首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET.Disclosure: Frans J.T. Wackers and Yi-Hwa Liu, through an arrangement with Yale University School of Medicine (New Haven, Conn.), receive royalties from the sale of Wackers-Liu CQ software.  相似文献   

2.
Background  A multicenter intercomparison assessment was made of the variation in left ventricular (LV) volumes and ejection fractions (EFs) obtained from gated myocardial perfusion single photon emission computed tomography (SPECT) of the 3-dimensional AGATE (Amsterdam gated) cardiac phantom. Methods and Results  The phantom was configured to produce 3 different standard end-systolic volume and end-diastolic volume combinations (50 mL and 120 mL, 90 mL and 160 mL, and 120 mL and 190 mL) with corresponding EF (58%, 44%, and 37%). Quantitative gated myocardial perfusion SPECT was performed with 39 SPECT systems in 35 departments. In the multicenter study, for all 3 filling conditions, a wide range of results was obtained. The EF was overestimated (by 1% to 15%), and both the end-systolic volume and end-diastolic volume were underestimated (by 1 to 65 mL). The extent of overestimation of EF was related to the extent of underestimation of the volumes and was independent of filling condition. The trend in error per center was comparable for all 3 filling conditions. Acquisition time per projection was the only independent predictor of the difference between measured and expected EF (P = .0001). Conclusions  Care should be taken before extrapolation of published and accepted cutoff values for LV EF and volumes in clinical decision making. Results should be validated in each center and monitored for accuracy and consistency over time.  相似文献   

3.
Gated myocardial perfusion single-photon emission tomography (SPET) has been used for the measurement of left ventricular (LV) function and validated by means of comparison with other imaging modalities. We have designed a new dynamic myocardial phantom in order to validate the LV function as assessed by the use of gated myocardial perfusion SPET. The phantom consists of two half-ellipsoids (an endocardial surface and an epicardial surface) and a thorax. The myocardial space is filled with a radioactive solution. The endocardial surface moves continuously towards and away from the epicardial surface in the longitudinal axis to vary the LV volume [143 ml at end-diastole (ED), 107 ml at end-systole (ES)] and thickness (apex 8 mm at ED and 26 mm at ES, midplane 8 mm). The mean values of wall motion (WM) for the apical midplane region and the basal midplane region were 5 mm and 2 mm, respectively. Gated myocardial SPET was performed during 8 and 16 intervals. These projection data sets were processed using a Butterworth filter with an order of 5 and a critical frequency of 0.34 cycles/cm. LV function was calculated using the quantitative gated SPET (QGS) algorithm. The LV function values estimated by gated SPET during 16 intervals [22% for ejection fraction (EF), 3.7 mm for WM of the apical midplane, 1.7 mm for WM of the basal midplane] closely resembled actual LV functions [25% for EF, 5 mm for WM of the apical midplane, 2 mm for WM of the basal midplane]. However, the estimated values during 8 intervals were smaller than those during 16 intervals (19% for EF, 3.3 mm for WM of the apical-midplane, 1.1 mm for WM of the basal-midplane). The estimated LV volumes closely correlated with the actual volumes (r=0.99 for 16 intervals, r=0.95 for 8 intervals). Utilizing this phantom, LV function estimated using gated myocardial SPET can be compared with actual values.  相似文献   

