首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《JACC: Cardiovascular Imaging》2021,14(12):2319-2333
ObjectivesThe objectives of this study were to investigate the long-term prognostic value of inducible myocardial ischemia assessed by vasodilator stress cardiovascular magnetic resonance (CMR) in patients with HFpEF.BackgroundSome studies suggest that ischemia could play a key role in HF in patients with preserved ejection fraction (HFpEF).MethodsBetween 2008 and 2019, consecutive patients prospectively referred for stress CMR with HFpEF as defined by current guidelines, without known coronary artery disease (CAD), were followed for the occurrence of major adverse cardiovascular events (MACE), as defined by cardiovascular mortality or nonfatal myocardial infarction (MI). Secondary composite outcomes included cardiovascular mortality or hospitalization for acute HF. Cox regression analysis was performed to determine the prognostic value of inducible ischemia or late gadolinium enhancement (LGE) by CMR.ResultsAmong the 1,203 patients with HFpEF (73 ± 13 years of age; 29% males) who underwent stress CMR and completed follow-up (6.9 years interquartile range [IQR]: 6.7 to 7.7 years]), 108 experienced a MACE (9%). Kaplan-Meier analysis showed inducible ischemia and LGE were significantly associated with MACE (HR: 6.63; 95% confidence interval [CI]: 4.54 to 9.69; and HR: 2.56; 95% CI: 1.60 to 4.09, respectively; both p < 0.001) and secondary outcomes (HR: 8.40; 95% CI: 6.31 to 11.20; p < 0.001; and HR: 1.87; 95% CI: 1.27 to 2.76, respectively; p = 0.002). In multivariate analysis, inducible ischemia and LGE were independent predictors of MACE (HR: 6.10; 95% CI: 4.14 to 9.00; p < 0.001 and HR: 1.62; 95% CI: 1.06 to 2.49; p = 0.039; respectively).ConclusionsStress CMR-inducible myocardial ischemia and LGE have accurate discriminative long-term prognostic value in HFpEF patients without known CAD to predict the occurrence of MACE.  相似文献   

2.
ObjectivesThe aim of this study was to assess the feasibility and prognostic value of vasodilator stress perfusion cardiovascular magnetic resonance (CMR) in patients with atrial fibrillation (AF).BackgroundBecause most studies have excluded arrhythmic patients, the prognostic value of stress perfusion CMR in patients with AF is unknown.MethodsBetween 2008 and 2018, consecutive patients with suspected or stable chronic coronary artery disease and AF referred for vasodilator stress perfusion CMR were included and followed for the occurrence of major adverse cardiovascular event(s) (MACE), defined as cardiovascular death or nonfatal myocardial infarction. The diagnosis of AF was defined by 12-lead electrocardiography before and after CMR. Univariate and multivariate Cox regressions were performed to determine the prognostic value of inducible ischemia or late gadolinium enhancement (LGE) by CMR.ResultsOf 639 patients (mean age 72 ± 9 years, 77% men), 602 (94%) completed the CMR protocol, and 538 (89%) completed follow-up (median 5.1 years); 80 had MACE. Using Kaplan-Meier analysis, the presence of ischemia (hazard ratio [HR]: 7.56; 95% confidence interval [CI]: 4.86 to 11.80) or LGE (HR: 2.41; 95% CI: 1.55 to 3.74) was associated with the occurrence of MACE (p < 0.001 for both). In a multivariate Cox regression including clinical and CMR indexes, the presence of ischemia (HR: 5.98; 95% CI: 3.68 to 9.73) or LGE (HR: 2.61; 95% CI: 1.89 to 3.60) was an independent predictor of MACE (p < 0.001 for both).ConclusionsIn patients with AF, stress perfusion CMR is feasible and has good discriminative prognostic value to predict the occurrence of MACE.  相似文献   

3.
ObjectivesThis study aimed to determine the prevalence on cardiac magnetic resonance (CMR) of right ventricular (RV) systolic dysfunction and RV late gadolinium enhancement (LGE), their determinants, and their influences on long-term adverse outcomes in patients with sarcoidosis.BackgroundIn patients with sarcoidosis, RV abnormalities have been described on many imaging modalities. On CMR, RV abnormalities include RV systolic dysfunction quantified as an abnormal right ventricular ejection fraction (RVEF), and RV LGE.MethodsConsecutive patients with biopsy-proven sarcoidosis who underwent CMR for suspected cardiac involvement were studied. They were followed for 2 endpoints: all-cause death, and a composite arrhythmic endpoint of sudden cardiac death or significant ventricular arrhythmia.ResultsAmong 290 patients, RV systolic dysfunction (RVEF <40% in men and <45% in women) and RV LGE were present in 35 (12.1%) and 16 (5.5%), respectively. The median follow-up time was 3.2 years (interquartile range [IQR]: 1.6 to 5.7 years) for all-cause death and 3.0 years (IQR: 1.4 to 5.5 years) for the arrhythmic endpoint. On Cox proportional hazards regression multivariable analyses, only RVEF was independently associated with all-cause death (hazard ratio [HR]: 1.05 for every 1% decrease; 95% confidence interval [CI]: 1.01 to 1.09; p = 0.022) after adjustment for left ventricular EF, left ventricular LGE extent, and the presence of RV LGE. RVEF was not associated with the arrhythmic endpoint (HR: 1.01; 95% CI: 0.96 to 1.06; p = 0.67). Conversely, RV LGE was not associated with all-cause death (HR: 2.78; 95% CI: 0.36 to 21.66; p = 0.33), while it was independently associated with the arrhythmic endpoint (HR: 5.43; 95% CI: 1.25 to 23.47; p = 0.024).ConclusionsIn this study of patients with sarcoidosis, RV systolic dysfunction and RV LGE had distinct prognostic associations; RV systolic dysfunction but not RV LGE was independently associated with all-cause death, whereas RV LGE but not RV systolic dysfunction was independently associated with sudden cardiac death or significant ventricular arrhythmia. These findings may indicate distinct implications for the management of RV abnormalities in sarcoidosis.  相似文献   

