首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundHigh pericoronary adipose tissue (PCAT) attenuation and non-calcified plaque burden (NCP) measured from coronary CT angiography (CTA) have been implicated in future cardiac events. We aimed to evaluate the interobserver and intraobserver repeatability of PCAT attenuation and NCP burden measurement from CTA, in a sub-study of the prospective SCOT-HEART trial.MethodsFifty consecutive CTAs from participants of the CT arm of the prospective SCOT-HEART trial were included. Two experienced observers independently measured PCAT attenuation and plaque characteristics throughout the whole coronary tree from CTA using semi-automatic quantitative software.ResultsWe analyzed proximal segments in 157 vessels. Intraobserver mean differences in PCAT attenuation and NCP plaque burden were ?0.05HU and 0.92% with limits of agreement (LOA) of ±1.54 and ± 5.97%. Intraobserver intraclass correlation coefficients (ICC) for PCAT attenuation and NCP burden were excellent (0.999 and 0.978). Interobserver mean differences in PCAT attenuation and NCP plaque burden were 0.13HU [LOA ±1.67HU] and ?0.23% (LOA ±9.61%). Interobserver ICC values for PCAT attenuation and NCP burden were excellent (0.998 and 0.944).ConclusionPCAT attenuation and NCP burden on CTA has high intraobserver and interobserver repeatability, suggesting they represent a repeatable and robust method of quantifying cardiovascular risk.  相似文献   

2.
BackgroundCoronary CT angiography (CCTA) pericoronary adipose tissue (PCAT) markers are promising indicators of inflammation.ObjectiveTo determine the effect of patient and imaging parameters on the associations between non-calcified plaque (NCP) and PCAT attenuation and gradient.MethodsThis was a single-center, retrospective analysis of consecutive patients with stable chest pain who underwent CCTA and had zero calcium scores. CCTA images were evaluated for the presence of NCP, obstructive stenosis, segment stenosis and involvement score (SSS, SIS), and high-risk plaque (HRP). PCAT markers were assessed using semi-automated software. Uni- and multivariable regression models correcting for patient and imaging characteristics between plaque and PCAT markers were evaluated.ResultsOverall, 1652 patients had zero calcium score (mean age: 51 years ?± ?11 [SD], 871 women); PCAT attenuation values ranged between ?123 HU and ?51 HU, and 649 patients had plaque. In univariable analysis, the presence of NCP, SSS, SIS, and HRP were associated with PCAT attenuation (2, 1, 1, 6 HU; respectively; p ?< ?.001 all); while obstructive stenosis was not (1 HU, p ?= ?.58). In multivariable analysis, none of the plaque markers were associated with PCAT attenuation (0 HU p ?= ?.93, 0 HU p ?= ?.39, 1 HU p ?= ?.18, 2 HU p ?= ?.10, 1 HU p ?= ?.71, respectively), while patient and imaging characteristics showed significant associations, such as: male sex (1 HU, p ?= ?.003), heart rate [1/min] (?0.2 HU, p ?< ?.001), 120 ?kVp (8 HU, p ?< ?.001) and pixel spacing [mm3] (32 HU, p ?< ?.001). Similar results were observed for PCAT gradient.ConclusionPCAT markers were significantly associated with NCP, however the associations did not persist following correction for patient and imaging characteristics.  相似文献   