4.
Gated myocardial perfusion single-photon emission tomography (SPET) has been used for the measurement of left ventricular (LV) function and validated by means of comparison with other imaging modalities. We have designed a new dynamic myocardial phantom in order to validate the LV function as assessed by the use of gated myocardial perfusion SPET. The phantom consists of two half-ellipsoids (an endocardial surface and an epicardial surface) and a thorax. The myocardial space is filled with a radioactive solution. The endocardial surface moves continuously towards and away from the epicardial surface in the longitudinal axis to vary the LV volume [143 ml at end-diastole (ED), 107 ml at end-systole (ES)] and thickness (apex 8 mm at ED and 26 mm at ES, midplane 8 mm). The mean values of wall motion (WM) for the apical midplane region and the basal midplane region were 5 mm and 2 mm, respectively. Gated myocardial SPET was performed during 8 and 16 intervals. These projection data sets were processed using a Butterworth filter with an order of 5 and a critical frequency of 0.34 cycles/cm. LV function was calculated using the quantitative gated SPET (QGS) algorithm. The LV function values estimated by gated SPET during 16 intervals [22% for ejection fraction (EF), 3.7 mm for WM of the apical midplane, 1.7 mm for WM of the basal midplane] closely resembled actual LV functions [25% for EF, 5 mm for WM of the apical midplane, 2 mm for WM of the basal midplane]. However, the estimated values during 8 intervals were smaller than those during 16 intervals (19% for EF, 3.3 mm for WM of the apical-midplane, 1.1 mm for WM of the basal-midplane). The estimated LV volumes closely correlated with the actual volumes (r=0.99 for 16 intervals, r=0.95 for 8 intervals). Utilizing this phantom, LV function estimated using gated myocardial SPET can be compared with actual values.  相似文献   

5.
The aim of this study was to compare results of left ventricular (LV) function obtained by quantitative gated single-photon emission tomography (QGS) and multidetector-row spiral computed tomography (MDCT) with reference parameters using an electrocardiogram-gated cardiac physical phantom. The phantom study was performed using a combined SPECT/CT system. Flexible membranes formed the inner and outer walls of the simulated LV. The stroke volume was adjusted (45 mL or 58 mL) and the fixed 42-mL end-systolic volume (ESV) produced two different volume combinations. The LV function parameters were estimated by means of MDCT and QGS. Differences in true and measured volumes were compared among CT with a reconstructed image thickness of 2.5 mm and 5.0 mm and QGS volumetric values. Each scan was repeated three-times. The estimation of LV volumes using both QGS and MDCT analyses were reproducible very well. QGS overestimated ejection fraction (EF) by approximately 20%; MDCT volumetry overestimated EF by approximately 5% in each volume setting. The differences in true and measured values for EF and ESV obtained with QGS were significantly greater than obtained with MDCT. Conclusion: MDCT provides a reliable estimation of functional LV parameters, whereas QGS tends to significantly overestimate the EF in small hearts.  相似文献   

6.
It is stated that cardiac MRI imaging can provide accurate estimation of left ventricular (LV) volumes and ejection fraction (EF). The purpose of this study was to evaluate the accuracy of gated myocardial perfusion SPECT for assessment of LV end-diastolic volume (EDV), end-systolic volume (ESV) and EF, using cardiac MRI as the reference methods/(methodology). Gated myocardial perfusion SPECT images were analyzed with two different quantification software, QGS and 4D-MSPECT. Thirty-four consecutive patients were studied. Myocardial perfusion SPECT and cardiac MRI had excellent intra/interobserver reproducibility. Correlation between the results of gated myocardial perfusion SPECT and cardiac MRI were high for EDV and EF. However, ESV and EDV were significantly underestimated by gated myocardial perfusion SPECT compared to cardiac MRI. Moreover, gated myocardial perfusion SPECT overestimated EF for small heart. One reason for the difference in volumes and EF is the delineation of the endocardial border. Cardiac MRI has higher spatial resolution. We should understand the differences of volumes and EF as determined by gated myocardial perfusion SPECT and cardiac MRI.  相似文献   