4.
BackgroundThe left atrium is an early sensor of left ventricular (LV) dysfunction. Still, the prognostic value of left atrial (LA) function (strain) on cardiac magnetic resonance (CMR) in dilated cardiomyopathy (DCM) remains unknown.ObjectivesThe goal of this study was to evaluate the prognostic value of CMR-derived LA strain in DCM.MethodsPatients with DCM from the Maastricht Cardiomyopathy Registry with available CMR imaging were included. The primary endpoint was the combination of sudden or cardiac death, heart failure (HF) hospitalization, or life-threatening arrhythmias. Given the nonlinearity of continuous variables, cubic spline analysis was performed to dichotomize.ResultsA total of 488 patients with DCM were included (median age: 54 [IQR: 46-62] years; 61% male). Seventy patients (14%) reached the primary endpoint (median follow-up: 6 [IQR: 4-9] years). Age, New York Heart Association (NYHA) functional class >II, presence of late gadolinium enhancement (LGE), LV ejection fraction (LVEF), LA volume index (LAVI), LV global longitudinal strain (GLS), and LA reservoir and conduit strain were univariably associated with the outcome (all P < 0.02). LA conduit strain was a stronger predictor of outcome compared with reservoir strain. LA conduit strain, NYHA functional class >II, and LGE remained associated in the multivariable model (LA conduit strain HR: 3.65 [95% CI: 2.01-6.64; P < 0.001]; NYHA functional class >II HR: 1.81 [95% CI: 1.05-3.12; P = 0.033]; and LGE HR: 2.33 [95% CI: 1.42-3.85; P < 0.001]), whereas age, N-terminal pro–B-type natriuretic peptide, LVEF, left atrial ejection fraction, LAVI, and LV GLS were not. Adding LA conduit strain to other independent predictors (NYHA functional class and LGE) significantly improved the calibration, accuracy, and reclassification of the prediction model (P < 0.05).ConclusionsLA conduit strain on CMR is a strong independent prognostic predictor in DCM, superior to LV GLS, LVEF, and LAVI and incremental to LGE. Including LA conduit strain in DCM patient management should be considered to improve risk stratification.  相似文献   

5.
《JACC: Cardiovascular Imaging》2021,14(11):2138-2151
ObjectivesThis study sought to assess the incremental prognostic value of vasodilator stress cardiovascular magnetic resonance (CMR) in patients with prior myocardial infarction (MI).BackgroundRecurrent MI is a major cause of mortality and morbidity among MI survivors.MethodsBetween 2008 and 2019, consecutive patients with prior MI referred for stress CMR were followed up for the occurrence of major adverse cardiovascular events (MACE), defined by cardiovascular mortality or recurrent nonfatal MI. Uni- and multivariable Cox regressions were performed to determine the prognostic value of inducible ischemia and the extent of myocardial scar.ResultsAmong 1,594 patients with prior MI and myocardial scar on CMR, 1,401 (92%) (68.2 ± 11.0 years; 61.4% men) completed the follow-up (median: 6.2 years), and 205 had MACE (14.6%). Patients without inducible ischemia experienced a lower annual rate of MACE (3.1%) than those with 1–2 (4.9%), 3–5 (21.5%), or ≥6 segments of ischemia (45.7%) (all p < 0.01). Using Kaplan-Meier analysis, the presence of inducible ischemia and the extent of scar were associated with MACE (hazard ratio [HR]:3.52; 95% confidence interval [CI]: 2.67 to 4.65 and HR: 1.66; 95% CI: 1.53 to 2.18, respectively; both p < 0.001). In multivariable stepwise Cox regression, the presence of ischemia and the extent of scar were independent predictors of MACE (HR: 2.84; 95% CI: 2.14 to 3.78 and HR: 1.57; 95% CI: 1.44 to 1.72, respectively; both p < 0.001). These findings were significant in both symptomatic and asymptomatic patients. The addition of CMR parameters to the model including traditional risk factors resulted in a better discrimination for MACE (C-statistic: 0.76 vs. 0.62).ConclusionsIn patients with prior MI, vasodilator stress CMR has independent and incremental prognostic value over traditional risk factors.  相似文献   

