首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Injury to a peripheral nerve induces in the dorsal root ganglia (DRG) sprouting of sympathetic and peptidergic terminals around large-diameter sensory neurons that project in the damaged nerve. This pathological change may be implicated in the chronic pain syndromes seen in some patients with peripheral nerve injury. The mechanisms underlying the sprouting are not known. Using in situ hybridization and immunohistochemical techniques, we have now found that nerve growth factor (NGF) and neurotrophin-3 (NT3) synthesis is upregulated in satellite cells surrounding neurons in lesioned DRG as early as 48 h after nerve injury. This response lasts for at least 2 months. Quantitative analysis showed that the levels of mRNAs for NT3 and NGF increased in ipsilateral but not contralateral DRG after nerve injury. Noradrenergic sprouting around the axotomized neurons was associated with p75-immunoreactive satellite cells. Further, antibodies specific to NGF or NT3, delivered by an osmotic mini-pump to the DRG via the lesioned L5 spinal nerve, significantly reduced noradrenergic sprouting. These results implicate satellite cell-derived neurotrophins in the induction of sympathetic sprouting following peripheral nerve injury.  相似文献   

2.
Injury to peripheral nerves often results in chronic pain which is difficult to relieve. The mechanism underlying the pain syndrome remains largely unknown. In previous studies we showed that neurotrophins are up-regulated in satellite cells around sensory neurons following sciatic nerve lesion. In the present study, we have examined whether the neurotrophins in the dorsal root ganglia play any role in allodynia after nerve injury. Antibodies to different neurotrophins, directly delivered to injured dorsal root ganglia, significantly reduced (with different time sequences) the percentage of foot withdrawal responses evoked by von Frey hairs. The antibodies to nerve growth factor acted during the early phase but antibodies to neurotrophin-3 and brain-derived neurotrophic factor were effective during the later phase. Exogenous nerve growth factor or brain-derived neurotrophic factor, but not neurotrophin-3, directly delivered to intact dorsal root ganglia, trigger a persistent mechanical allodynia. Our results showed that neurotrophins within the dorsal root ganglia after peripheral nerve lesion are involved in the generation of allodynia at different stages. These studies provide the first evidence that ganglia-derived neurotrophins are a source of nociceptive stimuli for neuropathic pain after peripheral nerve injury.  相似文献   

3.
To elucidate the role of the degeneration of motor and sensory fibers in neuropathic pain, we examined the pain-related behaviors and the changes of brain-derived neurotrophic factor (BDNF) in the L4/5 dorsal root ganglion (DRG) and the spinal cord after L5 ventral rhizotomy. L5 ventral rhizotomy, producing a selective lesion of motor fibers, produced thermal hyperalgesia and increased BDNF expression in tyrosine kinase A-containing small- and medium-sized neurons in the L5 DRG and their central terminations within the spinal cord, but not in the L4 DRG. Furthermore, L5 ventral rhizotomy up-regulated nerve growth factor (NGF) protein in small to medium diameter neurons in the L5 DRG and also in ED-1-positive cells in the L5 spinal nerve, suggesting that NGF synthesized in the degenerative fibers is transported to the L5 DRG and increases BDNF synthesis. On the other hand, L5 ganglionectomy, producing a selective lesion of sensory fibers, produced heat hypersensitivity and an increase in BDNF and NGF in the L4 DRG. These data indicate that degeneration of L5 sensory fibers distal to the DRG, but not motor fibers, might influence the neighboring L4 nerve fibers and induce neurotrophin changes in the L4 DRG. We suggest that these changes of neurotrophins in the intact primary afferents of neighboring nerves may be one of many complex mechanisms, which can explain the abnormal pain behaviors after nerve injury. The ventral rhizotomy and ganglionectomy models may be useful to investigate the pathophysiological mechanisms of neuropathic pain after Wallerian degeneration in motor or sensory or mixed nerve.  相似文献   