7.
Cardiofocal collimators (CFCs) are more sensitive than parallel-hole collimators (PHCs) of the same resolution because the rays converge in the centre of the field of view. After reconstruction a useful field of view with a 10 cm radius in which both sensitivity and resolution are homogeneous is obtained. In this article the feasibility and accuracy of gated single-photon emission tomographic (gated SPET) myocardial perfusion imaging using a triple-head camera equipped with CFC, is evaluated. Twenty patients with a history of myocardial infarction were studied. SPET myocardial perfusion images, gated in eight time bins, were acquired in a random sequence with a PHC and a CFC for each patient. Imaging was started 60 min after the injection of 925 MBq of technetium-99m tetrofosmin at rest. Ninety-six projections over 360° were acquired, with 32 stops of 40 s for the PHC and 20 s for the CFC in order to obtain similar count densities. The extent (EXT) and severity (SEV) of perfusion defects were quantified on polar maps using the non-gated data. Left ventricular volumes [end-diastolic volume (EDV), end-systolic volume (ESV)] and ejection fraction (LVEF) were calculated from gated data using the Cedars-Sinai program. In 17 of 20 patients the complete left ventricle was positioned within the useful field of view of the CFC. The results in respect of perfusion, volumes and ejection fraction were almost identical to those obtained with the PHC. The mean difference±SD between the CFC and the PHC was −2.30±7.16 (% of LV area) for EXT, −0.48±2.90 for SEV (arbitrary units), −1,50±5.25 (ml) for EDV and 0.53±4.10 (%) for LVEF. The largest differences in EXT and LV volumes were observed in patients in whom a part of the LV was not positioned within the useful field of view. We conclude that, for the majority of patients, identical information with regard to both perfusion and function can be derived from gated SPET myocardial perfusion studies obtained with PHCs or with CFCs. Because of the greater sensitivity, however, a much shorter acquisition time is required with CFCs. Received 7 May and in revised form 31 August 1997  相似文献   

8.
Gated single-photon emission tomography (SPET) is not yet an established procedure for the evaluation of left ventricular (LV) diastolic function. This study examined diastolic function derived from gated SPET in comparison with an established diagnostic tool, Doppler echocardiography. We examined 37 consecutive patients with normal sinus rhythm who underwent gated technetium-99m tetrofosmin SPET. A gated SPET program was used with a temporal resolution of 32 frames per R-R interval. We obtained the Doppler transmitral flow velocity waveform immediately before gated SPET image acquisition. Patients who showed a ratio of peak early transmitral flow velocity to atrial flow velocity (E/A) of >1 or whose R-R intervals differed by >5% between Doppler echocardiography and gated SPET were excluded from this investigation. We compared diastolic indices and presumed corresponding intervals in diastole using the two methods. The peak filling rate (PFR) derived from gated SPET correlated with the Doppler peak velocity of the early transmitral flow (E) wave (r=0.65) and deceleration of the E wave (r=0.71). The time to PFR and percent atrial contribution to LV filling from gated SPET correlated excellently with the Doppler LV isovolumic relaxation time (r=0.93) and the E/A ratio (r=–0.85), respectively. There was a significant linear correlation in all the intervals from the R wave to the presumed corresponding diastolic points. The point of PFR in gated SPET and the peak of the E wave in Doppler echocardiography generally coincided. The onset of filling in gated SPET tended to be closer to the second heart sound than the start of the E wave in Doppler echocardiography. We conclude that gated SPET permits the assessment of not only myocardial perfusion and LV systolic function but also diastolic function, although there may be some errors in detection of the precise beginning of LV filling.  相似文献   

9.

Background

We compared a dedicated cardiac camera with a traditional system for left ventricular (LV) functional measurements using gated blood-pool imaging.

Methods

24-frame gated planar images were obtained from 48 patients in an LAO orientation for 6M counts/view on a standard gamma camera. Immediately thereafter, 24-frame ECG-gated data were obtained for 8 minutes on a dedicated cardiac SPECT camera. The gated SPECT image volumes were iteratively reconstructed and then transferred offline. In-house software was used to reproject the images into a 24-frame gated planar format. Both the original and the reprojected gated planar datasets were analyzed using semiautomated software to determine ejection fraction (EF), ventricular volume (end diastolic volume, EDV), peak ejection rate (PER), and peak filling rate (PFR).

Results

The difference in EF values averaged 0.4% ± 4.4%. The correlation in EF was r ≥ 0.94 (P < .01) with a linear regression slope of 0.98. Correlation of the EDV was r ≥ 0.86 (P < .01), but the volumes from the dedicated cardiac camera were smaller (linear regression slope was 0.6). Correlation of PFR and PER were r = 0.91 and r ≥ 0.83, respectively (P < .01 for both).

