共查询到20条相似文献,搜索用时 15 毫秒
1.
《Brain stimulation》2020,13(2):363-371
BackgroundOptogenetic stimulation has grown into a popular brain stimulation method in basic neuroscience while electrical stimulation predominates in clinical applications. In order to explain the effects of electrical stimulation on a cellular level and evaluate potential advantages of optogenetic therapies, comparisons between the two stimulation modalities are necessary. This comparison is hindered, however, by the difficulty of effectively matching the two fundamentally different modalities.ObjectiveComparison of brain-wide activation patterns in response to intensity-matched electrical and optogenetic VTA stimulation.MethodsWe mapped optogenetic and electrical self-stimulation rates in the same mice over stimulation intensity and determined iso-behavioral intensities. Using functional 99mTc-HMPAO SPECT imaging of cerebral blood flow in awake animals, we obtained brain-wide activation patterns for both modalities at these iso-behavioral intensities. We performed these experiments in two mouse lines commonly used for optogenetic VTA stimulation, DAT::Cre and TH::Cre mice.ResultsWe find iso-behavioral intensity matching of stimulation gives rise to similar brain activation patterns. Differences between mouse lines were more pronounced than differences between modalities.ConclusionsPreviously found large differences of electrical and optogenetic stimulation might be due to unmatched stimulation intensity, particularly relative electrical overstimulation. These findings imply that therapeutic electrical VTA stimulation might be relatively specific if employed with optimized parameters. 相似文献
2.
《Brain stimulation》2020,13(3):815-818
BackgroundRecording electroencephalography (EEG) from the targeted cortex immediately before and after focal transcranial electrical stimulation (TES) remains a challenge.MethodsWe introduce a hybrid stimulation-recording approach where a single EEG electrode is inserted into the inner electrode of a double-ring montage for focal TES. The new combined electrode was placed at the C3 position of the EEG 10–20 system. Neuronal activity was recorded in two volunteers before and after 20 Hz alternating-current TES at peak-to-peak intensities of 1 and 2 mA. TES-induced electric field distributions were simulated with SIMNIBS software.ResultsUsing the hybrid stimulation-recording set-up, EEG activity was successfully recorded directly before and after TES. Simulations revealed comparable electrical fields in the stimulated cortex for the pseudomonopolar montage with and without embedded EEG electrode.ConclusionThe hybrid TES-EEG approach can be used to probe after-effects of focal TES on neuronal activity in the targeted cortex. 相似文献
3.
《Brain stimulation》2019,12(6):1579-1580
4.
《Clinical neurophysiology》2021,132(5):1018-1024
ObjectivesNon-invasive brain stimulation (NIBS) is beneficial to many neurological and psychiatric disorders by modulating neuroplasticity and cortical excitability. However, recent studies evidence that single type of NIBS such as transcranial direct current stimulation (tDCS) does not have meaningful clinical therapeutic responses due to their small effect size. Transcranial near-infrared stimulation (tNIRS) is a novel form of NIBS. Both tNIRS and tDCS implement its therapeutic effects by modulating cortical excitability but with different mechanisms. We hypothesized that simultaneous tNIRS and tDCS is superior to single stimulation, leading to a greater cortical excitability.MethodsSixteen healthy subjects participated in a double-blind, sham-controlled, cross-over designed study. Motor evoked potentials (MEPs) were used to measure motor cortex excitability. The changes of MEP were calculated and compared in the sham condition, tDCS stimulation condition, tNIRS condition and the simultaneous tNIRS and anodal tDCS condition.ResultstDCS alone and tNIRS alone both elicited higher MEP after stimulation, while the MEP amplitude in the simultaneous tNIRS and tDCS condition was significantly higher than either tNIRS alone or tDCS alone. The enhancement lasted up to at least 30 minutes after stimulation, indicating simultaneous 820 nm tNIRS with 2 mA anodal tDCS have a synergistic effect on cortical plasticity.ConclusionsSimultaneous application of tNIRS with tDCS produces a stronger cortical excitability effect.SignificanceThe simultaneous tNIRS and tDCS is a promising technology with exciting potential as a means of treatment, neuro-enhancement, or neuro-protection. 相似文献
5.