4.
Sympathetic axons invade dorsal root ganglia (DRG) following nerve injury, and activity in the resulting pericellular axonal 'baskets' may underlie painful sympathetic-sensory coupling. Sympathetic sprouting into the DRG may be stimulated by nerve growth factor (NGF). To test this hypothesis, we investigated the effect of daily anti-NGF administration on pain and on sprouting in the DRG induced by chronic sciatic constriction injury (CCI) or L5 spinal nerve ligation (SNL). These models have been shown to differ subtly in the onset of pain behaviours and adrenergic sprouting, and we now demonstrate a fundamental difference in the way sympathetic axons invade the DRG: after CCI, perivascular noradrenergic collaterals sprouted into the DRG in a manner dependent upon peripherally derived NGF. In contrast, after SNL, regenerating sympathetic axons were diverted towards the DRG from the spinal nerve by the obstructing ligature, and this effect was only moderately impeded by anti-NGF. The differential dependence on anti-NGF suggests that adrenergic innervation of the DRG after SNL and CCI may reflect regenerative and collateral sprouting, respectively. Pain behaviour was similarly affected: anti-NGF completely prevented CCI-induced thermal hyperalgesia and mechanoallodynia, but the same treatment only partly relieved these symptoms following SNL. These differences emphasize that although CCI and SNL may result in similar behavioural abnormalities, the underlying mechanisms may be governed by distinct processes, differentially dependent on peripheral NGF. These mechanistic differences will have to be considered in the development of appropriate treatment strategies for neuropathic pain produced by different types of pathology.  相似文献   

5.
Peripheral nerve injury results in sympathetic sprouting around large diameter sensory neurons in the dorsal root ganglia (DRG). The mechanism underlying this pathological phenomenon is not known. Brain-derived neurotrophic factor (BDNF) is up-regulated in large sensory neurons and ensheathing satellite cells following a sciatic nerve injury. In the present study, we investigated the effects of BDNF on the sympathetic sprouting in the DRG, by delivering BDNF antibody or antisense oligodeoxynucleotide to injured DRGs, or by delivering exogenous BDNF to intact DRGs. The sheep antibody to BDNF, characterized by bioassays and dot blots, specifically reacted with BDNF but not other neurotrophins. Noradrenergic fibres were visualized by immunostaining of tyrosine hydroxylase (TH) and quantified by an NIH Imaging program. Two weeks following L5 spinal nerve lesion, a dramatic increase in TH-immunoreac-tive (-ir) fibres was observed in both ipsi- and contralateral DRGs in normal sheep IgG treated rats. BDNF antibody significantly reduced the sprouting of sympathetic nerves in both ipsi- and contra-lateral DRGs by 67% and 42% respectively. BDNF antisense oligodeoxynucleotide, by inhibiting BDNF synthesis in DRGs, also significantly suppressed the sprouting by 67% and 60% respectively in the ipsi- and contralateral DRGs. Delivery of exogenous BDNF into an intact L5 DRGs resulted in an increase in the sprouting by 4.2-fold. Our results clearly indicate that BDNF, synthesized in and secreted from the DRGs, is involved in the sympathetic sprouting in the DRG following the peripheral nerve injury.  相似文献   

6.
Peripheral nerve injury results in sympathetic sprouting around large diameter sensory neurons in the dorsal root ganglia (DRG). The mechanism underlying this pathological phenomenon is not known. Brain-derived neurotrophic factor (BDNF) is up-regulated in large sensory neurons and ensheathing satellite cells following a sciatic nerve injury. In the present study, we investigated the effects of BDNF on the sympathetic sprouting in the DRG, by delivering BDNF antibody or antisense oligodeoxynucleotide to injured DRGs, or by delivering exogenous BDNF to intact DRGs. The sheep antibody to BDNF, characterized by bioassays and dot blots, specifically reacted with BDNF but not other neurotrophins. Noradrenergic fibers were visualized by immunostaining of tyrosine hydroxylase (TH) and quantified by an NIH Imaging program. Two weeks following L5 spinal nerve lesion, a dramatic increase in TH-immunoreactive (-ir) fibres was observed in both ipsi- and contralateral DRGs in normal sheep IgG treated rats. BDNF antibody significantly reduced the sprouting of sympathetic nerves in both ipsi- and contra-lateral DRGs by 67% and 42% respectively. BDNF antisense oligodeoxynucleotide, by inhibiting BDNF synthesis in DRGs, also significantly suppressed the sprouting by 67% and 60% respectively in the ipsi- and contra-lateral DRGs. Delivery of exogenous BDNF into an intact L5 DRGs resulted in an increase in the sprouting by 4.2-fold. Our results clearly indicate that BDNF, synthesized in and secreted from the DRGs, is involved in the sympathetic sprouting in the DRG following the peripheral nerve injury.  相似文献   