6.
BackgroundNoninvasive functional imaging is often performed in patients with obstructive coronary artery disease (CAD) on coronary computed tomography angiography (CTA). However, the prognostic value of stress cardiac magnetic resonance (CMR) is unknown in patients with coronary stenosis of unknown significance on coronary CTA.ObjectivesThis study assessed the prognostic value of stress CMR in symptomatic patients with obstructive CAD of unknown significance on coronary CTA.MethodsBetween 2008 and 2020, consecutive symptomatic patients without known CAD referred for coronary CTA were screened. Patients with obstructive CAD (at least 1 ≥50% stenosis on coronary CTA) were further referred for stress CMR and followed for the occurrence of major adverse cardiovascular events (MACEs), defined as cardiovascular death or nonfatal myocardial infarction.ResultsOf 2,210 patients who completed CMR, 2,038 (46.5% men; mean age 69.8 ± 12.2 years) completed follow-up (median 6.8 years; IQR: 5.9-9.2 years); 281 experienced a MACE (13.8%). Inducible ischemia and late gadolinium enhancement (LGE) were significantly associated with MACEs (HR: 4.51 [95% CI: 3.55-5.74], and HR: 3.32 [95% CI: 2.55-4.32], respectively; P < 0.001). In multivariable Cox regression, the number of segments with >70% stenosis, with noncalcified plaques and the number of vessels with obstructive CAD were prognosticators (P < 0.001). The presence of inducible ischemia and LGE were independent predictors of MACEs (HR: 3.97 [95% CI: 3.43-5.13]; HR: 2.30 [95% CI: 1.52-3.33]; P < 0.001). After adjustment, stress CMR showed the best improvement in model discrimination and reclassification above traditional risk factors and coronary CTA (C-statistic improvement: 0.04; net reclassification improvement = 0.421; integrative discrimination index = 0.047).ConclusionsIn symptomatic patients with obstructive CAD of unknown significance on coronary CTA, stress CMR had incremental prognostic value to predict MACEs.  相似文献   

7.
ObjectivesThe authors investigated the incremental prognostic value of entropy, a novel measure of myocardial tissue heterogeneity by cardiac magnetic resonance (CMR) imaging in patients presenting with ventricular arrhythmias (VAs).BackgroundCMR can characterize myocardial areas serving as arrhythmogenic substrate.MethodsConsecutive patients undergoing CMR imaging for VAs were followed for major adverse cardiac events (MACEs) defined by all-cause death, incident VAs requiring therapy, or heart failure hospitalization. Entropy was derived from the probability distribution of pixel signal intensities of the left ventricular (LV) myocardium.ResultsA total of 583 patients (age 54 ± 15 years, female 39%, left ventricular ejection fraction [LVEF] 54 ± 13%) were followed for a median of 4.4 years and experienced 141 MACEs. Entropy showed strong unadjusted association with MACE (HR: 1.88; 95% CI: 1.63-2.17; P < 0.001). In a multivariable model including LVEF, QRS duration, late gadolinium enhancement, and presenting arrhythmia, entropy maintained independent association with MACE (HR: 1.61; 95% CI: 1.32-1.96; P < 0.001). Entropy was further significantly associated with MACE in patients without myocardial scar (HR: 2.43; 95% CI: 1.55-3.82; P < 0.001) and in those presenting with nonsustained VAs (HR: 2.16; 95% CI: 1.43-3.25; P < 0.001). Addition of LV entropy to the baseline multivariable model significantly improved model performance (C-statistic improvement: 0.725 to 0.754; P = 0.003) and risk reclassification.ConclusionsIn patients with VAs, CMR-assessed LV entropy was independently associated with MACE and provided incremental prognostic value, on top of LVEF and late gadolinium enhancement. LV entropy assessment may help risk stratification in patients with absence of myocardial scar or with nonsustained VAs.  相似文献   

8.
BackgroundLate gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) offers the potential to noninvasively characterize the phenotypic substrate for sudden cardiac death (SCD).ObjectivesThe authors assessed the utility of infarct characterization by CMR, including scar microstructure analysis, to predict SCD in patients with coronary artery disease (CAD).MethodsPatients with stable CAD were prospectively recruited into a CMR registry. LGE quantification of core infarction and the peri-infarct zone (PIZ) was performed alongside computational image analysis to extract morphologic and texture scar microstructure features. The primary outcome was SCD or aborted SCD.ResultsOf 437 patients (mean age: 64 years; mean left ventricular ejection fraction [LVEF]: 47%) followed for a median of 6.3 years, 49 patients (11.2%) experienced the primary outcome. On multivariable analysis, PIZ mass and core infarct mass were independently associated with the primary outcome (per gram: HR: 1.07 [95% CI: 1.02-1.12]; P = 0.002 and HR: 1.03 [95% CI: 1.01-1.05]; P = 0.01, respectively), and the addition of both parameters improved discrimination of the model (Harrell’s C-statistic: 0.64-0.79). PIZ mass, however, did not provide incremental prognostic value over core infarct mass based on Harrell’s C-statistic or risk reclassification analysis. Severely reduced LVEF did not predict the primary endpoint after adjustment for scar mass. On scar microstructure analysis, the number of LGE islands in addition to scar transmurality, radiality, interface area, and entropy were all associated with the primary outcome after adjustment for severely reduced LVEF and New York Heart Association functional class of >1. No scar microstructure feature remained associated with the primary endpoint when PIZ mass and core infarct mass were added to the regression models.ConclusionsComprehensive LGE characterization independently predicted SCD risk beyond conventional predictors used in implantable cardioverter-defibrillator (ICD) insertion guidelines. These results signify the potential for a more personalized approach to determining ICD candidacy in CAD.  相似文献   