Conclusions

Reprojection of 24-frame gated blood-pool SPECT images is an effective means of obtaining LV functional measurements with a dedicated cardiac SPECT camera using standard 2D-planar analysis tools.  相似文献   

10.
To date cardiac positron emission tomography (PET) studies have focussed on the measurement of myocardial blood flow, metabolism and receptors while left ventricular (LV) function and dimensions have been derived from other modalities. The main drawback of this approach is the difficulty of data co-registration, which limits clinical interpretation. The aim of this study was to evaluate whether it is possible to measure absolute cardiac volumes, and consequently LV function parameters such as ejection fraction, and wall motion with gated PET. Nineteen patients underwent a PET scan and planar radionuclide ventriculography (MUGA) within 9±9 days. A 9-min scan (16 gates/cardiac cycle) was acquired after inhalation of 3 MBq/ml of oxygen-15 labelled carbon monoxide at the rate of 500 m1/min over 4 min using a multislice PET camera. Noise reduction was performed on the gated image to enhance the definition of the ventricles before reslicing to the short-axis view. A threshold value was used to detect the edge of the LV at each gate. LV volumes at each gate were estimated by summing the volume of voxels within the LV boundary. PET measurements of LV volumes were as follows: LV end-diastolic volume ranged from 72 to 233 ml and LV end-systolic volume ranged from 24 to 203 ml. Phantom experiments supported the validity of this approach for estimating volumes. LV ejection fraction measured with MUGA was 38.4%±16.3% (range 15%–71%) and that measured with PET was 39.6%±17.7% (range 9%–72%) (P=NS). The LV ejection fraction measurements were highly correlated (r 2=0.824). These results indicate that: (1) absolute enddiastolic and end-systolic volumes can be quantified using gated PET and (2) LV ejection fraction can be accurately measured by gated PET simultaneously with the other physiological PET parameters.  相似文献   

11.
The main aim of this study was to validate the accuracy of 4D-MSPECT in the assessment of left ventricular (LV) end-diastolic/end-systolic volumes (EDV, ESV) and ejection fraction (LVEF) from gated technetium-99m methoxyisobutylisonitrile single-photon emission tomography (99mTc-MIBI SPET), using cardiac magnetic resonance imaging (cMRI) as the reference method. By further comparing 4D-MSPECT and QGS with cMRI, the software-specific characteristics were analysed to elucidate clinical applicability. Fifty-four patients with suspected or proven coronary artery disease (CAD) were examined with gated 99mTc-MIBI SPET (8 gates/cardiac cycle) about 60 min after tracer injection at rest. LV EDV, ESV and LVEF were calculated from gated 99mTc-MIBI SPET using 4D-MSPECT and QGS. On the same day, cMRI (20 gates/cardiac cycle) was performed, with LV EDV, ESV and LVEF calculated using Simpsons rule. Both algorithms worked with all data sets. Correlation between the results of gated 99mTc-MIBI SPET and cMRI was high for EDV [R=0.89 (4D-MSPECT), R=0.92 (QGS)], ESV [R=0.96 (4D-MSPECT), R=0.96 (QGS)] and LVEF [R=0.89 (4D-MSPECT), R=0.90 (QGS)]. In contrast to ESV, EDV was significantly underestimated by 4D-MSPECT and QGS compared to cMRI [130±45 ml (4D-MSPECT), 122±41 ml (QGS), 139±36 ml (cMRI)]. For LVEF, 4D-MSPECT and cMRI revealed no significant differences, whereas QGS yielded significantly lower values than cMRI [57.5%±13.7% (4D-MSPECT), 52.2%±12.4% (QGS), 60.0%±15.8% (cMRI)]. In conclusion, agreement between gated 99mTc-MIBI SPET and cMRI is good across a wide range of clinically relevant LV volume and LVEF values assessed by 4D-MSPECT and QGS. However, algorithm-varying underestimation of LVEF should be accounted for in the clinical context and limits interchangeable use of software.  相似文献   