7.
In rats, partial injury to a peripheral nerve often leads to sympathetically maintained pain (SMP). In humans, this condition is especially apparent in the elderly. Nerve injury also causes perivascular sympathetic axons to sprout into the dorsal root ganglion (DRG), forming a possible anatomical substrate for SMP. Here, we describe the effects of chronic sciatic nerve constriction injury (CCI) in young (3 months) and old (16 months) rats on neuropathic pain behavior and on sympathetic sprouting in DRG. Behavioral tests assessed changes in thermal allodynia and hyperalgesia and in mechanical allodynia. We found that 1) sympathetic innervation of the DRG increased naturally with age, forming pericellular baskets mainly around large DRG neurons, and that sympathetic fibers were often associated with myelinated sensory axons; 2) sympathetic fiber density following CCI was also greater in old than in young rats; and 3) in old rats, thermal allodynia was less pronounced than in young rats, whereas thermal hyperalgesia and mechanical allodynia were more pronounced. These results highlight the possibility that sympathetic sprouting in the DRG is responsible for the sympathetic generation or maintenance of pain, especially in the elderly. J. Comp. Neurol. 394:38–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The extent of the sprouting of sympathetic postganglionic fibers in the dorsal root ganglion (DRG) and the peripheral nerves was examined in neuropathic rats at different postoperative times. After the L5 and L6 spinal nerves were ligated on one side, three different pain behavior tests (representing mechanical allodynia, cold allodynia, ongoing pain exacerbated by cold stress) were performed at various time intervals. The sympathetic postganglionic fibers were visualized by immunostaining with antibodies to tyrosine hydroxylase (TH). In the neuropathic rats, all three pain behaviors were fully developed within 3 days after the surgery, maintained up to 2 weeks, and then started to decline gradually afterward. At 20 weeks after neuropathic surgery, pain behaviors were reduced significantly compared to the peak response, but were still higher than the presurgery levels. Sympathectomy, performed 4 days after neuropathic surgery, almost completely abolished the signs of mechanical allodynia and ongoing pain behaviors, and it reduced the behaviors of cold allodynia to approximately half. The numerical density of sympathetic fibers in the DRG of an injured segment was significantly higher at 1, 4, and 20 weeks after neuropathic surgery as compared to the normal, suggesting that there is sprouting of sympathetic fibers in the DRG after peripheral nerve injury. Sprouting of sympathetic fibers in the DRG was extensive as early as 2 days after the spinal nerve ligation, and the sprouted fibers were almost completely eliminated after sympathectomy. The data suggest that sympathetic innervation of the DRG may play an important role in the development and maintenance of sympathetically maintained neuropathic pain. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Nerve injury leads to novel sympathetic innervation of the dorsal root ganglion (DRG). We have hypothesized previously that the degenerating nerve increases the sympathetic sprouting in the DRG and pain after chronic sciatic constriction injury (CCI) by virtue of its influence on sensory and sympathetic axons spared by the injury. However, L5 spinal nerve ligation and transection (SNL) results in the complete isolation of the L5 DRG from the degenerating stump, yet sympathetic axons invade the ganglion, and sympathetically dependent pain develops. We investigated the role of Wallerian degeneration in both sympathetic sprouting and neuropathic pain in these two models of painful peripheral neuropathy by comparing responses of normal C57B1/6J and C57B1/Wldsmice in which degeneration is impaired. After CCI, Wldsmice, unlike 6J mice, did not develop thermal or mechanoallodynia or sympathetic innervation of the L5 DRG. After SNL, both strains developed mechanoallodynia and sympathetic sprouts in L5, but only 6J mice developed thermal allodynia. Observation of the origins of the invading sympathetic axons revealed that after CCI, sympathetics innervating blood vessels and dura (probably intact) sprouted into the ganglion, but after SNL sympathetics (probably axotomized) invaded from the injured spinal nerve. Based on these findings, we hypothesize that there are two mechanisms for sympathetic sprouting into DRG, differentially dependent on Wallerian degeneration. Analysis of pain behavior in these animals reveals that (i) mechanoallodynia and sympathetic innervation of the DRG tend to coincide and (ii) thermal allodynia and Wallerian degeneration, but not sympathetic innervation of the DRG tend to coincide.  相似文献   

