首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The anterograde tracerPhaseolus vulgaris leucoagglutinin (PHA-L) was injected into different subregions of the rat lateral geniculate nucleus. After a survival for 5–10 days, the rats were fixed by perfusion with 4% paraformaldehyde, whereafter the brains were cut in a cryostat and the tracer was localized by immunohistochemistry. After deposits of PHA-L involving the intergeniculate leaflet, a high number of PHA-L-immunoreactive fibers were observed to project directky into the posterior commissure. From the posterior commissure, some nerve fibers turned dorsally and entered into the deep pineal gland, a part of the pineal complex located in between the posterior and the habenular commissure. A few PHA-L-immunoreactive fibers were observed in the pineal stalk, but no fibers were detected in the superficial pineal gland. In cases where the injections were placed in the dorsal or ventral subnuclei, no immunoreactive nerve fibers were observed to enter the pineal complex. These results indicate that the intergeniculate leaflet of the lateral geniculate nucleus, a nucleus considered to be involved in circadian rhythmicity, might influence the pineal gland, via a neural projection to the rostral part of the pineal complex.  相似文献   

2.
The anterograde tracerPhaseolus vulgaris leucoagglutinin (PHA-L) was injected into different subregions of the rat lateral geniculate nucleus. After a survival for 5–10 days, the rats were fixed by perfusion with 4% paraformaldehyde, whereafter the brains were cut in a cryostat and the tracer was localized by immunohistochemistry. After deposits of PHA-L involving the intergeniculate leaflet, a high number of PHA-L-immunoreactive fibers were observed to project directky into the posterior commissure. From the posterior commissure, some nerve fibers turned dorsally and entered into the deep pineal gland, a part of the pineal complex located in between the posterior and the habenular commissure. A few PHA-L-immunoreactive fibers were observed in the pineal stalk, but no fibers were detected in the superficial pineal gland. In cases where the injections were placed in the dorsal or ventral subnuclei, no immunoreactive nerve fibers were observed to enter the pineal complex. These results indicate that the intergeniculate leaflet of the lateral geniculate nucleus, a nucleus considered to be involved in circadian rhythmicity, might influence the pineal gland, via a neural projection to the rostral part of the pineal complex.  相似文献   

3.
Histamine-immunoreactive nerve fibers in the mammalian spinal cord   总被引:1,自引:0,他引:1  
New sensitive antisera against histamine were used to study the distribution of histamine-immunoreactive nerve fibers in the spinal cord of several mammalian species. Tissues were fixed with carbodiimide by transcardiac perfusion or immersion. A few immunoreactive nerve fibers were found in the cervical spinal cord of the rat in the superficial laminae of the dorsal horn, around the central canal and scattered in the anterior horn. The density of immunoreactive fibers in the cervical spinal cord of the guinea pig and tree shrew was higher, but still low. The densest networks of histamine-immunoreactive fibers were seen in the cervical spinal cord of the pig. The laminar distribution of histamine-immunoreactive fibers was similar in all species. Histamine-immunoreactive fibers were densest in lamina X, followed by laminae I-II. Scattered fibers were also seen in the white matter in the lateral and posterior funiculus in the pig. In the rat and the guinea pig, no histamine-immunoreactive cell bodies were seen in the spinal sensory ganglia. The results suggest that the histamine-immunoreactive nerve fibers in the spinal cord may originate from the brain, probably from the posterior hypothalamus, and the fiber projection is more extensive in higher mammalian species. The role of histamine in the spinal cord is not known, but it may be involved in, e.g., pain sensation.  相似文献   

4.
Orexins/hypocretins, two isoforms of the same prepropeptide, are widely distributed throughout the brain and are involved in several physiological and neuroendocrine regulatory patterns, mostly related to feeding, sleep, arousal, and cyclic sleep-wake behaviors. Orexin-A and orexin-B bind with different affinities to two G-protein-coupled transmembrane receptors, orexin-1 and orexin-2 receptors (OR-R1 and OR-R2, respectively). Because of the similarities between the human and the swine brain, we have studied the pig to investigate the orexinergic system in the diencephalon, with special emphasis on the neuroanatomical projections to the epithalamic region. By using antibodies against orexin-A and orexin-B, immunoreactive large multipolar perikarya were detected in the hypothalamic periventricular and perifornical areas at the light and electron microscopic levels. In the region of the paraventricular nucleus, the orexinergic neurons extended all the way to the lateral hypothalamic area. Immunoreactive nerve fibers, often endowed with large varicosities, were found throughout the hypothalamus and the epithalamus. Some periventricular immunoreactive nerve fibers entered the epithalamic region and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs.  相似文献   

5.
The distribution of gamma-aminobutyric acid (GABA) containing neurons in the rat pituitary gland and related hypothalamic areas was immunohistochemically investigated using antibodies raised against GABA conjugated to bovine serum albumin by glutaraldehyde. A dense network of GABA-like immunoreactive fine varicose nerve fibers was observed within the posterior and intermediate lobes of the pituitary gland, surrounding endocrine cells and capillaries, but not in the anterior lobe. In the pituitary stalk, the dense varicose fibers ran along the anterior wall of the posterior lobe into the posterior and intermediate lobes. A small number of GABA-like immunoreactive cell bodies were evident in the intermediate lobe. GABA-like immunoreactive fibers occurred at low to high density in most parts of the hypothalamus. GABA-like immunoreactive neurons were observed in some regions related to the pituitary gland (such as periventricular nucleus, paraventricular nucleus, arcuate nucleus and accessory magnocellular nucleus). These results provide morphological evidence for the presence of GABAergic neurons in the rat hypothalamo-pituitary system.  相似文献   