12.
We have developed a biventricular dynamic physical cardiac phantom to test gated blood-pool (GBP) SPECT image-processing algorithms. Such phantoms provide absolute values against which to assess accuracy of both right and left computed ventricular volume and ejection fraction (EF) measurements. METHODS: Two silicon-rubber chambers driven by 2 piston pumps simulated crescent-shaped right ventricles wrapped partway around ellopsoid left ventricles. Twenty experiments were performed at Ghent University, for which right and left ventricular true volume and EF ranges were 65-275 mL and 55-165 mL and 7%-49% and 12%-69%, respectively. Resulting 64 x 64 simulated GBP SPECT images acquired at 16 frames per R-R interval were sent to Columbia University, where 2 observers analyzed images independently of each other, without knowledge of true values. Algorithms automatically segmented right ventricular activity volumetrically from left ventricular activity. Automated valve planes, midventricular planes, and segmentation regions were presented to observers, who accepted these choices or modified them as necessary. One observer repeated measurements >1 mo later without reference to previous determinations. RESULTS: Linear correlation coefficients (r) of the mean of the 3 GBP SPECT observations versus true values for right and left ventricles were 0.80 and 0.94 for EF and 0.94 and 0.95 for volumes, respectively. Correlations for right and left ventricles were 0.97 and 0.97 for EF and 0.96 and 0.89 for volumes, respectively, for interobserver agreement and 0.97 and 0.98 for EF and 0.96 and 0.90 for volumes, respectively, for intraobserver agreement. No trends were detected, though volumes and right ventricular EFs were significantly higher than true values. CONCLUSION: Overall, GBP SPECT measurements correlated strongly with true values. The phantom evaluated shows considerable promise for helping to guide algorithm developments for improved GBP SPECT accuracy.  相似文献   

13.
To elucidate the usefulness of gated cardiac blood-pool single photon emission CT (SPECT) with Tc-99m for the evaluation of left ventricular (LV) global and regional functions, 18 patients with coronary artery disease were studied. Thirty-two gated projection images were obtained over 360-degree at 16 frames per cardiac cycle. As LV volume was calculated by integrating the numbers of voxels which constituted LV and multiplying by the volume of a single voxel (0.1143 ml), we performed phantom studies to determine the appropriate cut-off level to detect LV outline. These cut-off levels were affected by the background activity and organ volume itself. So we constructed Volume-Cut-Level-Curve at each background activity. In clinical studies, short axis images which constituted LV were selected and provisional LV volumes were calculated at the cut-off levels of 45, 50 and 55%. These volumes were plotted on the Volume-Cut-Level-Curve and the true cut-off levels were obtained to calculate LV end-diastolic or end-systolic volume (EDV, ESV). The cut-off levels were different at every patient and ED or ES. EDV, ESV and LV ejection fraction obtained by SPECT were correlated well with those obtained by contrast ventriculography (LVG) (r = 0.89, 0.94, 0.94 each, p less than 0.01). For the LV wall motion analysis, LVGs obtained at two projections were compared with SPECT or gated cardiac blood-pool planar imaging (Planar) in 5 segments. In addition to visual comparison, wall motion scores (WMS) based on the degree of wall motion abnormality were calculated in each segment. Correlation of WMS between LVG and SPECT (r = 0.84) was significantly (p less than 0.01) superior to that between LVG and Planar (r = 0.62). Especially in SPECT, wall motion analyses at septal and infero-posterior segments were superior to those in Planar. Although gated SPECT requires relatively long time to perform, it is a useful method to detect LV global and regional functions.  相似文献   