10.
Peripheral nerve injury in a rat model (spinal nerve ligation) of neuropathic pain triggers sprouting of sympathetic fibers in the dorsal root ganglion (DRG). This sympathetic sprouting has been suggested as an important underlying mechanism for pain behaviors. To investigate the possibility of functional interaction between sprouted sympathetic fibers and sensory neurons, the present study examined the fine morphology and structural relationship between sympathetic fibers and the DRG neurons by electron microscopy. Sympathetic postganglionic fibers, as identified by electron microscopic immunostaining for tyrosine hydroxylase (TH), were all unmyelinated fibers and some of them ended as growth cones. In addition, many vesicle-containing axonal enlargements (we will refer these as synaptic varicosities) were found in the interstitial space around DRG neurons, and some were enclosed within the satellite cell capsule which surrounded the DRG soma. The presence of sympathetic synaptic varicosities near or in apposition with either the DRG somata or their processes provides a structural basis for possible interactions between sensory neurons and sympathetic fibers in the DRG of neuropathic rats. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

11.
H J Kim  H S Na  S K Back  S K Hong 《Neuroreport》2001,12(16):3529-3532
We examined whether the extent of sympathetic sprouting in the dorsal root ganglion was a function of the number of injured nerve fibers. We compared two groups of rats. One group was subjected to unilateral superior and inferior caudal trunk transections at the level between the S1 and S2 spinal nerves (S-I group) and the other group was subjected to unilateral superior caudal trunk transection at the same level (S group). Immunohistochemical staining with tyrosine hydroxylase (TH) antibody of the S1 DRG revealed that the degree of TH-immunoreactive fibers was more extensive in the S-I group than in the S group. However, there was no difference in the severity of neuropathic pain behaviors between the two groups. These results suggest that the extent of sympathetic sprouting in the DRG following peripheral nerve injury is proportionally related to the amount of injured nerve fibers, but not related to the degree of neuropathic pain behaviors.  相似文献   

12.
Chung K  Chung JM 《Brain research》2001,895(1-2):204-212
It is well documented that there is an increase in the number of sympathetic fibers within the dorsal root ganglion (DRG) after a peripheral nerve injury. The present study examined the numbers and distribution of sympathetic fibers in the DRG and their sprouting routes by utilizing various surgical manipulations and retrograde tracing and immunohistochemical staining methods in spinal nerve-ligated neuropathic rats. The appearance of many double immunostained fibers with antibodies to tyrosine hydroxylase (TH) and growth associated protein-43 (GAP-43) in the L5 DRG 1 week after L5 spinal nerve ligation, indicated sprouting of sympathetic fibers. The confined location of early sprouting sympathetic fibers in the distal half of the L5 DRG confirmed that sprouting fibers come primarily from the injured spinal nerve. A second cut proximal to the previously ligated L5 spinal nerve -- a process which would transect the regenerating sympathetic fibers extending from the injury site -- did not change the density of sympathetic fibers in the L5 DRG. When retrograde tracers (fast blue and diamidino yellow) were injected into the L5 spinal nerve and DRG, respectively, the number of double-labeled sympathetic postganglionic neurons was greatly increased after spinal nerve ligation, suggesting the increased number of sympathetic neurons projecting to both the spinal nerve and DRG. All these results indicate that many sympathetic fibers in the DRG are regenerating branches that are sprouting from the proximal part of the injured spinal nerve (regenerative collateral sprouting).  相似文献   

13.
Sympathetic axonal sprouting in axotomized dorsal root ganglia (DRG) has been shown to be a major phenomenon implicated in neuropathic pain. However, it is not known whether sympathetic sprouting can occur in pathologic ganglia without peripheral axotomy. We thus examined presence and density of sympathetic axonal sprouting within DRG of rats subjected to a persistent compressive injury by inserting a stainless steel metal rod into L(4) and L(5) lumbar intervertebral foramen. Sympathetic axons were identified by immunohistochemical staining with anti-tyrosine hydroxylase antibodies. Results indicate that progressive increase in sympathetic axonal sprouting occurred in the bilateral DRGs between postoperative days 2 and 28. The sympathetic fiber density was greater on the lesion side than the contralateral side. In conclusion, chronic compressive injury of the DRG results in sympathetic sprouting in the non-axotomized ganglion and may partially contribute to the development and maintenance of certain pathological pain states.  相似文献   