《Brain stimulation》2022,15(1):46-52
BackgroundSimultaneously modulating individual neural oscillation and cortical excitability may be important for enhancing communication between the primary motor cortex and spinal motor neurons, which plays a key role in motor control. However, it is unknown whether individualized beta-band oscillatory transcranial direct current stimulation (otDCS) enhances corticospinal oscillation and excitability.ObjectiveThis study investigated the effects of individualized beta-band otDCS on corticomuscular coherence (CMC) and corticospinal excitability in healthy individuals.MethodsIn total, 29 healthy volunteers participated in separate experiments. They received the following stimuli for 10 min on different days: 1) 2-mA otDCS with individualized beta-band frequencies, 2) 2-mA transcranial alternating current stimulation (tACS) with individualized beta-band frequencies, and 3) 2-mA transcranial direct current stimulation (tDCS). The changes in CMC between the vertex and tibialis anterior (TA) muscle and TA muscle motor-evoked potentials (MEPs) were assessed before and after (immediately, 10 min, and 20 min after) stimulation on different days. Additionally, 20-Hz otDCS for 10 min was applied to investigate the effects of a fixed beta-band frequency on CMC.ResultsotDCS significantly increased CMC and MEPs immediately after stimulation, whereas tACS and tDCS had no effects. There was a significant negative correlation between normalized CMC changes in response to 20-Hz otDCS and the numerical difference between the 20-Hz and individualized CMC peak frequency before the stimulation.ConclusionsThese findings suggest that simultaneous modulation of neural oscillation and cortical excitability is critical for enhancing corticospinal communication. Individualized otDCS holds potential as a useful method in the field of neurorehabilitation. 相似文献
6.
《Clinical neurophysiology》2021,132(5):1033-1040
ObjectiveCortico-cortical evoked potential (CCEP) by single-pulse electrical stimulation (SPES) is useful to investigate effective connectivity and cortical excitability. We aimed to clarify the safety of CCEPs.MethodsWe retrospectively analyzed 29 consecutive patients with intractable partial epilepsy undergoing chronic subdural grid implantation and CCEP recording. Repetitive SPES (1 Hz) was systematically applied to a pair of adjacent electrodes over almost all electrodes. We evaluated the incidences of afterdischarges (ADs) and clinical seizures.ResultsOut of 1283 electrode pairs, ADs and clinical seizures were observed in 12 and 5 pairs (0.94% and 0.39%, per electrode pair) in 7 and 3 patients (23.3% and 10.0%, per patient), respectively. Of the 18–82 pairs per patient, ADs and clinical seizures were induced in 0–4 and 0–3 pairs, respectively. Stimulating 4 SOZ (seizure onset zone) (2.5%) and 8 non-SOZ pairs (0.75%) resulted in ADs. We observed clinical seizures in stimulating 4 SOZ (2.5%) and 1 non-SOZ pair (0.09%). The incidence of clinical seizures varied significantly between SOZ and non-SOZ stimulations (p = 0.001), while the difference in AD incidence tended towards significance (p = 0.058).ConclusionAlthough caution should be taken in stimulating SOZ, CCEP is a safe procedure for presurgical evaluation.SignificanceCCEP is safe under the established protocol. 相似文献
7.
8.
《Clinical neurophysiology》2019,130(9):1688-1729
9.
《Brain stimulation》2020,13(1):60-68
ObjectiveVestibular afferents converge with nociceptive ones within the posterior insula, and can therefore modulate nociception. Consistent with this hypothesis, caloric vestibular stimulation (CVS) has been shown to reduce experimental and clinical pain. Since CVS can induce undesirable effects in a proportion of patients, here we explored an alternative means to activate non-invasively the vestibular pathways using innocuous bi-mastoid galvanic stimulation (GVS), and assessed its effects on experimental pain.MethodsSixteen healthy volunteers participated in this study. Experimental pain was induced by noxious laser-heat stimuli to the left hand while recording pain ratings and related brain potentials (LEPs). We evaluated changes of these indices during left- or right-anodal GVS (cathode on contralateral mastoid), and contrasted them with those during sham GVS, optokinetic vestibular stimulation (OKS) using virtual reality, and attentional distraction to ascertain the vestibular-specific analgesic effects of GVS.ResultsGVS elicited brief sensations of head/trunk deviation, inoffensive to all participants. Both active GVS conditions showed analgesic effects, greater for the right anodal stimulation. OKS was helpful to attain significant LEP reductions during the left-anodal stimulation. Neither sham-GVS nor the distraction task were able to modulate significantly pain ratings or LEPs.ConclusionsGVS appeared as a well-tolerated and powerful procedure for the relief of experimental pain, probably through physiological interaction within insular nociceptive networks. Either isolated or in combination with other types of vestibular activation (e.g., optokinetic stimuli), GVS deserves being tested in clinical settings. 相似文献
10.