14.
The objective of this study was to perform a head-to-head comparison between two-dimensional (2D) echocardiography and gated single-photon emission computed tomography (SPET) for the evaluation of left ventricular (LV) function and volumes in patients with severe ischaemic LV dysfunction. Thirty-two patients with chronic ischaemic LV dysfunction [mean LV ejection fraction (EF) 25%+/-6%] were studied with gated SPET and 2D echocardiography. Regional wall motion was evaluated by both modalities and scored by two independent observers using a 16-segment model with a 5-point scoring system (1= normokinesia, 2= mild hypokinesia, 3= severe hypokinesia, 4= akinesia and 5= dyskinesia). LVEF and LV end-diastolic and end-systolic volumes were evaluated by 2D echocardiography using the Simpson's biplane discs method. The same parameters were calculated using quantitative gated SPET software (QGS, Cedars-Sinai Medical Center). The overall agreement between the two imaging modalities for assessment of regional wall motion was 69%. The correlations between gated SPET and 2D echocardiography for the assessment of end-diastolic and end-systolic volumes were excellent (r=0.94, P<0.01, and r=0.96, P<0.01, respectively). The correlation for LVEF was also good (r=0.83, P<0.01). In conclusion: in patients with ischaemic cardiomyopathy, close and significant relations between gated SPET and 2D echocardiography were observed for the assessment of regional and global LV function and LV volumes; gated SPET has the advantage that it provides information on both LV function/dimensions and perfusion.  相似文献   

15.
In gated cardiac blood pool single-photon emission tomography (SPET), the volume of a ventricle may be determined by a method that exploits the proportionality between that volume and the total reconstructed counts within a larger volume of interest that includes the actual ventricle. The present work was carried out to determine how the attenuation of photons modifies the reconstructed counts obtained with this technique, and how this affects the accuracy of volume determination. Furthermore, we wanted to investigate how count-based determination of ventricle volumes is affected by the total SPET rotation angle and by different arm positions. We used µ-maps derived from computed tomography (CT) series of nine arbitrarily chosen patients to calculate a volume correction factor for each cardiac volume manually drawn on the CT images. An anthropomorphic chest phantom was used to confirm the calculation of correction factors. For the regions of the ventricles contained within a CT slice through the central part of the heart, the left to right volume ratio needed to be corrected by factors of 1.21 and 1.12 for 180° and 360° rotation, respectively. When all voxels within the left and right ventricles were included, the required volume ratio correction factor was close to 1. However, the variation among patients was larger for a 180° (range 0.97–1.08) than for a 360° rotation arc (range 1.0–1.03).  相似文献   

16.
Purpose Quantitative gated single-photon emission computed tomography (SPECT) is known to have high accuracy and precision for measurement of the principal cardiac functional parameters. We hypothesised that normal values for EF and LV volumes may differ among nationalities, and that optimal threshold values specific to the study population are required. Methods Among 4,670 consecutively registered patients for a J-ACCESS (Japanese investigation regarding prognosis based on gated SPECT) study from 117 hospitals, a total of 268 (149 women, 119 men) were selected who had no baseline cardiac diseases and had experienced no cardiac events during the preceding 3-year period. A gated SPECT study was performed with 99mTc-tetrofosmin and analysed with Cedars Sinai Medical Center’s quantitative gated SPECT (QGS) software. The results in respect of ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV), and EDV, ESV and SV normalised by body surface area (EDVI, ESVI and SVI), were calculated and summarised to obtain normal limits. Results EF for women and men was 74 ± 9% and 63 ± 7%, respectively (p < 0.0001). EDV, ESV and SV were significantly smaller in women than in men. Based on multiple regressions for linear models, the primary and secondary predictors of EF, EDVI, ESVI were gender and age. By stepwise multiple regression analysis, a statistically significant third predictor for EDV, ESV, SV and SVI was body weight. No colinearity was found between age and body weight. Important factors for the studied Japanese population included a high incidence of small hearts in women and the relatively advanced age of the population (the mean age ±SD was 64.1 ± 10.0 years for women and 60.9 ± 11.7 years for men). Conclusion EF and volumes determined by gated SPECT with QGS were significantly affected by gender and age, with body weight as a third predictor for volumes. Moreover, the normal limits were so specific for the population studied that standards appropriate for the study in question should be utilised.  相似文献   