14.
15.
Galanin is a peptide normally expressed at low levels both in sensory and in sympathetic neurons. It is strongly upregulated after peripheral nerve lesions, and it has been proposed that nerve growth factor (NGF) plays a role in this regulation. In the present study the effect of both sciatic nerve transection and lumbar sympathectomy on galanin in lumbar dorsal root ganglia (DRGs) was examined in mice overexpressing NGF (NGFOE) in the skin under the keratin promoter. The superior cervical ganglia (SCG) were also studied. In the DRG pericellular baskets containing tyrosine hydroxylase- (TH) and galanin-like immunoreactivity (LI) were found, mostly in the same fibers. Galanin-positive baskets were also found in the trigeminal ganglia. However, only single neuropeptide Y (NPY)-positive baskets were observed within the DRGs. No marked difference in number of galanin-positive neurons was seen between wild-type and NGFOE mice. After sciatic nerve transection galanin was upregulated in DRG neurons to about the same extent in NGFOE mice as in wild-type mice. Galanin-, but not TH-LIs decreased in the pericellular baskets. After lumbar sympathectomy both galanin- and TH-immunoreactive baskets disappeared, suggesting a sympathetic origin. In the SCG the very low galanin mRNA levels were strongly increased after lesion of the carotid nerves, both in wild-type and in NGFOE mice. However, whereas NPY mRNA levels decreased in the SCG after axotomy in the wild-type mice, there was a distinct increase in the NGFOE mice. Our results show that high NGF levels in skin induce formation of pericellular baskets in DRGs expressing galanin- and TH-LI and that galanin in these baskets is strongly influenced by peripheral axotomy. However, overexpression of NGF did not markedly influence galanin expression in DRG neurons, neither normally nor after nerve lesions. Finally, expression of NPY in sympathetic ganglia is differently regulated in NGFOE compared to wild-type mice.  相似文献   

16.
Ruiz G  Baños JE 《Brain research》2005,1042(1):44-52
Recent findings indicate that calcitonin gene-related peptide (CGRP) is involved in neuropathic pain, this peptide being up-regulated in a small population of large- and medium-sized primary sensory neurons after peripheral nerve injury. In adult animals, the expression of CGRP is regulated by nerve growth factor (NGF). After nerve injury, NGF is up-regulated at the injury site for several weeks, and this up-regulation contributes to the onset of neuropathic pain. Using immunohistochemistry, we investigated the time course of the effect of an endoneurial injection of NGF on the expression of CGRP in primary sensory neurons. NGF increased the percentage of medium- to large-sized DRG neuron profiles expressing CGRP, did not modify the percentage of small-sized neurons expressing CGRP, and increased CGRP expression in the laminae III and IV of the dorsal horn. The effects of NGF were evident as soon as 1 day after endoneurial injection, and lasted for 5 days. Ten days after the injection of NGF, the patterns of CGRP expression in the DRG were normal, whereas a slight decrease in CGRP content was observed in the dorsal horn. The injection of vehicle did not produce any change on CGRP expression in primary sensory neurons. These results suggest that endoneurial NGF is responsible for the increase in CGRP expression in some large-sized neurons and their central processes observed after nerve injury in animal models of neuropathic pain. Our findings contribute to the understanding of the role of NGF in neuropathic pain.  相似文献   

17.
Dopaminergic and glutamatergic mechanisms are involved in the development and modulation of neuropathy. Cytokines and neurotrophins can be also involved in the supraspinal maintenance of neuropathic pain. We assessed the effects of chronic intraperitoneal (ip) injection of dizocilpine (MK-801), a N-methyl-d-Aspartate (NMDA) noncompetitive receptor antagonist, or apomorphine (APO), a dopamine (DA) D1 and D2 receptor agonist, on neuropathic manifestations in the chronic constriction injury (CCI) and the spared nerve injury (SNI) models of neuropathy in rats. Six groups of rats were subjected to SNI or CCI (3 groups each) neuropathy and 5–7 days later received daily ip injections of saline, MK-801, or APO for two weeks. An additional control group was subjected to sham surgery without nerve lesion or injections. Rats were then sacrificed, and levels of IL-1β, IL-6, NGF, BDNF and GDNF were determined in the cingulum, striatum, and hippocampus. In both models, the neuropathy seen in the saline group was associated with decreased BDNF and an increase in IL-1β, IL-6, NGF and GDNF in most brain regions when compared to sham group. Chronic systemic MK-801 or APO injections decreased the neuropathic manifestations in both models, increased the BDNF level and modulated the other cytokines and neurotrophins. This modulation depended on the neuropathy model and the region/side of the brain studied. Our results showed that the changes in surpraspinal cytokines and neurotrophins could parallel neuropathic manifestations. These changes and the observed hyperalgesia can be modulated by chronic systemic injections of NMDA antagonists or DA agonists.  相似文献   

