to be of functional consequence. We developed a novel computational approach to search for homologous recombination (gene conversion) in a large number of sequences and applied it to 22 mitochondrial and chloroplast gene pairs, which last shared common ancestry some 2 billion years ago. We found evidence of recurrent conversion of short patches of mitochondrial genes by chloroplast homologs during angiosperm evolution, but no evidence of gene conversion in the opposite direction. All 9 putative conversion events involve the atp1/atpA gene encoding the alpha subunit of ATP synthase, which is unusually well conserved between the 2 organelles and the only shared gene that is widely sequenced across plant mitochondria. Moreover, all conversions were limited to the 2 regions of greatest nucleotide and amino acid conservation of atp1/atpA. These observations probably reflect constraints operating on both the occurrence and fixation of recombination between ancient homologs. These findings indicate that recombination between anciently related sequences is more frequent than previously appreciated and creates functional mitochondrial genes of chimeric origin. These results also have implications for the widespread use of mitochondrial atp1 in phylogeny reconstruction.  相似文献   

11.
The maize Hm1 gene provides protection against a lethal leaf blight and ear mold disease caused by Cochliobolus carbonum race 1 (CCR1). Although it was the first disease-resistance (DR) gene to be cloned, it remains a novelty because, instead of participating in the plant recognition and response system as most DR genes do, Hm1 disarms the pathogen directly. It does so by encoding an NADPH-dependent reductase, whose function is to inactivate Helminthosporium carbonum (HC) toxin, an epoxide-containing cyclic tetrapeptide, which the pathogen produces as a key virulence factor to colonize maize. Although CCR1 is strictly a pathogen of maize, orthologs of Hm1 and the HC-toxin reductase activity are present in the grass family, suggesting an ancient and evolutionarily conserved role of this DR trait in plants. Here, we provide proof for such a role by demonstrating its involvement in nonhost resistance of barley to CCR1. Barley leaves in which expression of the Hm1 homologue was silenced became susceptible to infection by CCR1, but only if the pathogen was able to produce HC toxin. Phylogenetic analysis indicated that Hm1 evolved exclusively and early in the grass lineage. Given the devastating ability of CCR1 to kill maize, these findings imply that the evolution and/or geographical distribution of grasses may have been constrained if Hm1 did not emerge.  相似文献   

12.
Recently, the FtsZ protein, which is known as a key component in bacterial cell division, was reported to be involved in mitochondrial division in algae. In yeast and animals, however, mitochondrial fission depends on the dynamin-like proteins Dnm1p and Drp1, respectively, whereas in green plants, no potential mitochondrial division genes have been identified. BLAST searches of the nuclear and mitochondrial genome sequences of Arabidopsis thaliana did not find any obvious homologue of the alpha-proteobacterial-type ftsZ genes. To determine whether mitochondrial division of higher plants depends on a dynamin-like protein, we cloned a cDNA for ADL2b, an Arabidopsis homologue of Dnm1p, and tested its subcellular localization and its dominant-negative effect on mitochondrial division. The fusion protein of green fluorescent protein and ADL2b was observed as punctate structures localized at the tips and at the constriction sites of mitochondria in live plant cells. Cells expressing dominant-negative mutant ADL2b proteins (K56A and T77F) showed a significant fusion, aggregation, and/or tubulation of mitochondria. We propose that mitochondrial division in higher plants is conducted by dynamin-like proteins similar to ADL2b in Arabidopsis. The evolutional points of loss of mitochondrial FtsZ and the functional acquisition of dynamin-like proteins in mitochondrial division are discussed.  相似文献   

13.
Alloxan reacts with certain sulfhydryl groups either by chemical modification or reduction to dialuric acid. The effects of the drug on NADPH-thioredoxin oxidoreductase, EC 1.6.4.5] and thioredoxin-(SH)2, a ubiquitous thiol-dependent disulfide reductase system, are described. Alloxan was a direct substrate for a nearly homogenous preparation of calf thymus NADPH-thioredoxin reductase with an apparent Km of 330 microM and a Kcat of 1000 min-1 at pH 7.0 and 25 degrees C. Alloxan was not a substrate for the corresponding Escherichia coli NADPH-thioredoxin reductase. However, E. coli and calf thymus thioredoxin-(SH)2 both efficiently reduced alloxan. Thus, alloxan showed an apparent Km of 70 microM in the presence of 3.4 microM E. coli thioredoxin, 0.2 microM thioredoxin reductase, and 0.4 mM NADPH. The insulin disulfide reductase activity of the complete calf thymus thioredoxin system was inhibited by alloxan, as predicted from the reaction of the drug with both thioredoxin-(SH)2 and thioredoxin reductase. The toxic action of alloxan on animal cells, particularly the beta cells of pancreas, may be caused by rapid oxidation of cellular NADPH and generation of cytotoxic dialuric acid catalyzed by the thioredoxin system.  相似文献   