9.
ObjectivesThis study aimed to compare the diagnostic and prognostic performance of native T1 mapping (T1), extracellular volume (ECV) mapping, and late gadolinium enhancement (LGE) imaging for evaluating cardiac amyloidosis (CA).BackgroundCA is a progressive infiltrative process in the extracellular space that is often underdiagnosed and holds a poor prognosis. Cardiac magnetic resonance (CMR) offers novel techniques for detecting and quantifying the disease burden of CA.MethodsWe searched PubMed for published studies using native T1, ECV, or LGE to diagnose and prognosticate CA. A total of 18 diagnostic (n = 2,015) and 13 prognostic studies (n = 1,483) were included for analysis. Pooled sensitivities, specificities, diagnostic odds ratios (DORs) of all diagnostic tests were assessed by bivariate analysis. Pooled hazard ratios (HRs) for mortality for the 3 techniques were determined.ResultsBivariate comparison showed that ECV (DOR: 84.6; 95% confidence interval [CI]: 30.3 to 236.2) had a significantly higher DOR for CA than LGE (DOR: 20.1; 95% CI: 9.1 to 44.1; p = 0.03 vs. ECV). There was no significant difference between LGE and native T1 for sensitivity, specificity, and DOR. HR was significantly higher for ECV (HR: 4.27; 95% CI: 2.87 to 6.37) compared with LGE (HR: 2.60; 95% CI: 1.90 to 3.56; p = 0.03 vs. ECV) and native T1 (HR: 2.04; 95% CI: 1.24 to 3.37; p = 0.01 vs. ECV).ConclusionsECV demonstrates a higher diagnostic OR for assessing cardiac amyloid than LGE and a higher HR for adverse events compared with LGE and native T1. In addition, native T1 showed similar sensitivity and specificity as ECV and LGE without requiring contrast material. Although limited by study heterogeneity, this meta-analysis suggests that ECV provides high diagnostic and prognostic utility for the assessment of cardiac amyloidosis.  相似文献   

10.
BackgroundSarcoidosis is a complex multisystem inflammatory disorder, with approximately 5% of patients having overt cardiac involvement. Patients with cardiac sarcoidosis are at an increased risk of both ventricular arrhythmias and sudden cardiac death. Previous studies have shown that the presence of late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) is associated with an increased risk of mortality and ventricular arrhythmias and may be useful in predicting prognosis.ObjectivesThis systematic review and meta-analysis assessed the value of LGE on CMR imaging in predicting prognosis for patients with known or suspected cardiac sarcoidosis.MethodsThe authors searched the Embase and MEDLINE databases from inception to March 2022 for studies reporting individuals with known or suspected cardiac sarcoidosis referred for CMR with LGE. Outcomes were defined as all-cause mortality, ventricular arrhythmia, or a composite outcome of either death or ventricular arrhythmias. The primary analysis evaluated these outcomes according to the presence of LGE. A secondary analysis evaluated outcomes specifically according to the presence of biventricular LGE.ResultsThirteen studies were included (1,318 participants) in the analysis, with an average participant age of 52.0 years and LGE prevalence of 13% to 70% over a follow-up of 3.1 years. Patients with LGE on CMR vs those without had higher odds of ventricular arrhythmias (odds ratio [OR]: 20.3; 95% CI: 8.1-51.0), all-cause mortality (OR: 3.45; 95% CI: 1.6-7.3), and the composite of both (OR: 9.2; 95% CI: 5.1-16.7). Right ventricular LGE is invariably accompanied by left ventricular LGE. Biventricular LGE is also associated with markedly increased odds of ventricular arrhythmias (OR: 43.6; 95% CI: 16.2-117.2).ConclusionsPatients with known or suspected cardiac sarcoidosis with LGE on CMR have significantly increased odds of both ventricular arrhythmias and all-cause mortality. The presence of biventricular LGE may confer additional prognostic information regarding arrhythmogenic risk.  相似文献   