3.
BackgroundWhether coronary plaque characteristics assessed in coronary computed tomography angiography (CCTA) in association with the coronary artery calcium score (CACS) have predictive value for coronary events is unclear. We aimed to examine the predictive value of the CACS and plaque characteristics for the occurrence of coronary events.MethodsAmong 2802 patients who were analyzed in the PREDICT registry, 2083 with suspected coronary artery disease (CAD) were studied using post hoc analysis. High-risk plaques were defined as having ≥2 adverse characteristics, such as low computed tomographic attenuation, positive remodeling, spotty calcification, and napkin-ring sign. An adjudicative composite of coronary events (cardiac death, nonfatal acute coronary syndrome, and coronary revascularization ≥3 months after indexed CCTA) were analyzed.ResultsSeventy-three (3.5%) patients had coronary events and 313 (15.0%) had high-risk plaques. Multivariate Cox proportional hazard analysis showed that high-risk plaques remained an independent predictor of coronary events (adjusted hazard ratio [HR] 1.95, 95% confidence interval [CI] 1.13–3.34, P ?= ?0.0154), as well as the log-transformed CACS (adjusted HR 1.24, 95% CI 1.11–1.39, P ?= ?0.0002) and the presence of obstructive stenosis (adjusted HR 5.63, 95% CI 3.22–10.12, P 0.0001). In subgroup analyses, high-risk plaques were independently predictive only in the low CACS class (<100).ConclusionThis study shows that assessment of adverse features by coronary plaque imaging independently predicts coronary events in patients with suspected CAD and a low CACS. Our findings suggest that the clinical value of high-risk plaques to CACS and stenosis assessment appears marginal.  相似文献   

4.
《Radiography》2022,28(1):61-67
IntroductionDeep learning approaches have shown high diagnostic performance in image classifications, such as differentiation of malignant tumors and calcified coronary plaque. However, it is unknown whether deep learning is useful for characterizing coronary plaques without the presence of calcification using coronary computed tomography angiography (CCTA). The purpose of this study was to compare the diagnostic performance of deep learning with a convolutional neural network (CNN) with that of radiologists in the estimation of coronary plaques.MethodsWe retrospectively enrolled 178 patients (191 coronary plaques) who had undergone CCTA and integrated backscatter intravascular ultrasonography (IB-IVUS) studies. IB-IVUS diagnosed 81 fibrous and 110 fatty or fibro-fatty plaques. We manually captured vascular short-axis images of the coronary plaques as Portable Network Graphics (PNG) images (150 × 150 pixels). The display window level and width were 100 and 700 Hounsfield units (HU), respectively. The deep-learning system (CNN; GoogleNet Inception v3) was trained on 153 plaques; its performance was tested on 38 plaques. The area under the curve (AUC) obtained by receiver operating characteristic analysis of the deep learning system and by two board-certified radiologists was compared.ResultsWith the CNN, the AUC and the 95% confidence interval were 0.83 and 0.69–0.96, respectively; for radiologist 1 they were 0.61 and 0.42–0.80; for radiologist 2 they were 0.68 and 0.51–0.86, respectively. The AUC for CNN was significantly higher than for radiologists 1 (p = 0.04); for radiologist 2 it was not significantly different (p = 0.22).ConclusionDL-CNN performed comparably to radiologists for discrimination between fatty and fibro-fatty plaque on CCTA images.Implications for practiceThe diagnostic performance of the CNN and of two radiologists in the assessment of 191 ROIs on CT images of coronary plaques whose type corresponded with their IB-IVUS characterization was comparable.  相似文献   

5.
BackgroundWe examined age differences in whole-heart volumes of non-calcified and calcified atherosclerosis by coronary computed tomography angiography (CCTA) of patients with future ACS.MethodsA total of 234 patients with core-lab adjudicated ACS after baseline CCTA were enrolled. Atherosclerotic plaque was quantified and characterized from the main epicardial vessels and side branches on a 0.5 ?mm cross-sectional basis. Calcified plaque and non-calcified plaque were defined by above or below 350 Hounsfield units. Patients were categorized according to their age by deciles. Also, coronary artery calcium scores (CACS) were evaluated when available.ResultsPatients were on average 62.2 ?± ?11.5 years old. On the pre-ACS CCTA, patients showed diffuse, multi-site, predominantly non-obstructive atherosclerosis across all age categories, with plaque being detected in 93.5% of all ACS cases. The proportion calcified plaque from the total plaque burden increased significantly with older presentation (10% calcification in those <50 years, and 50% calcification in those >80 years old). Patients with ACS <50 years had remarkably lower atherosclerotic burden compared with older patients, but a high proportion of high risk markers such as low-attenuation plaque. CACS was >0 in 85% of the patients older than 50 years, and in 57% of patients younger than 50 years.ConclusionThe proportion of calcified plaque varied depending on patient age at the time of ACS. Only a small proportion of plaque was calcified when ACS occurred at <50 years old, while this increased gradually with older age. Purely non-calcified atherosclerotic plaque was not uncommon in patients <50 years.  相似文献   