《Brain stimulation》2020,13(2):499-506
BackgroundCurrent implementations of direct brain stimulation for epilepsy in patients involve high-frequency (HFS) electrical current and targeting of grey matter. Studies have shown that low-frequency (LFS) fiber-tract stimulation may also prove effective. To compare the efficacy of high-frequency grey matter stimulation to the low-frequency fiber tract stimulation technique a well-controlled set of experiments using a single animal model of epilepsy is needed.ObjectiveThe goal of this study was to determine the relative efficacy of different direct brain stimulation techniques for suppressing seizures using an acute rat model of focal cortical seizures.Methods4-AP was injected into the S1 region of cortex in rodents over 3 h. LFPs were recorded from the seizure focus and mirror focus to monitor seizure frequency during the experiments. CC-LFS, HFS-ANT, Focal-HFS, or a transection of the CC was applied.ResultsStimulation of the CC yielded a 65% ±14% (p = 0.0014) reduction of seizures in the focus and a 97% ±15% (p = 0.0026) reduction in the mirror focus (n = 7). By comparison transection of the CC produced a 65% ±18% reduction in the focus and a non-statistically significant reduction of 57% ±18% (p = 0.1381) in the mirror focus (n = 5). All other methods of stimulation failed to have a statistically significant effect on seizure suppression.ConclusionsLFS of the CC is the only method of stimulation to significantly reduce seizure frequency in this model of focal cortical seizures. These results support the hypothesis that LFSof fiber tracts has significant potential for seizure control. 相似文献
11.
《Brain stimulation》2021,14(4):807-821
BackgroundDeep brain stimulation is an established therapy for several neurological disorders; however, its effects on neuronal activity vary across brain regions and depend on stimulation settings. Understanding these variable responses can aid in the development of physiologically-informed stimulation paradigms in existing or prospective indications.ObjectiveProvide experimental and computational insights into the brain-region-specific and frequency-dependent effects of extracellular stimulation on neuronal activity.MethodsIn patients with movement disorders, single-neuron recordings were acquired from the subthalamic nucleus, substantia nigra pars reticulata, ventral intermediate nucleus, or reticular thalamus during microstimulation across various frequencies (1–100 Hz) to assess single-pulse and frequency-response functions. Moreover, a biophysically-realistic computational framework was developed which generated postsynaptic responses under the assumption that electrical stimuli simultaneously activated all convergent presynaptic inputs to stimulation target neurons. The framework took into consideration the relative distributions of excitatory/inhibitory afferent inputs to model site-specific responses, which were in turn embedded within a model of short-term synaptic plasticity to account for stimulation frequency-dependence.ResultsWe demonstrated microstimulation-evoked excitatory neuronal responses in thalamic structures (which have predominantly excitatory inputs) and inhibitory responses in basal ganglia structures (predominantly inhibitory inputs); however, higher stimulation frequencies led to a loss of site-specificity and convergence towards neuronal suppression. The model confirmed that site-specific responses could be simulated by accounting for local neuroanatomical/microcircuit properties, while suppression of neuronal activity during high-frequency stimulation was mediated by short-term synaptic depression.ConclusionsBrain-region-specific and frequency-dependant neuronal responses could be simulated by considering neuroanatomical (local microcircuitry) and neurophysiological (short-term plasticity) properties. 相似文献
12.