11.
ObjectivesThis study was designed to assess the prognostic value of pericoronary adipose tissue computed tomography attenuation (PCATa) beyond quantitative coronary computed tomography angiography (CCTA)–derived plaque volume and positron emission tomography (PET) determined ischemia.BackgroundInflammation plays a crucial role in atherosclerosis. PCATa has been shown to assess coronary-specific inflammation and is of prognostic value in patients with suspected coronary artery disease (CAD).MethodsA total of 539 patients who underwent CCTA and [15O]H2O PET perfusion imaging because of suspected CAD were included. Imaging assessment included coronary artery calcium score (CACS), presence of obstructive CAD (≥50% stenosis) and high-risk plaques (HRPs), total plaque volume (TPV), calcified/noncalcified plaque volume (CPV/NCPV), PCATa, and myocardial ischemia. The endpoint was a composite of death and nonfatal myocardial infarction. Prognostic thresholds were determined for quantitative CCTA variables.ResultsDuring a median follow-up of 5.0 (interquartile range: 4.7 to 5.0) years, 33 events occurred. CACS >59 Agatston units, obstructive CAD, HRPs, TPV >220 mm3, CPV >110 mm3, NCPV >85 mm3, and myocardial ischemia were associated with shorter time to the endpoint with unadjusted hazard ratios (HRs) of 4.17 (95% confidence interval [CI]: 1.80 to 9.64), 4.88 (95% CI: 1.88 to 12.65), 3.41 (95% CI: 1.72 to 6.75), 7.91 (95% CI: 3.05 to 20.49), 5.82 (95% CI: 2.40 to 14.10), 8.07 (95% CI: 3.33 to 19.55), and 4.25 (95% CI: 1.84 to 9.78), respectively (p < 0.05 for all). Right coronary artery (RCA) PCATa above scanner specific thresholds was associated with worse prognosis (unadjusted HR: 2.84; 95% CI: 1.44 to 5.63; p = 0.003), whereas left anterior descending artery and circumflex artery PCATa were not related to outcome. RCA PCATa above scanner specific thresholds retained is prognostic value adjusted for imaging variables and clinical characteristics associated with the endpoint (adjusted HR: 2.45; 95% CI: 1.23 to 4.93; p = 0.011).ConclusionsParameters associated with atherosclerotic burden and ischemia were more strongly associated with outcome than RCA PCATa. Nonetheless, RCA PCATa was of prognostic value beyond clinical characteristics, CACS, obstructive CAD, HRPs, TPV, CPV, NCPV, and ischemia.  相似文献   

12.
《JACC: Cardiovascular Imaging》2019,12(12):2445-2456
ObjectivesThis study sought to establish the best definition of left ventricular adverse remodeling (LVAR) to predict outcomes and determine whether its assessment adds prognostic information to that obtained by early cardiac magnetic resonance (CMR).BackgroundLVAR, usually defined as an increase in left ventricular end-diastolic volume (LVEDV) is the main cause of heart failure after an ST-segment elevated myocardial infarction; however, the role of assessment of LVAR in predicting cardiovascular events remains controversial.MethodsPatients with ST-segment elevated myocardial infarction who received percutaneous coronary intervention within 6 h of symptom onset were included (n = 498). CMR was performed during hospitalization (6.2 ± 2.6 days) and after 6 months (6.1 ± 1.8 months). The optimal threshold values of the LVEDV increase and the LV ejection fraction decrease associated with the primary endpoint were ascertained. Primary outcome was a composite of cardiovascular mortality, hospitalization for heart failure, or ventricular arrhythmia.ResultsThe study was completed by 374 patients. Forty-nine patients presented the primary endpoint during follow-up (72.9 ± 42.8 months). Values that maximized the ability to identify patients with and without outcomes were a relative rise in LVEDV of 15% (hazard ratio [HR]: 2.1; p = 0.007) and a relative fall in LV ejection fraction of 3% (HR: 2.5; p = 0.001). However, the predictive model (using C-statistic analysis) failed to demonstrate that direct observation of LVAR at 6 months adds information to data from early CMR in predicting outcomes (C-statistic: 0.723 vs. 0.795).ConclusionsThe definition of LVAR that best predicts adverse cardiovascular events should consider both the increase in LVEDV and the reduction in LV ejection fraction. However, assessment of LVAR does not improve information provided by the early CMR.  相似文献   

13.
《JACC: Cardiovascular Imaging》2021,14(12):2353-2365
ObjectivesThis study aims to investigate the prognostic significance of late gadolinium enhancement (LGE) in patients without coronary artery disease and with normal range left ventricular (LV) volumes and ejection fraction.BackgroundNonischemic patterns of LGE with normal LV volumes and ejection fraction are increasingly detected on cardiovascular magnetic resonance, but their prognostic significance, and consequently management, is uncertain.MethodsPatients with midwall/subepicardial LGE and normal LV volumes, wall thickness, and ejection fraction on cardiovascular magnetic resonance were enrolled and compared to a control group without LGE. The primary outcome was actual or aborted sudden cardiac death (SCD).ResultsOf 748 patients enrolled, 401 had LGE and 347 did not. The median age was 50 years (interquartile range: 38-61 years), LV ejection fraction 66% (interquartile range: 62%-70%), and 287 (38%) were women. Scan indications included chest pain (40%), palpitation (33%) and breathlessness (13%). No patient experienced SCD and only 1 LGE+ patient (0.13%) had an aborted SCD in the 11th follow-up year. Over a median of 4.3 years, 30 patients (4.0%) died. All-cause mortality was similar for LGE+/- patients (3.7% vs 4.3%; P = 0.71) and was associated with age (HR: 2.04 per 10 years; 95% CI: 1.46-2.79; P < 0.001). Twenty-one LGE+ and 4 LGE- patients had an unplanned cardiovascular hospital admission (HR: 7.22; 95% CI: 4.26-21.17; P < 0.0001).ConclusionsThere was a low SCD risk during long-term follow-up in patients with LGE but otherwise normal LV volumes and ejection fraction. Mortality was driven by age and not LGE presence, location, or extent, although the latter was associated with greater cardiovascular hospitalization for suspected myocarditis and symptomatic ventricular tachycardia.  相似文献   