17.
The objective of this study was to perform a head-to-head comparison between two-dimensional (2D) echocardiography and gated single-photon emission computed tomography (SPET) for the evaluation of left ventricular (LV) function and volumes in patients with severe ischaemic LV dysfunction. Thirty-two patients with chronic ischaemic LV dysfunction [mean LV ejection fraction (EF) 25%Lj%] were studied with gated SPET and 2D echocardiography. Regional wall motion was evaluated by both modalities and scored by two independent observers using a 16-segment model with a 5-point scoring system (1= normokinesia, 2= mild hypokinesia, 3= severe hypokinesia, 4= akinesia and 5= dyskinesia). LVEF and LV end-diastolic and end-systolic volumes were evaluated by 2D echocardiography using the Simpson's biplane discs method. The same parameters were calculated using quantitative gated SPET software (QGS, Cedars-Sinai Medical Center). The overall agreement between the two imaging modalities for assessment of regional wall motion was 69%. The correlations between gated SPET and 2D echocardiography for the assessment of end-diastolic and end-systolic volumes were excellent (r=0.94, P<0.01, and r=0.96, P<0.01, respectively). The correlation for LVEF was also good (r=0.83, P<0.01). In conclusion: in patients with ischaemic cardiomyopathy, close and significant relations between gated SPET and 2D echocardiography were observed for the assessment of regional and global LV function and LV volumes; gated SPET has the advantage that it provides information on both LV function/dimensions and perfusion.  相似文献   

18.
We investigated the reproducibility between thallium-201 and technetium-99m methoxyisobutylisonitrile (MIBI) gated single-photon emission tomography (SPET) for the assessment of indices of myocardial function such as end-diastolic and end-systolic volume (EDV, ESV), ejection fraction (EF) and wall motion. Rest 201Tl (111 MBq) gated SPET was sequentially performed twice in 20 patients. Rest 201Tl gated SPET and rest 99mTc-MIBI (370 MBq) gated SPET were performed 24 h apart in 40 patients. Wall motion was graded using the surface display of the Cedars quantitative gated SPET (QGS) software. EDV, ESV and EF were also measured using the QGS software. The reproducibility of functional assessment on rest 201Tl gated SPET was compared with that on 99mTc-MIBI gated SPET, and also with that between 201Tl gated SPET and 99mTc-MIBI gated SPET performed on the next day. The two standard deviation (2 SD) values for EDV, ESV and EF on the Bland-Altman plot were 29 ml, 19 ml and 12%, respectively, on repeated 201Tl gated SPET, compared with 14 ml, 11 ml and 5.3% on repeated 99mTc-MIBI gated SPET. The correlations were good (r=0.96, 0.97 and 0.87) between the two measurements of EDV, ESV and EF on repeated rest studies with 201Tl and 99mTc-MIBI gated SPET. However, Bland-Altman analysis revealed that the 2 SD values between the two measurements were 31 ml, 23 ml and 12%. We were able to score the wall motion in all cases using the 3D surface display of the QGS on 201Tl gated SPET. The kappa value of the wall motion grade on the repeated 201Tl study was 0.35, while that of the wall motion grade on the repeated 99mTc-MIBI study was 0.76. The kappa value was 0.49 for grading of wall motion on repeated rest studies with 201Tl and 99mTc-MIBI. In conclusion, QGS helped determine EDV, ESV, EF and wall motion on 201Tl gated SPET. Because the EDV, ESV and EF were less reproducible on repeated 201Tl gated SPET or on 201Tl gated SPET and 99mTc-MIBI gated SPET on the next day than on repeated 99mTc-MIBI gated SPET, functional measurement on 201Tl gated SPET did not seem to be interchangeable with that on 99mTc-MIBI gated SPET.  相似文献   