《Brain stimulation》2021,14(4):974-986
BackgroundSocial Anxiety Disorder (SAD) is the most common anxiety disorder while remains largely untreated. Disturbed amygdala-frontal network functions are central to the pathophysiology of SAD, marked by hypoactivity of the lateral prefrontal cortex (PFC), and hypersensitivity of the medial PFC and the amygdala. The objective of this study was to determine whether modulation of the dorsolateral and medial PFC activity with a novel intensified stimulation protocol reduces SAD core symptoms, improves treatment-related variables, and reduces attention bias to threatening stimuli.MethodsIn this randomized, sham-controlled, double-blind trial, we assessed the efficacy of an intensified stimulation protocol (20 min, twice-daily sessions with 20 min intervals, 5 consecutive days) in two intensities (1 vs 2 mA) compared to sham stimulations. 45 patients with SAD were randomized in three tDCS arms (1-mA, 2-mA, sham). SAD symptoms, treatment-related variables (worries, depressive state, emotion regulation, quality of life), and attention bias to threatening stimuli (dot-probe paradigm) were assessed before and right after the intervention. SAD symptoms were also assessed at 2-month follow-up.ResultsBoth 1-mA and 2-mA protocols significantly reduced fear/avoidance symptoms, worries and improved, emotion regulation and quality of life after the intervention compared to the sham group. Improving effect of the 2-mA protocol on avoidance symptoms, worries and depressive state was significantly larger than the 1-mA group. Only the 2-mA protocol reduced attention bias to threat-related stimuli, the avoidance symptom at follow-up, and depressive states, as compared to the sham group.ConclusionsModulation of lateral-medial PFC activity with intensified stimulation can improve cognitive control, motivation and emotion networks in SAD and might thereby result in therapeutic effects. These effects can be larger with 2-mA vs 1-mA intensities, though a linear relationship between intensity and efficacy should not be concluded. Our results need replication in larger trials. 相似文献
13.
《Clinical neurophysiology》2020,131(10):2460-2468
ObjectiveTo establish a method for magnetospinography (MSG) measurement after ulnar nerve stimulation and to clarify its characteristics.MethodsUsing a 132-channel magnetoneurography system with a superconducting quantum interference device, cervical MSG measurements were obtained for 10 healthy volunteers after stimulation of the ulnar nerve at the elbow and the wrist, and neural current distribution was calculated and superimposed on the cervical X-ray images.ResultsNeuromagnetic signals were obtained in all participants after applying the stimulus artifact removal algorithm. The measured magnetic field intensity after elbow stimulation was about twice that after wrist stimulation. Calculated neural currents flowed into the intervertebral foramina at C6/7 to T1/2 and propagated cranially along the spinal canal. The conduction velocity from the peak latency of inward currents at C5-C7 was 73.4 ± 19.6 m/s.ConclusionsWe successfully obtained MSG measurements after ulnar nerve stimulation. The neural currents flowed into the spinal canal from more caudal segments after ulnar nerve stimulation compared with median nerve stimulation, and these MSG measurements were effective in examining the spinal tracts at C5/6/7.SignificanceThis is the first report on the use of MSG to visualize electrical activity in the cervical spinal cord and nerve root after ulnar nerve stimulation. 相似文献
14.
15.
《Brain stimulation》2020,13(5):1245-1253
BackgroundExternal trigeminal nerve stimulation (ETNS) is an emergent, non-invasive neurostimulation therapy delivered bilaterally with adhesive skin electrodes. In previous studies, ETNS was associated to a decrease in seizure frequency in patients with focal drug-resistant epilepsy (DRE).ObjectiveTo determine the long-term efficacy and tolerability of ETNS in patients with focal DRE. Moreover, to explore whether its efficacy depends on the epileptogenic zone (frontal or temporal), and its impact on mood, cognitive function, quality of life, and trigeminal nerve excitability.MethodsForty consecutive patients with frontal or temporal DRE, unsuitable for surgery, were randomized to ETNS or usual medical treatment. Participants were evaluated at 3, 6 and 12 months for efficacy, side effects, mood scales, neuropsychological tests and trigeminal nerve excitability.ResultsSubjects had a median of 15 seizures per month and had tried a median of 12.5 antiepileptic drugs. At 12 months, percentage of responders was 50% in ETNS group and 0% in control group. Seizure frequency in ETNS group decreased by −43.5% from baseline. Temporal epilepsy subgroup responded better than frontal epilepsy subgroup (55.56% vs. 45.45%, respectively). Median stimulation intensity was 6.2 mA. ETNS improved quality of life, but not anxiety or depression. Long-term ETNS affected neither neuropsychological function, nor trigeminal nerve excitability. No relevant adverse events were observed.ConclusionsETNS is an effective and well-tolerated therapy for focal DRE. Patients with temporal epilepsy showed a better response than those with frontal epilepsy. Future studies with larger populations may define its role compared to other neurostimulation techniques.Classification of evidenceThis study provides Class II evidence that ETNS reduces seizure frequency in patients with focal DRE. 相似文献
16.