14.
ObjectivesThis study examined fibrosis progression in hypertrophic cardiomyopathy (HCM) patients, as well as its relationship to patient characteristics, clinical outcomes, and its effect on clinical decision making.BackgroundMyocardial fibrosis, as quantified by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR), provides valuable prognostic information in patients with HCM.MethodsA total of 157 patients with HCM were enrolled in this study, with 2 sequential CMR scans separated by an interval of 4.7 ± 1.9 years.ResultsAt the first CMR session (CMR-1), 70% of patients had LGE compared with 85% at CMR-2 (p = 0.001). The extent of LGE extent increased between the 2 CMR procedures, from 4.0 ± 5.6% to 6.3 ± 7.4% (p < 0.0001), with an average LGE progression rate of 0.5 ± 1.0%/year. LGE mass progression was correlated with higher LGE mass and extent on CMR-1 (p = 0.0017 and p = 0.007, respectively), greater indexed left ventricular (LV) mass (p < 0.0001), greater LV maximal wall thickness (p < 0.0001), apical aneurysm at CMR-1 (p < 0.0001), and lower LV ejection fraction (EF) (p = 0.029). Patients who were more likely to have a higher rate of LGE progression presented with more severe disease at baseline, characterized by LGE extent >8% of LV mass, indexed LV mass >100 g/m2, maximal wall thickness ≥20 mm, LVEF ≤60%, and apical aneurysm. There was a significant correlation between the magnitude of LGE progression and future implantation of insertable cardioverter-defibrillators (p = 0.004), EF deterioration to ≤50% (p < 0.0001), and admission for heart failure (p = 0.0006).ConclusionsMyocardial fibrosis in patients with HCM is a slowly progressive process. Progression of LGE is significantly correlated with a number of clinical outcomes such as progression to EF ≤50% and heart failure admission. Judicious use of serial CMR with LGE can provide valuable information to help patient management.  相似文献   

15.
BackgroundSeverity and extent of coronary artery disease (CAD) assessed by invasive coronary angiography (ICA) guide treatment and may predict clinical outcome in patients with non–ST-segment elevation acute coronary syndrome (NSTEACS).ObjectivesThis study tested the hypothesis that coronary computed tomography angiography (CTA) is equivalent to ICA for risk assessment in patients with NSTEACS.MethodsThe VERDICT (Very Early Versus Deferred Invasive Evaluation Using Computerized Tomography in Patients With Acute Coronary Syndromes) trial evaluated timing of treatment in relation to outcome in patients with NSTEACS and included a clinically blinded coronary CTA conducted prior to ICA. Severity of CAD was defined as obstructive (coronary stenosis ≥50%) or nonobstructive. Extent of CAD was defined as high risk (obstructive left main or proximal left anterior descending artery stenosis and/or multivessel disease) or non–high risk. The primary endpoint was a composite of all-cause death, nonfatal recurrent myocardial infarction, hospital admission for refractory myocardial ischemia, or heart failure.ResultsCoronary CTA and ICA were conducted in 978 patients. During a median follow-up time of 4.2 years (interquartile range: 2.7 to 5.5 years), the primary endpoint occurred in 208 patients (21.3%). The rate of the primary endpoint was up to 1.7-fold higher in patients with obstructive CAD compared with in patients with nonobstructive CAD as defined by coronary CTA (hazard ratio [HR]: 1.74; 95% confidence interval [CI]: 1.22 to 2.49; p = 0.002) or ICA (HR: 1.54; 95% CI: 1.13 to 2.11; p = 0.007). In patients with high-risk CAD, the rate of the primary endpoint was 1.5-fold higher compared with the rate in those with non–high-risk CAD as defined by coronary CTA (HR: 1.56; 95% CI: 1.18 to 2.07; p = 0.002). A similar trend was noted for ICA (HR: 1.28; 95% CI: 0.98 to 1.69; p = 0.07).ConclusionsCoronary CTA is equivalent to ICA for the assessment of long-term risk in patients with NSTEACS. (Very Early Versus Deferred Invasive Evaluation Using Computerized Tomography in Patients With Acute Coronary Syndromes [VERDICT]; NCT02061891)  相似文献   