19.
PURPOSES: ECG-gated myocardial SPECT program (QGS) is coming into wide use. This program permits measurement of end-diastolic volume (EDV), and end-systolic volume (ESV) and ejection fraction (EF) by automatic detection of myocardial edges. We assessed the reproducibility, accuracy, factors that affect the measurement of these indices using a cardiac phantom and clinical data. METHODS: In the phantom study, we evaluated the effects of ventricular volume, location, absorption, acquisition time, enlarged acquisition and pre-filter on the calculated indices. In the clinical study using 99mTc-MIBI, reproducibility between 2 observers, comparison with left ventriculography and effects of pre-filter were assessed. In clinical cases of 201TI and 123I-BMIPP, left ventricular volume and EF were also analyzed by QGS with various pre-filters. RESULTS: Although the true phantom volumes (y) and calculated volumes (x) showed an excellent linear correlation (y = 0.94x - 13.8, r = 0.999), calculated volumes were significantly under-estimated by 14.5-33.8%. An absorbent material around the phantom caused reduction in calculated volumes by 4.1-9.1%. Duration of acquisition times, 3 to 60 seconds per projection, did not influence the calculation of the parameters. With enlarged data collection, calculated volume (37 ml) was larger than that of normal acquisition (33 ml). When the cut-off frequency of Butterworth filter was changed, these indices of volume and EF were almost stable over 0.41 cycle/cm. There was an excellent correlation in intra-observer measurements for EDV (r = 0.998, p < 0.0001), ESV (r = 0.998, p < 0.0001) and EF (r = 0.995, p < 0.0001). In comparison with left ventriculography, correlation of parameters was good in ESV (r = 0.91, p < 0.0001), EF (r = 0.88, p < 0.0001), but was fair in EDV (r = 0.78, p < 0.0001). The QGS program underestimated EDV, ESV and EF. CONCLUSION: QGS program with gated SPECT is useful to calculate relative volume and EF. However, to calculate absolute values, we should understand the various factors that affect the result of QGS.  相似文献   

20.
We investigated the reproducibility between thallium-201 and technetium-99m methoxyisobutylisonitrile (MIBI) gated single-photon emission tomography (SPET) for the assessment of indices of myocardial function such as end-diastolic and end-systolic volume (EDV, ESV), ejection fraction (EF) and wall motion. Rest 201Tl (111 MBq) gated SPET was sequentially performed twice in 20 patients. Rest 201Tl gated SPET and rest 99mTc-MIBI (370 MBq) gated SPET were performed 24 h apart in 40 patients. Wall motion was graded using the surface display of the Cedars quantitative gated SPET (QGS) software. EDV, ESV and EF were also measured using the QGS software. The reproducibility of functional assessment on rest 201Tl gated SPET was compared with that on 99mTc-MIBI gated SPET, and also with that between 201Tl gated SPET and 99mTc-MIBI gated SPET performed on the next day. The two standard deviation (2 SD) values for EDV, ESV and EF on the Bland-Altman plot were 29 ml, 19 ml and 12%, respectively, on repeated 201Tl gated SPET, compared with 14 ml, 11 ml and 5.3% on repeated 99mTc-MIBI gated SPET. The correlations were good (r=0.96, 0.97 and 0.87) between the two measurements of EDV, ESV and EF on repeated rest studies with 201Tl and 99mTc-MIBI gated SPET. However, Bland-Altman analysis revealed that the 2 SD values between the two measurements were 31 ml, 23 ml and 12%. We were able to score the wall motion in all cases using the 3D surface display of the QGS on 201Tl gated SPET. The kappa value of the wall motion grade on the repeated 201Tl study was 0.35, while that of the wall motion grade on the repeated 99mTc-MIBI study was 0.76. The kappa value was 0.49 for grading of wall motion on repeated rest studies with 201Tl and 99mTc-MIBI. In conclusion, QGS helped determine EDV, ESV, EF and wall motion on 201Tl gated SPET. Because the EDV, ESV and EF were less reproducible on repeated 201Tl gated SPET or on 201Tl gated SPET and 99mTc-MIBI gated SPET on the next day than on repeated 99mTc-MIBI gated SPET, functional measurement on 201Tl gated SPET did not seem to be interchangeable with that on 99mTc-MIBI gated SPET. Received 18 May 1999 and in revised form 4 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号