6.
BackgroundThe present study aimed to assess the reliability and reproducibility of coronary computed tomography angiography (CCTA) for the serial quantitative assessment of plaque volume.MethodsPatients who underwent repeated CCTA scans within 90 days were retrospectively screened and enrolled. Clinical data and CCTA imaging data were collected. Paired CCTA scans were analyzed using the quantitative method by separate observers blinded to the other paired CCTA scans. Results were compared between the index CCTA and follow-up CCTA.ResultsPaired CT scans of 95 patients (61 ± 13 years; 56.8% men) with same tube voltages (kVp) at both CCTAs and 24 patients (57 ± 19 years; 48.3% men) with different kVp at two CCTAs were analyzed. In patients with same kVp at both CCTAs, there were no difference in PV and PVs of each components in per-segment analysis and per-lesion analysis (all p > 0.05). In per-lesion analysis of CCTAs from patients who used different kVp between two CCTAs, lesion length, area and diameter stenosis, and PVs were not different between index and follow-up CCTAs (all p > 0.05). Segment length and PV were also showed no difference between two serial CCTAs in per-segment analysis.ConclusionWe showed the reproducibility and reliability of quantitative analysis of CCTA for assessment of coronary plaques. CCTA can be applied for the serial quantitative assessment of coronary artery disease progression, regardless of differences in the image acquisition protocol.  相似文献   

7.
BackgroundPericoronary adipose tissue (PCAT) attenuation is an indicator of active inflammation of perivascular adipose tissue, which is supposed to increase in diabetic patients. We aimed to investigate the PCAT attenuation values and high-risk plaque (HRP) features in diabetic and non-diabetic subjects with different stenotic extents.MethodsConsecutive type 2 diabetes patients and non-diabetic patients with chest pain and intermediate pre-test probability of coronary artery disease (CAD) were prospectively enrolled and underwent coronary computed tomography angiography (CCTA). At per-patient level, PCAT attenuation values of three major epicardial coronary vessels, as well as HRP features were measured. PCAT attenuation values and HRP features were compared between diabetic and non-diabetic subjects according to the presence or absence of obstructive stenosis.Results1700 patients (mean age: 65.5 ?± ?11.7, 940 males) were divided into two groups according to presence of obstructive stenosis on CCTA. Propensity score matching was performed in further analysis. RCAPCAT was significantly higher in diabetic subjects than that in non-diabetic subjects, regardless of the presence of obstructive stenosis (?83.60 ?± ?9.51 HU vs. ?88.58 ?± ?9.37 HU, p ?< ?0.001) or absence of obstructive stenosis (?83.70 ?± ?10.32 HU vs. ?88.76 ?± ?8.28 HU, p ?< ?0.001). In contrast, HRP features were more commonly presented in diabetic patients with obstructive stenosis than in those without obstructive stenosis. According to subgroup analysis based on acquisition tube voltage, RCAPCAT was the only parameter showing consistent difference between diabetic and non-diabetic patients.ConclusionsRCAPCAT was significantly higher in diabetic patients than that in non-diabetic patients regardless of stenotic severity and plaque vulnerability.  相似文献   

8.
BackgroundWe investigated the change of coronary atherosclerosis with long-term exposure to fine particulate matter of aerodynamic diameter <2.5 ?μm (PM2.5) using coronary computed tomography angiography (CCTA).MethodsSubjects undergoing serial CCTAs between January 2007 and December 2017 (n ?= ?3,127) were analyzed. Each individual's cumulative amount of PM2.5 exposure between the two CCTAs was evaluated by Kriging interpolation and zonal analysis, considering the time interval between the two CCTAs. The main outcome was progression of coronary artery calcium (CAC) with additional semiquantitative analysis on the changes in the severity and composition of atherosclerotic plaques.ResultsThe CAC scores increased by 30.8 Agatston units per-year under a median PM2.5 concentration 24.9 ?μg/m3 and tended to increase with the cumulative amount of PM2.5 exposure (r ?= ?0.321, p ?<0.001). The CAC progressed in 1,361 (43.5%) subjects during a median 53 months follow-up. The cumulative amount of PM2.5 exposure was independently associated with CAC progression (adjusted OR 1.09, p ?<0.001). By random forest analysis, the relative impact of cumulative amount of PM2.5 exposure on CAC progression was higher than that of traditional cardiovascular risk factors and the average concentration of PM2.5. The extent of coronary atherosclerosis and newly developed calcified plaque on follow-up were also significantly associated with the cumulative amount of PM2.5 exposure.ConclusionsCumulative exposure to air pollution is associated with the progression of diffuse coronary calcification, the importance of which may be more significant than other traditional cardiovascular risk factors. Further investigations into the causality between PM2.5 and coronary atherosclerosis are warranted to improve global cardiovascular health.  相似文献   