18.
Bianco JI  Perry C  Harkin DG  Mackay-Sim A  Féron F 《Glia》2004,45(2):111-123
Several studies have demonstrated the potential of olfactory ensheathing cells for the repair of central and peripheral nerve injury. However, the majority of these studies have been performed with olfactory ensheathing cells derived from the olfactory bulbs, situated inside the skull. A more clinically relevant source of olfactory ensheathing cells is the olfactory mucosa, located in the nose. To be successful, an autologous transplant of nasal ensheathing glia would require a large number of purified cells. To address this issue, we have focused our research on three neurotrophic factors, namely nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin 3 (NT3). We show here that their respective receptors, TrkA, TrkB, TrkC, as well as p75(NTR) (the low affinity NGF receptor), are expressed in vitro by the nasal ensheathing cells; the three neurotrophins promote purification and proliferation of these glial cells, with an optimal concentration of 50 ng/ml; and human ensheathing cells can be easily biopsied and highly purified using a serum-free medium supplemented with NT3. This technique opens the door for clinical trials in which nasal ensheathing cells will be autotransplanted in humans suffering from nerve injury.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) exists in small to medium size neurons in adult rat dorsal root ganglion (DRG) and serves as a modulator at the first synapse of the pain transmission pathway in the spinal dorsal horn. Peripheral nerve injury increases BDNF expression in DRG neurons, an event involved in the genesis of neuropathic pain. In the present study, we tested the hypothesis that prostaglandin E2 (PGE2) over-produced in injured nerves contributes to the up-regulation of BDNF in DRG neurons. Two weeks after partial sciatic nerve ligation (PSNL), BDNF levels in the ipsilateral L4–L6 DRG of injured rats were significantly increased compared to the contralateral side. Perineural injection of a selective cyclooxygenase (COX2) inhibitor or a PGE2 EP4 receptor antagonist not only dose-dependently relieved PSNL elicited mechanical hypersensitivity, but also suppressed the increased BDNF levels in DRG neurons. PSNL shifted BDNF expression in the ipsilateral DRG from small to medium and larger size injured neurons. BDNF is mainly co-expressed with the EP1 and EP4 while moderately with the EP2 and EP3 receptor subtypes in naïve and PSNL rats. PSNL also shifted the expression of EP1–4 receptors to a larger size population of DRG neurons. In DRG explant cultures, a stabilized PGE2 analog 16,16 dimethyl PGE2 (dmPGE2) or the agonists of EP1 and EP4 receptors significantly increased BDNF levels and the phosphorylated protein kinase A (PKA), extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) and cAMP response element binding protein (CREB). The EP1 and EP4 antagonists, a sequester of nerve growth factor (NGF), the inhibitors of PKA and MEK as well as CREB small interfering RNA suppressed dmPGE2-induced BDNF. Taken together, EP1 and EP4 receptor subtypes, PKA, ERK/MAPK and CREB signaling pathways as well as NGF are involved in PGE2-induced BDNF synthesis in DRG neurons. Injured nerve derived-PGE2 contributes to BDNF up-regulation in DRG neurons following nerve injury. Facilitating the synthesis of BDNF in primary sensory neurons is a novel mechanism underlying the role of PGE2 in the genesis of neuropathic pain.  相似文献   

20.
It is well known that the nerve growth factor (NGF) may serve as a link between inflammation and hyperalgesia. Recent experiments showed that systemic injection of NGF dramatically stimulated the expression of brain-derived neurotrophic factor (BDNF) mRNA in the dorsal root ganglion (DRG). In the present study, we evaluated the change of BDNF mRNA in the DRG following peripheral inflammation and also observed colocalization of BDNF and trkA mRNAs by means of in situ hybridization histochemistry in rats. Peripheral tissue inflammation produced by an intraplantar injection of Freund's adjuvant into the paws significantly increased BDNF mRNA levels in the DRG and many neurons expressing trkA mRNA showed increased expession of BDNF mRNA. Intraplantar injection of antibody to NGF together with Freund's adjuvant prevented the increase in BDNF mRNA. These findings suggest that peripheral inflammation induces an increased expression of BDNF mRNA which is mediated by NGF in DRG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号