14.
We have isolated the Arabidopsis thaliana gene (HMG1) encoding 3-hydroxy-3-methylglutaryl-CoA reductase [HMG-CoA reductase; (S)-mevalonate:NAD+ oxido-reductase (CoA-acylating), EC 1.1.1.88], the catalyst of the first committed step in isoprenoid biosynthesis. cDNA copies of the plant gene were identified by hybridization with a short, highly conserved segment of yeast HMG-CoA reductase as probe. DNA sequence analysis reveals that the COOH-terminal domain of the Arabidopsis HMG-CoA reductase (containing the catalytic site of the enzyme) is highly conserved with respect to the yeast, mammalian, and Drosophila enzymes, whereas the membrane-bound amino terminus of the Arabidopsis protein is truncated and lacks the complex membrane-spanning architecture of the yeast and animal reductases. Expression of the Arabidopsis gene from the yeast GAL1 promoter in a yeast mutant lacking HMG-CoA reductase activity suppresses the growth defect of the yeast mutant. Taken together, the sequence similarity to other cloned HMG-CoA reductase genes and the suppression of the yeast hmg- mutant provide strong evidence that the novel Arabidopsis gene we have cloned encodes a functional HMG-CoA reductase enzyme.  相似文献   

15.
Ubiquitin-dependent proteolysis is a major proteolytic pathway in the cytoplasm and nucleus of eukaryotic cells. We introduced a gene encoding a substrate for this pathway into the genome of Arabidopsis thaliana. The transgene codes for a hybrid protein consisting of dihydrofolate reductase (DHFR, EC 1.5.1.3) fused to a degradation signal that is specifically recognized by components of the ubiquitin-dependent proteolysis pathway. Elevated concentrations of the DHFR protein confer resistance to the drug methotrexate, but rapid degradation prevents accumulation of the protein in the plant. Therefore, transgenic A. thaliana lines expressing the DHFR fusion protein are methotrexate-sensitive. Selection for mutants resistant to methotrexate resulted in plants impaired in degradation of the DHFR model substrate, as shown by an increase in protein level in the mutants.  相似文献   

16.
The large subunit of carbamoyl phosphate synthase A [carbon-dioxide: L-glutamine amido-ligase (ADP-forming, carbamate-phosphorylating), EC 6.3.5.5] from Neurospora crassa is encoded by a nuclear gene but is localized in the mitochondrial matrix. We have utilized N. crassa strains that produce both normal and carboxyl-terminal-truncated forms of carbamoyl phosphate synthase A to ask whether the carboxyl terminus affects import of the carbamoyl phosphate synthase A precursor. We found that carboxyl-terminal-truncated precursors were directed to mitochondria but that they were imported less efficiently than full-length proteins that were synthesized in the same cytoplasm. Our results suggest that effective import of proteins into mitochondria requires appropriate combinations of targeting sequences and three-dimensional structure.  相似文献   

17.
Mitochondrial genomes generally encode a minimal set of tRNAs necessary for protein synthesis. However, a number of eukaryotes import tRNAs from the cytoplasm into their mitochondria. For instance, Saccharomyces cerevisiae imports cytoplasmic tRNA(Gln) into the mitochondrion without any added protein factors. Here, we examine the existence of a similar active tRNA import system in mammalian mitochondria. We have used subcellular RNA fractions from rat liver and human cells to perform RT-PCR with oligonucleotide primers specific for nucleus-encoded tRNA(CUG)(Gln) and tRNA(UUG)(Gln) species, and we show that these tRNAs are present in rat and human mitochondria in vivo. Import of in vitro transcribed tRNAs, but not of heterologous RNAs, into isolated mitochondria also demonstrates that this process is tRNA-specific and does not require the addition of cytosolic factors. Although this in vitro system requires ATP, it is resistant to inhibitors of the mitochondrial electrochemical gradient, a key component of protein import. tRNA(Gln) import into mammalian mitochondria proceeds by a mechanism distinct from protein import. We also show that both tRNA(Gln) species and a bacterial pre-tRNA(Asp) can be imported in vitro into mitochondria isolated from myoclonic epilepsy with ragged-red fiber cells if provided with sufficient ATP (2 mM). This work suggests that tRNA import is more widespread than previously thought and may be a universal trait of mitochondria. Mutations in mitochondrial tRNA genes have been associated with human disease; the tRNA import system described here could possibly be exploited for the manipulation of defective mitochondria.  相似文献   