9.
BackgroundThe current study aimed to examine the independent prognostic value of whole-heart atherosclerosis progression by serial coronary computed tomography angiography (CCTA) for major adverse cardiovascular events (MACE).MethodsThe multi-center PARADIGM study includes patients undergoing serial CCTA for symptomatic reasons, ≥2 years apart. Whole-heart atherosclerosis was characterized on a segmental level, with co-registration of baseline and follow-up CCTA, and summed to per-patient level. The independent prognostic significance of atherosclerosis progression for MACE (non-fatal myocardial infarction [MI], death, unplanned coronary revascularization) was examined. Patients experiencing interval MACE were not omitted.ResultsThe study population comprised 1166 patients (age 60.5 ?± ?9.5 years, 54.7% male) who experienced 139 MACE events during 8.2 (IQR 6.2, 9.5) years of follow up (15 death, 5 non-fatal MI, 119 unplanned revascularizations). Whole-heart percent atheroma volume (PAV) increased from 2.32% at baseline to 4.04% at follow-up. Adjusted for baseline PAV, the annualized increase in PAV was independently associated with MACE: OR 1.23 (95% CI 1.08, 1.39) per 1 standard deviation increase, which was consistent in multiple subpopulations. When categorized by composition, only non-calcified plaque progression associated independently with MACE, while calcified plaque did not. Restricting to patients without events before follow-up CCTA, those with future MACE showed an annualized increase in PAV of 0.93% (IQR 0.34, 1.96) vs 0.32% (IQR 0.02, 0.90), P ?< ?0.001.ConclusionsWhole-heart atherosclerosis progression examined by serial CCTA is independently associated with MACE, with a prognostic threshold of 1.0% increase in PAV per year.  相似文献   

10.
BackgroundThe Society of Cardiovascular Computed Tomography (SCCT) recommends consideration of coronary artery calcium (CAC) scoring among individuals with a family history (FH) of coronary heart disease (CHD) and atherosclerotic cardiovascular disease (ASCVD) risk <5%. No dedicated study has examined the prognostic significance of CAC scoring among this population.MethodsThe CAC Consortium is a multi-center observational cohort study from four clinical centers linked to long-term follow-up for cause-specific mortality. All CAC scans were physician referred and performed in patients without a history of CHD. Our analysis includes 14,169 patients with ASCVD scores <5% and self-reported FH of CHD.ResultsThis cohort had a mean age of 48.1 (SD 7.4), was 91.3% white, 47.4% female, had an average ASCVD score of 2.3% (SD 1.3), and 59.4% had a CAC = 0. The event rate for all-cause mortality was 1.2 per 1000 person-years, 0.3 per 1000 person-years for CVD-specific mortality, and 0.2 per 1000 person-years for CHD-specific mortality. In multivariable Cox proportional hazard models, those with CAC>100 had a 2.2 (95% CI 1.5–3.3) higher risk of all-cause mortality, 4.3 (95% CI 1.9–9.5) times higher risk of CVD-specific mortality, and a 10.4 (95% CI 3.2–33.7) times higher risk of CHD-specific mortality compared to individuals with CAC = 0. The NNS to detect CAC >100 in this sample was 9.ConclusionIn otherwise low risk patients with FH of CHD, CAC>100 were associated with increased risk of all-cause and CHD mortality with event rates in a range that may benefit with preventive pharmacotherapy. These data strongly support new SCCT recommendations regarding testing of patients with a family history of CHD.  相似文献   