16.
BackgroundLeft ventricular (LV) diastolic function is primarily assessed by means of echocardiography, which has limited utility in detecting fibrosis. Cardiac magnetic resonance (CMR) readily detects and quantifies fibrosis.ObjectivesIn this study, the authors sought to determine the association of LV diastolic function by echocardiography with CMR-determined global fibrosis burden and the incremental value of fibrosis with diastolic function grade in prediction of total mortality and heart failure hospitalizations.MethodsA total of 549 patients underwent comprehensive echocardiography and CMR within 30 days. Echocardiography was used to assess LV diastolic function, and CMR was used to determine LV volumes, mass, ejection fraction, replacement fibrosis, and percentage extracellular volume fraction (ECV).ResultsNormal diastolic function was present in 142 patients; the rest had diastolic dysfunction grades I to III, except for 18 (3.3%) with indeterminate results. The event rate was higher in patients with diastolic dysfunction compared with patients with normal diastolic function (33.4% vs 15.5; P < 0.001). The model including LV diastolic function grades II and III predicted composite outcome (C-statistic: 0.71; 95% CI: 0.67-0.76), which increased by adding global fibrosis burden (C-statistic: 0.74, 95% CI: 0.70-0.78; P = 0.02). For heart failure hospitalizations, the competing risk model with LV diastolic function grades II and III was good (C-statistic: 0.78; 95% CI: 0.74-0.83) and increased significantly with the addition of global fibrosis burden (C-statistic: 0.80; 95% CI: 0.76-0.85; P = 0.03).ConclusionsHigher grades of diastolic dysfunction are seen in patients with replacement fibrosis and increased ECV. Fibrosis burden as determined with the use of CMR provides incremental prognostic information to echocardiographic evaluation of LV diastolic function.  相似文献   

17.
ObjectivesThis study sought to clinically validate a novel 3-dimensional (3D) ultrafast cardiac magnetic resonance (CMR) protocol including cine (anatomy and function) and late gadolinium enhancement (LGE), each in a single breath-hold.BackgroundCMR is the reference tool for cardiac imaging but is time-consuming.MethodsA protocol comprising isotropic 3D cine (Enhanced sensitivity encoding [SENSE] by Static Outer volume Subtraction [ESSOS]) and isotropic 3D LGE sequences was compared with a standard cine+LGE protocol in a prospective study of 107 patients (age 58 ± 11 years; 24% female). Left ventricular (LV) mass, volumes, and LV and right ventricular (RV) ejection fraction (LVEF, RVEF) were assessed by 3D ESSOS and 2D cine CMR. LGE (% LV) was assessed using 3D and 2D sequences.ResultsThree-dimensional and LGE acquisitions lasted 24 and 22 s, respectively. Three-dimensional and LGE images were of good quality and allowed quantification in all cases. Mean LVEF by 3D and 2D CMR were 51 ± 12% and 52 ± 12%, respectively, with excellent intermethod agreement (intraclass correlation coefficient [ICC]: 0.96; 95% confidence interval [CI]: 0.94 to 0.97) and insignificant bias. Mean RVEF 3D and 2D CMR were 60.4 ± 5.4% and 59.7 ± 5.2%, respectively, with acceptable intermethod agreement (ICC: 0.73; 95% CI: 0.63 to 0.81) and insignificant bias. Both 2D and 3D LGE showed excellent agreement, and intraobserver and interobserver agreement were excellent for 3D LGE.ConclusionsESSOS single breath-hold 3D CMR allows accurate assessment of heart anatomy and function. Combining ESSOS with 3D LGE allows complete cardiac examination in <1 min of acquisition time. This protocol expands the indication for CMR, reduces costs, and increases patient comfort.  相似文献   

18.
ObjectivesThis study sought to determine whether stress cardiac magnetic resonance (CMR) provides clinically relevant risk reclassification in patients with known coronary artery disease (CAD) in a multicenter setting in the United States.BackgroundDespite improvements in medical therapy and coronary revascularization, patients with previous CAD account for a disproportionately large portion of CV events and pose a challenge for noninvasive stress testing.MethodsFrom the Stress Perfusion Imaging in the United States (SPINS) registry, we identified consecutive patients with documented CAD who were referred to stress CMR for evaluation of myocardial ischemia. The primary outcome was nonfatal myocardial infarction (MI) or cardiovascular (CV) death. Major adverse CV events (MACE) included MI/CV death, hospitalization for heart failure or unstable angina, and late unplanned coronary artery bypass graft. The prognostic association and net reclassification improvement by ischemia for MI/CV death were determined.ResultsOut of 755 patients (age 64 ± 11 years, 64% male), we observed 97 MI/CV deaths and 210 MACE over a median follow-up of 5.3 years. Presence of ischemia demonstrated a significant association with MI/CV death (HR: 2.30; 95% CI: 1.54-3.44; P < 0.001) and MACE (HR: 2.24 ([95% CI: 1.69-2.95; P < 0.001). In a multivariate model adjusted for CV risk factors, ischemia maintained strong association with MI/CV death (HR: 1.84; 95% CI: 1.17-2.88; P = 0.008) and MACE (HR: 1.77; 95% CI: 1.31-2.40; P < 0.001) and reclassified 95% of patients at intermediate pretest risk (62% to low risk, 33% to high risk) with corresponding changes in the observed event rates of 1.4% and 5.3% per year for low and high post-test risk, respectively.ConclusionsIn a multicenter cohort of patients with known CAD, CMR-assessed ischemia was strongly associated with MI/CV death and reclassified patient risk beyond CV risk factors, especially in those considered to be at intermediate risk. Absence of ischemia was associated with a <2% annual rate of MI/CV death. (Stress CMR Perfusion Imaging in the United States [SPINS] Study; NCT03192891)  相似文献   