18.
Three cytosolic and one plasma membrane-bound 5'-nucleotidases have been cloned and characterized. Their various substrate specificities suggest widely different functions in nucleotide metabolism. We now describe a 5'-nucleotidase in mitochondria. The enzyme, named dNT-2, dephosphorylates specifically the 5'- and 2'(3')-phosphates of uracil and thymine deoxyribonucleotides. The cDNA of human dNT-2 codes for a 25.9-kDa polypeptide with a typical mitochondrial leader peptide, providing the structural basis for two-step processing during import into the mitochondrial matrix. The deduced amino acid sequence is 52% identical to that of a recently described cytosolic deoxyribonucleotidase (dNT-1). The two enzymes share many catalytic properties, but dNT-2 shows a narrower substrate specificity. Mitochondrial localization of dNT-2 was demonstrated by the mitochondrial fluorescence of 293 cells expressing a dNT-2-green fluorescent protein (GFP) fusion protein. 293 cells expressing fusion proteins without leader peptide or with dNT-1 showed a cytosolic fluorescence. During in vitro import into mitochondria, the preprotein lost the leader peptide. We suggest that dNT-2 protects mitochondrial DNA replication from overproduction of dTTP, in particular in resting cells. Mitochondrial toxicity of dTTP can be inferred from a severe inborn error of metabolism in which the loss of thymidine phosphorylase led to dTTP accumulation and aberrant mitochondrial DNA replication. We localized the gene for dNT-2 on chromosome 17p11.2 in the Smith-Magenis syndrome-critical region, raising the possibility that dNT-2 is involved in the etiology of this genetic disease.  相似文献   

19.
Thioredoxin and glutaredoxin may be important in regulating cell metabolism by mediating interchanges between sulfhydryl and disulfide groups. Components of the thioredoxin/glutaredoxin system from cultured HeLa cells have been partially purified and characterized by using Escherichia coli adenosine 3'-phosphate 5'-phosphosulfate reductase, a thioredoxin/glutaredoxin-dependent enzyme on the pathway of sulfate reduction, as an assay system. In HeLa cells, a NADPH-thioredoxin reductase and three heat-labile proteins (designated PI, PII, and PIII) that have thioredoxin- or glutaredoxin-like properties are found. Both PI and PIII have molecular masses of approximately 12,000 daltons and are readily reduced by their homologous HeLa thioredoxin reductase. However, only PI can be reduced efficiently by the glutathione system and neither PI nor PIII has inherent glutathione-disulfide oxidoreductase activity. PII has a molecular mass of greater than 30,000 daltons and appears to be associated with a reductase activity. The HeLa NADPH-thioredoxin reductase has been purified to near homogeneity and found to be a 116,000-dalton flavoprotein composed of two 58,000-dalton subunits. The HeLa enzyme has low species and substrate specificity and can reduce HeLa PI and PIII, E. coli thioredoxin and glutaredoxin, and the disulfide bond in 5,5'-dithiobis(2-nitrobenzoic acid). The exact in vivo roles of the HeLa thioredoxin/glutaredoxin system remain to be determined.  相似文献   

20.
The URF13 protein, which is encoded by the maize mitochondrial T-urf13 gene, is thought to be responsible for pathotoxin and methomyl sensitivity and male sterility. We have investigated whether T-urf13 confers toxin sensitivity and male sterility when expressed in another plant species. The coding sequence of T-urf13 was fused to a mitochondrial targeting presequence, placed under the control of the cauliflower mosaic virus 35S promoter, and introduced into tobacco by Agrobacterium tumefaciens-mediated transformation. Plants expressing high levels of URF13 were methomyl sensitive. Subcellular analysis indicated that URF13 is mainly associated with the mitochondria. Adding methomyl to isolated mitochondria stimulated NADH-linked respiration and uncoupled oxidative phosphorylation, indicating that URF13 was imported into the mitochondria, and conferred toxin sensitivity. Most control plants, which expressed the T-urf13c construct lacking the mitochondrial presequence, were methomyl sensitive and contained URF13 in a membrane fraction. Subcellular fractionation by sucrose gradient centrifugation showed that URF13 sedimented at several positions, suggesting the protein is associated with various organelles, including mitochondria. No methomyl effect was observed in isolated mitochondria, however, indicating that URF13 was not imported and did not confer toxin sensitivity to the mitochondria. Thus, URF13 confers toxin sensitivity to transgenic tobacco with or without import into the mitochondria. There was no correlation between the expression of URF13 and male sterility, suggesting either that URF13 does not cause male sterility in transgenic tobacco or that URF13 is not expressed in sufficient amounts in the appropriate anther cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号