11.
BackgroundPretest probability (PTP) calculators utilize epidemiological-level findings to provide patient-level risk assessment of obstructive coronary artery disease (CAD). However, their limited accuracies question whether dissimilarities in risk factors necessarily result in differences in CAD. Using patient similarity network (PSN) analyses, we wished to assess the accuracy of risk factors and imaging markers to identify ≥50% luminal narrowing on coronary CT angiography (CCTA) in stable chest-pain patients.MethodsWe created four PSNs representing: patient characteristics, risk factors, non-coronary imaging markers and calcium score. We used spectral clustering to group individuals with similar risk profiles. We compared PSNs to a contemporary PTP score incorporating calcium score and risk factors to identify ≥50% luminal narrowing on CCTA in the CT-arm of the PROMISE trial. We also conducted subanalyses in different age and sex groups.ResultsIn 3556 individuals, the calcium score PSN significantly outperformed patient characteristic, risk factor, and non-coronary imaging marker PSNs (AUC: 0.81 vs. 0.57, 0.55, 0.54; respectively, p ?< ?0.001 for all). The calcium score PSN significantly outperformed the contemporary PTP score (AUC: 0.81 vs. 0.78, p ?< ?0.001), and using 0, 1–100 and ?> ?100 cut-offs provided comparable results (AUC: 0.81 vs. 0.81, p ?= ?0.06). Similar results were found in all subanalyses.ConclusionCalcium score on its own provides better individualized obstructive CAD prediction than contemporary PTP scores incorporating calcium score and risk factors. Risk factors may not be able to improve the diagnostic accuracy of calcium score to predict ≥50% luminal narrowing on CCTA.  相似文献   

12.
BackgroundAdvances in image reconstruction are necessary to decrease radiation exposure from coronary CT angiography (CCTA) further, but iterative reconstruction has been shown to degrade image quality at high levels. Deep-learning image reconstruction (DLIR) offers unique opportunities to overcome these limitations. The present study compared the impact of DLIR and adaptive statistical iterative reconstruction-Veo (ASiR-V) on quantitative and qualitative image parameters and the diagnostic accuracy of CCTA using invasive coronary angiography (ICA) as the standard of reference.MethodsThis retrospective study includes 43 patients who underwent clinically indicated CCTA and ICA. Datasets were reconstructed with ASiR-V 70% (using standard [SD] and high-definition [HD] kernels) and with DLIR at different levels (i.e., medium [M] and high [H]). Image noise, image quality, and coronary luminal narrowing were evaluated by three blinded readers. Diagnostic accuracy was compared against ICA.ResultsNoise did not significantly differ between ASiR-V SD and DLIR-M (37 vs. 37 HU, p = 1.000), but was significantly lower in DLIR-H (30 HU, p < 0.001) and higher in ASiR-V HD (53 HU, p < 0.001). Image quality was higher for DLIR-M and DLIR-H (3.4–3.8 and 4.2–4.6) compared to ASiR-V SD and HD (2.1–2.7 and 1.8–2.2; p < 0.001), with DLIR-H yielding the highest image quality. Consistently across readers, no significant differences in sensitivity (88% vs. 92%; p = 0.453), specificity (73% vs. 73%; p = 0.583) and diagnostic accuracy (80% vs. 82%; p = 0.366) were found between ASiR-V HD and DLIR-H.ConclusionDLIR significantly reduces noise in CCTA compared to ASiR-V, while yielding superior image quality at equal diagnostic accuracy.  相似文献   