《Brain stimulation》2020,13(2):287-301
BackgroundThere is evidence that transcranial direct current stimulation (tDCS) can improve learning performance. Arguably, this effect is related to long term potentiation (LTP), but the precise biophysical mechanisms remain unknown.HypothesisWe propose that direct current stimulation (DCS) causes small changes in postsynaptic membrane potential during ongoing endogenous synaptic activity. The altered voltage dynamics in the postsynaptic neuron then modify synaptic strength via the machinery of endogenous voltage-dependent Hebbian plasticity. This hypothesis predicts that DCS should exhibit Hebbian properties, namely pathway specificity and associativity.MethodsWe studied the effects of DCS applied during the induction of LTP in the CA1 region of rat hippocampal slices and using a biophysical computational model.ResultsDCS enhanced LTP, but only at synapses that were undergoing plasticity, confirming that DCS respects Hebbian pathway specificity. When different synaptic pathways cooperated to produce LTP, DCS enhanced this cooperation, boosting Hebbian associativity. Further slice experiments and computer simulations support a model where polarization of postsynaptic pyramidal neurons drives these plasticity effects through endogenous Hebbian mechanisms. The model is able to reconcile several experimental results by capturing the complex interaction between the induced electric field, neuron morphology, and endogenous neural activity.ConclusionsThese results suggest that tDCS can enhance associative learning. We propose that clinical tDCS should be applied during tasks that induce Hebbian plasticity to harness this phenomenon, and that the effects should be task specific through their interaction with endogenous plasticity mechanisms. Models that incorporate brain state and plasticity mechanisms may help to improve prediction of tDCS outcomes. 相似文献
17.
《Brain stimulation》2020,13(2):310-317
BackgroundThe ability to manipulate the excitability of the network between the inferior parietal lobule (IPL) and primary motor cortex (M1) may have clinical value.ObjectiveTo investigate the possibility of inducing long-lasting changes in M1 excitability by applying quadripulse transcranial magnetic stimulation (QPS) to the IPL, and to ascertain stimulus condition- and site-dependent differences in the effects.MethodsQPS was applied to M1, the primary somatosensory cortex (S1), the supramarginal gyrus (SMG) and angular gyrus (AG) IPL areas, with the inter-stimulus interval (ISI) in the train of pulses set to either 5 ms (QPS-5) or 50 ms (QPS-50). QPS was repeated at 0.2 Hz for 30 min, or not presented (sham condition). Excitability changes in the target site were examined by means of single-pulse transcranial magnetic stimulation (TMS).ResultsQPS-5 and QPS-50 at M1 increased and decreased M1 excitability, respectively. QPS at S1 induced no obvious change in M1 excitability. However, QPS at the SMG induced mainly suppressive effects in M1 for at least 30 min, regardless of the ISI length. Both QPS ISIs at the AG yielded significantly different MEP compared to those at the SMG. Thus, the direction of the plastic effect of QPS differed depending on the site, even under the same stimulation conditions.ConclusionsQPS at the IPL produced long-lasting changes in M1 excitability, which differed depending on the precise stimulation site within the IPL. These results raise the possibility of noninvasive induction of functional plasticity in M1 via input from the IPL. 相似文献
18.