19.
《JACC: Cardiovascular Imaging》2021,14(12):2337-2349
ObjectivesThe aim of this meta-analysis was to assess the diagnostic performance of various CMR imaging parameters for evaluating acute cardiac transplant rejection.BackgroundEndomyocardial biopsy is the current gold standard for detection of acute cardiac transplant rejection. Cardiac magnetic resonance (CMR) is uniquely capable of myocardial tissue characterization and may be useful as a noninvasive alternative for the diagnosis of graft rejection.MethodsPubMed and Web of Science were searched for relevant publications reporting on the use of CMR myocardial tissue characterization for detection of acute cardiac transplant rejection with endomyocardial biopsy as the reference standard. Pooled sensitivity, specificity, and hierarchical modeling–based summary receiver-operating characteristic curves were calculated.ResultsOf 478 papers, 10 studies comprising 564 patients were included. The sensitivity and specificity for the detection of acute cardiac transplant rejection were 84.6 (95% CI: 65.6-94.0) and 70.1 (95% CI: 54.2-82.2) for T1, 86.5 (95% CI: 72.1-94.1) and 85.9 (95% CI: 65.2-94.6) for T2, 91.3 (95% CI: 63.9-98.4) and 67.6 (95% CI: 56.1-77.4) for extracellular volume fraction (ECV), and 50.1 (95% CI: 31.2-68.9) and 60.2 (95% CI: 36.7-79.7) for late gadolinium enhancement (LGE). The areas under the hierarchical modeling–based summary receiver-operating characteristic curve were 0.84 (95% CI: 0.81-0.87) for T1, 0.92 (95% CI: 0.89-94) for T2, 0.78 (95% CI: 0.74-0.81) for ECV, and 0.56 (95% CI: 0.51-0.60) for LGE. T2 values demonstrated the highest diagnostic accuracy, followed by native T1, ECV, and LGE (all P values <0.001 for T1, ECV, and LGE vs T2).ConclusionsT2 mapping demonstrated higher diagnostic accuracy than other CMR techniques. Native T1 and ECV provide high diagnostic use but lower diagnostic accuracy compared with T2, which was related primarily to lower specificity. LGE showed poor diagnostic performance for detection of rejection.  相似文献   

20.
《JACC: Cardiovascular Imaging》2021,14(10):1963-1973
ObjectivesThe purposes of this study were to determine why chronic obstructive pulmonary disease (COPD) is associated with heart failure (HF). Specific objectives included whether COPD is associated with myocardial fibrosis, whether myocardial fibrosis is associated with hospitalization for HF and death in COPD, and whether COPD and smoking are associated with myocardial inflammation.BackgroundCOPD is associated with HF independent of shared risk factors. The underlying pathophysiological mechanism is unknown.MethodsA prospective, multicenter, longitudinal cohort study of 572 patients undergoing cardiac magnetic resonance (CMR), including 450 patients with COPD and 122 age- and sex-matched patients with a median: 726 days (interquartile range: 492 to 1,160 days) follow-up. Multivariate analysis was used to examine the relationship between COPD and myocardial fibrosis, measured using cardiac magnetic resonance (CMR). Cox regression analysis was used to examine the relationship between myocardial fibrosis and outcomes; the primary endpoint was composite of hospitalizations for HF or all-cause mortality; secondary endpoints included hospitalizations for HF and all-cause mortality. Fifteen patients with COPD, 15 current smokers, and 15 healthy volunteers underwent evaluation for myocardial inflammation, including ultrasmall superparamagnetic particles of iron oxide CMR.ResultsCOPD was independently associated with myocardial fibrosis (p < 0.001). Myocardial fibrosis was independently associated with the primary outcome (hazard ratio [HR]: 1.14; 95% confidence interval [CI]: 1.08 to 1.20; p < 0.001), hospitalization for HF (HR: 1.25 [95% CI: 1.14 to 1.36]); p < 0.001), and all-cause mortality. Myocardial fibrosis was associated with outcome measurements more strongly than any other variable. Acute and stable COPD were associated with myocardial inflammation.ConclusionsThe associations between COPD, myocardial inflammation and myocardial fibrosis, and the independent prognostic value of myocardial fibrosis elucidate a potential pathophysiological link between COPD and HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号