13.
《Radiography》2022,28(2):440-446
IntroductionTo investigate how changing the injection duration at cardiac computed tomography angiography (CCTA) affects contrast enhancement in newborns and infants.MethodsIncluded were 142 newborns and infants with confirmed congenital heart disease who underwent CCTA between January 2015 and December 2018. In group 1 (n = 71 patients), the injection duration was 8 s; in group 2 (n = 71) it was 16 s. Our findings were assessed by one-to-one matching analysis to estimate the propensity score of each patient. We compare the CT number for the pulmonary artery (PA), ascending aorta (AAO), left superior vena cava (SVC), AAO and PA enhancement ratio, and the scores for visualization between the two groups.ResultsIn group 1, median CT number and ranges was 345 (211–591) HU in the AAO, 324 (213–567) HU in the PA, and 62 (1–70) HU in the SVC. These values were 465 (308–669) HU, 467 (295–638) HU, and 234 (67–443) HU, respectively, in group 2 (p < 0.05). The median score for volume-rendering visualization on 3D images of the CCTA was 2 in group 1 and 3 in group 2; the score for visualization of the left SVC of the maximum intensity projection images was 2 in group 1 and 3 in group 2 (p < 0.05). The CT number for the AAO and PA enhancement ratio was 15.2 in group 1 and 9.2 in group 2 (p < 0.05).ConclusionThe 16-sec injection protocol yielded significantly higher CT numbers for the AAO, PA, and the SVC than the 8-sec injection protocol; the visualization scores were also significantly higher in group 2.Implications for practiceIn newborns and infants, the longer injection time for CCTA yields stable and higher contrast enhancement at identical CM concentrations.  相似文献   

14.
BackgroundAlthough sex- and age-specific differences in coronary plaque features detected by coronary computed tomography angiography (CCTA) are known, insufficient information regarding the long-term prognostic value of these findings exists.MethodsA total of 1615 patients with suspected but not previously diagnosed coronary artery disease (CAD) were examined by CCTA and coronary plaque features were assessed. The median follow-up period was 10.5 (IQR 9.2–11.4) years. Cox proportional-hazards analysis was used for the combined endpoint of cardiac death or nonfatal myocardial infarction.ResultsThe endpoint occurred more often in patients older than 65 years (5.66% vs. 2.05%; p = 0.00029) but similarly between female (3.34%) and male (3.07%) patients (p = 0.76). Both sexes displayed a similar prevalence for noncalcified (female vs. male: 0.77 ± 1.38 vs. 0.89 ± 1.41; p = 0.098) and low-attenuation (female vs. male: 2.6% vs. 4.37%; p = 0.096) plaques. As assessed by p for interaction CADRADS (p for interaction = 0.013), noncalcified plaques (p for interaction = 0.022) and low-attenuation plaques (p for interaction = 0.045) had a better primary endpoint association in women than in men. Concerning age, no difference in outcome association was apparent as evaluated by p for interaction.ConclusionCCTA demonstrates excellent long-term prognostic value irrespective of sex and age and independent from the higher prevalence of atherosclerotic plaques in men and patients older than 65 years. Although similarly prevalent in both sexes, noncalcified and low-attenuation plaques exhibit a better prognostic value in women.  相似文献   

15.
BackgroundTransesophageal echocardiography (TEE) is the standard imaging modality used to assess the left atrial appendage (LAA) after transcatheter device occlusion. Cardiac computed tomography angiography (CCTA) offers an alternative non-invasive modality in these patients. We aimed to conduct a comparison of the two modalities.MethodsWe performed a comprehensive systematic review of the current literature pertaining to CCTA to establish its usefulness during follow-up for patients undergoing LAA device closure. Studies that reported the prevalence of inadequate LAA closure on both CCTA and TEE were further evaluated in a meta-analysis. 19 studies were used in the systematic review, and six studies were used in the meta-analysis.ResultsThe use of CCTA was associated with a higher likelihood of detecting LAA patency than the use of TEE (OR, 2.79, 95% CI 1.34–5.80, p ?= ?0.006, I2 ?= ?70.4%). There was no significant difference in the prevalence of peridevice gap ≥5 ?mm (OR, 3.04, 95% CI 0.70–13.17, p ?= ?0.13, I2 ?= ?0%) between the two modalities. Studies that reported LAA assessment in early and delayed phase techniques detected a 25%–50% higher prevalence of LAA patency on the delayed imaging.ConclusionCCTA can be used as an alternative to TEE for LAA assessment post occlusion. Standardized CCTA acquisition and interpretation protocols should be developed for clinical practice.  相似文献   