《Brain stimulation》2021,14(3):622-634
BackgroundtDCS modulates cortical plasticity and has shown potential to improve cognitive/motor functions in healthy young humans. However, age-related alterations of brain structure and functions might require an adaptation of tDCS-parameters to achieve a targeted plasticity effect in older humans and conclusions obtained from young adults might not be directly transferable to older adults. Thus, our study aimed to systematically explore the association between tDCS-parameters and induced aftereffects on motor cortical excitability to determine optimal stimulation protocols for older individuals, as well as to investigate age-related differences of motor cortex plasticity in two different age groups of older adults.Methods32 healthy, volunteers from two different age groups of Young-Old (50–65 years, n = 16) and Old-Old (66–80 years, n = 16) participated in this study. Anodal tDCS was applied over the primary motor cortex, with respective combinations of three intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design. Cortical excitability alterations were monitored by single-pulse TMS-induced MEPs until the next day morning after stimulation.ResultsAll active stimulation conditions resulted in a significant enhancement of motor cortical excitability in both age groups. The facilitatory aftereffects of anodal tDCS did not significantly differ between age groups. We observed prolonged plasticity in the late-phase range for two protocols with the highest stimulation intensity (i.e., 3 mA-20 min, 3 mA-30 min).ConclusionsOur study highlights the role of stimulation dosage in tDCS-induced neuroplastic aftereffects in the motor cortex of healthy older adults and delivers crucial information about optimized tDCS protocols in the domain of the primary motor cortex. Our findings might set the grounds for the development of optimal stimulation protocols to reinstate neuroplasticity in different cortical areas and induce long-lasting, functionally relevant plasticity in normal aging and in pathological conditions, which would require however systematic tDCS titration studies over respective target areas. 相似文献
19.
《Clinical neurophysiology》2020,131(12):2781-2792
ObjectiveTo determine the optimal depth electrode montages for the assessment of effective connectivity based on single-pulse electrical stimulation (SPES). To determine the effect of SPES locations on the extent of resulting neuronal propagations.MethodsWe studied 14 epilepsy patients who underwent invasive monitoring with depth electrodes and measurement of cortico-cortical evoked potentials (CCEPs) and cortico-cortical spectral responses (CCSRs). We determined the effects of electrode montage and stimulus sites on the CCEP/CCSR amplitudes.ResultsBipolar and Laplacian montages effectively reduced the degree of SPES-related signal deflections at extra-cortical levels, including outside the brain, while maintaining those at the cortical level. SPES of structures more proximal to the deep white matter, compared to the cortical surface, elicited greater CCEPs and CCSRs.ConclusionsOn depth electrode recording, bipolar and Laplacian montages are suitable for measurement of near-field CCEPs and CCSRs. SPES of the white matter axons may induce neuronal propagations to extensive regions of the cerebral cortex.SignificanceThis study helps to establish the practical guidelines on the diagnostic use of CCEPs/CCSRs. 相似文献
20.
《Brain stimulation》2021,14(5):1059-1067
BackgroundThere is still a lack of controlled studies to prove efficacy of thalamic deep brain stimulation for Tourette's Syndrome.ObjectivesIn this controlled trial, we investigated the course of tic severity, comorbidities and quality of life during thalamic stimulation and whether changes in tic severity can be assigned to ongoing compared to sham stimulation.MethodsWe included eight adult patients with medically refractory Tourette's syndrome. Bilateral electrodes were implanted in the centromedian-parafascicular-complex and the nucleus ventro-oralis internus. Tic severity, quality of life and comorbidities were assessed before surgery as well as six and twelve months after. Short randomized, double-blinded sham-controlled crossover sequences with either active or sham stimulation were implemented at both six- and twelve-months’ assessments. The primary outcome measurement was the difference in the Yale Global Tic Severity Scale tic score between active and sham stimulation. Adverse events were systematically surveyed for all patients to evaluate safety.ResultsActive stimulation resulted in significantly higher tic reductions than sham stimulation (F = 79.5; p = 0.001). Overall quality of life and comorbidities improved significantly in the open-label-phase. Over the course of the trial two severe adverse events occurred that were resolved without sequelae.ConclusionOur results provide evidence that thalamic stimulation is effective in improving tic severity and overall quality of life. Crucially, the reduction of tic severity was primarily driven by active stimulation. Further research may focus on improving stimulation protocols and refining patient selection to improve efficacy and safety of deep brain stimulation for Tourette's Syndrome. 相似文献