16.
BackgroundInflammation surrounding the coronary arteries can be non-invasively assessed using pericoronary adipose tissue attenuation (PCAT). While PCAT holds promise for further risk stratification of patients with low coronary artery disease (CAD) prevalence, its value in higher risk populations remains unknown.MethodsCORE320 enrolled patients referred for invasive coronary angiography with known or suspected CAD. Coronary computed tomography angiography (CCTA) images were collected for 381 patients for whom clinical outcomes were assessed 5 years after enrollment. Using semi-automated image analysis software, PCAT was obtained and normalized for the right coronary (RCA), left anterior descending (LAD), and left circumflex arteries (LCx). The association between PCAT and major adverse cardiovascular events (MACE) during follow up was assessed using Cox regression models.ResultsThirty-seven patients were excluded due to technical failure. For the remaining 344 patients, median age was 62 (interquartile range, 55–68) with 59% having ≥1 coronary artery stenosis of ≥50% by quantitative coronary angiography. Mean attenuation values for PCAT in RCA, LAD, and LCx were ?74.9, ?74.2, and ?71.2, respectively. Hazard ratios and 95% confidence intervals (CI) for normalized PCAT in the RCA, LAD, and LCx for MACE were 0.96 (CI: 0.75–1.22, p ?= ?0.71), 1.31 (95% CI: 0.96–1.78, p ?= ?0.09), and 0.98 (95% CI: 0.78–1.22, p ?= ?0.84), respectively. For death, stroke, or myocardial infarction only, hazard ratios were 0.68 (0.44–1.07), 0.85 (0.56–1.29), and 0.57 (0.41–0.80), respectively.ConclusionsIn patients referred for invasive coronary angiography with suspected CAD, PCAT did not predict MACE during long term follow up. Further studies are needed to understand the relationship of PCAT with CAD risk.  相似文献   

17.
ObjectiveWe sought to determine the prognostic value of coronary computed tomography angiography (CCTA) in patients with a history of percutaneous coronary intervention (PCI).BackgroundAlthough the prognostic value of CCTA has been well studied, its incremental value in patients with previous PCI has not been robustly investigated.MethodsConsecutive patients with previous PCI were prospectively enrolled and CCTA images were evaluated for coronary artery disease (CAD) severity. Patients were followed for major adverse cardiovascular events (MACE) which was a composite of cardiac death and non-fatal myocardial infarction. All-cause death was assessed as a secondary endpoint.ResultsA total of 501 patients were analyzed with a mean follow-up time of 59.5 ± 32.0 months and 52 patients (10.4%) experienced MACE. Multivariable Cox regression analysis showed that CAD severity was a predictor of MACE with 0, 1, 2, and 3 vessel disease having annual rates of 1.3%, 2.2%, 2.2%, and 5.3%, respectively. All-cause death was similar in all categories of CAD.ConclusionsIn patients with previous PCI, CAD severity as measured with CCTA has independent and incremental prognostic value.  相似文献   

18.
BackgroundMultiple appropriate use criteria (AUC) exist for the evaluation of coronary artery disease (CAD), but there is little data on the agreement between AUC from different professional medical societies. The aim of this study is to compare the appropriateness of coronary computed tomography angiography (CCTA) exams assessed using multimodality AUC from the American College of Cardiology Foundation (ACCF) versus the American College of Radiology (ACR).MethodsIn a single-center prospective cohort study from June 2014 to 2016, 1005 consecutive subjects referred for evaluation of known or suspected CAD received a contrast-enhanced CCTA. The primary outcome was the agreement of appropriateness ratings using ACCF and ACR guidelines, measured by the kappa statistic. A secondary outcome was the rate of obstructive CAD by appropriateness rating.ResultsAmong 1005 subjects, the median (5–95th percentile) age was 59 (37–76) years with 59.0% male. The ACCF criteria classified 39.6% (n = 398) appropriate, 24.2% (n = 243) maybe appropriate, and 36.2% (n = 364) rarely appropriate. The ACR guidelines classified 72.3% (n = 727) appropriate, 2.6% (n = 26) maybe appropriate, and 25.1% (n = 252) rarely appropriate. ACCF and ACR appropriateness ratings were in agreement for 55.0% (n = 553). Overall, there was poor agreement (kappa 0.27 [95% confidence interval 0.23–0.31]). By both AUC methods, a low rate of obstructive CAD was observed in the rarely appropriate exams (ACCF 7.1% [n = 26 of 364] and ACR 13.5% [n = 34 of 252]).ConclusionsCompared to ACCF criteria, the ACR guidelines of appropriateness were broader and classified significantly more CCTA exams as appropriate. The poor agreement between appropriateness ratings from the ACCF and ACR AUC guidelines evokes implications for reimbursement and future test utilization.  相似文献   

19.
ObjectivesThe purpose of this study was to analyze the prognostic value of dynamic CT perfusion imaging (CTP) and CT derived fractional flow reserve (CT-FFR) for major adverse cardiac events (MACE).Methods81 patients from 4 institutions underwent coronary computed tomography angiography (CCTA) with dynamic CTP imaging and CT-FFR analysis. Patients were followed-up at 6, 12, and 18 months after imaging. MACE were defined as cardiac death, nonfatal myocardial infarction, unstable angina requiring hospitalization, or revascularization. CT-FFR was computed for each major coronary artery using an artificial intelligence-based application. CTP studies were analyzed per vessel territory using an index myocardial blood flow, the ratio between territory and global MBF. The prognostic value of CCTA, CT-FFR, and CTP was investigated with a univariate and multivariate Cox proportional hazards regression model.Results243 vessels in 81 patients were interrogated by CCTA with CT-FFR and 243 vessel territories (1296 segments) were evaluated with dynamic CTP imaging. Of the 81 patients, 25 (31%) experienced MACE during follow-up. In univariate analysis, a positive index-MBF resulted in the largest risk for MACE (HR 11.4) compared to CCTA (HR 2.6) and CT-FFR (HR 4.6). In multivariate analysis, including clinical factors, CCTA, CT-FFR, and index-MBF, only index-MBF significantly contributed to the risk of MACE (HR 10.1), unlike CCTA (HR 1.2) and CT-FFR (HR 2.2).ConclusionOur study provides initial evidence that dynamic CTP alone has the highest prognostic value for MACE compared to CCTA and CT-FFR individually or a combination of the three, independent of clinical risk factors.  相似文献   

20.
BackgroundDynamic myocardial computed tomography perfusion (CTP) is an emerging technique to diagnose significant coronary stenosis. However, this procedure has not been reported using single-source 64-row CT.ObjectiveTo investigate the radiation dose and the diagnostic performance of dynamic CTP to diagnose significant stenosis by catheter exam.MethodsWe prospectively included 165 patients who underwent CTP exam under adenosine stress using a single-source 64-row CT. MBF was calculated using the deconvolution technique. Quantitative perfusion ratio (QPR) was defined as the myocardial blood flow (MBF) of the myocardium with coronary stenosis divided by the MBF of the myocardium without significant stenosis or infarct. Of the 44 patients who underwent subsequent coronary angiography, we assessed the diagnostic performance to diagnose ≥50% stenosis by quantitative coronary analysis (QCA).ResultsThe average effective dose of dynamic CTP and the entire scans were 2.5 ± 0.7 and 7.3 ± 1.8 mSv, respectively. The MBF of the myocardium without significant stenosis was 1.20 ± 0.32 ml/min/g, which significantly decreased to 0.98 ± 0.24 ml/min/g (p < 0.01) in the area with ≥50% stenosis by CT angiography. The QPR of the myocardium with QCA ≥50% stenosis was significantly lower than 1 (0.84 ± 0.32, 95% confidence interval (CI), 0.77–0.90, p < 0.001). The accuracy to detect QCA ≥50% stenosis was 82% (95%CI, 74–88%) using CT angiography alone and significantly increased to 87% (95%CI, 80–92%, p < 0.05) including QPR.ConclusionDynamic myocardial CTP could be performed using 64-row CT with a low radiation dose and would improve the diagnostic performance to detect QCA ≥50% stenosis than CT angiography alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号