6.
The distribution on γ-aminobutyric acid (GABA) containing neurons in the rat pituitary gland and related hypothalamic areas was immunohistochemically investigaed using antibodies raised against GABA conjugated to bovine serum albumin by glutaraldehyde. A dense network of GABA-like immunoreactive fine varicose nerve fibers was observed within the posterior and intermediate lobes of the pituitary gland, surrounding endocrine cells and capillaries, but not in the anterior lobe. In the pituitary stalk, the dense varicose fibers ran along the anterior wall of the posterior lobe into the posterior and intermediate lobes. A small number of GABA-like immunoreactive cell bodies were evident in the intermediate lobe. GABA-like immunoreactive fibers occurred at low to high density in most parts of the hypothalamus. GABA-like immunoreactive neurons were observed in some regions related to the pituitary gland (such as periventricular nucleus, paraventricular nucleus, arcuate nucleus and accessory magnocellular nucleus). These results provide morphological evidence for the presence of GABAergic neurons in the rat hypothalamo-pituitary system.  相似文献   

7.
The distribution of neuropeptide Y (NPY)-like immunoreactivity within the hypothalamus of the adult golden hamster was investigated with conventional immunohistochemical techniques. Neuropeptide Y immunoreactive cell bodies were found in greatest numbers in the arcuate nucleus while a few stained perikarya were seen in the internal and subependymal zones of the median eminence. Isolated perikarya were observed in the anterior commissure and supracommissural portion of the interstitial nucleus of the stria terminalis. Immunoreactive axons were located throughout the hypothalamus with the highest concentrations in the subependymal and internal zones of the median eminence, the interstitial nucleus of the stria terminalis, the medial preoptic area, and in the following nuclei: periventricular, suprachiasmatic, paraventricular, perifornical, median preoptic, and arcuate. Moderate to dense plexuses of immunoreactive fibers were observed in the anterior, lateral, and posterior hypothalamic areas and in the infundibular stalk. The supraoptic nucleus and lateral preoptic area displayed a small number of labeled axons whereas the ventromedial nucleus contained only a few fibers. NPY immunoreactive fibers were present in the optic tract and in the dorsomedial aspect of the optic chiasm. Labeled fibers penetrated the ependymal lining of the third ventricle throughout the ventral aspect of the periventricular zone. Additional fibers were observed in the pia lining the ventral aspect of the hypothalamus. This systematic analysis of hypothalamic NPY immunoreactivity in the adult golden hamster suggests that a portion of the labeled fibers display a distribution that is similar to previously described noradrenergic fibers in the hypothalamus.  相似文献   

8.
An immunohistochemical investigation of the bovine pineal gland was performed using both a rabbit polyclonal antibody and a rat monoclonal antibody against choline acetyltransferase (ChAT). A network of ChAT-immunoreactive (IR) nerve fibers was located throughout the pineal gland, both in the perivascular spaces and between the pinealocytes. Most of the intrapineal ChAT-IR nerve fibers were endowed with varicosities. In addition, some ChAT-IR intrapineal neurons were found, often located at the base of the gland near the pineal recess. Within the habenular nucleus and pineal stalk, ChAT-IR perikarya and nerve fibers were also present. Some of these fibers projected towards the pineal gland. A number of ChAT-IR nerves were also located in the posterior commissure and could be followed into the gland. At the caudal tip of the pineal gland, a bundle of ChAT-IR nerve fibers was observed to penetrate into the gland together with blood vessels. The presence of a cholinergic innervation of the bovine pineal gland, together with previous demonstration of the presence of choline acetyltransferase and muscarinic receptor binding sites in the bovine pineal gland, indicates a functional influence of a cholinergic nervous system on the pinealocyte.  相似文献   

9.
The present immunohistochemical study describes the presence and distribution of nerve fibers containing neuropeptide Y (NPY), and C-Flanking Peptide Of NPY (CPON) in the pineal gland of the sheep. Nerve fibers were detected by using a series of antisera directed against NPY or against CPON. Many positive immunoreactive nerve fibers were identified in the pial capsule of the pineal, in connective septae and in the parenchyma between pinealocytes. The intraparenchymal fibers were particularly evident and created an extensive network throughout the gland. Nerve fibers immunoreactive for all the peptides were also observed in the posterior commissure and in the stria medullaris thalami. No NPY- or CPON-positive neurons were found in the pineal gland. In order to study the site of origin of NPY- and CPON-immunoreactive nerve fibers, the superior cervical ganglia were bilaterally removed in a series of animals. Sympathetic denervation was checked by using an antiserum against tyrosine hydroxylase (TH). Nearly all TH-immunoreactive elements disappeared in the pineal glands of animals sacrificed 15 days after surgery. Also the density of NPY- and CPON-immunoreactive nerve fibers decreased in the animals after the ganglionectomy. However, a number of nerve fibers still remained in the gland. These data indicate that some NPY- and CPON-immunoreactive nerve fibers of the sheep pineal gland derive from an extrasympathetic origin. The very dense innervation of the sheep pineal gland with nerve fibers containing NPY and CPON strongly indicates a functional role for this family of peptides in the pineal gland of this species.  相似文献   

10.
The distribution of substance P-like immunoreactivity in the chameleon brain and spinal cord was studied with immunohistochemical methods using polyclonal antibodies against substance P. In the telencephalon, immunoreactive cell bodies and fibers were located primarily in the striatum and in the globus pallidus. In addition, few substance P-like fibers were observed in the cortical areas, in the septum, and in the amygdala. In the diencephalon, a high density of immunostained neurons and fibers were seen in the periventricular and ventrolateral hypothalamus. Another group of cell bodies was located in the optic tectum and particularly in the stratum griseum central. A large number of immunoreactive fibers were also detected in the thalamic nuclei and in the median eminence. In the mesencephalon, few immunoreactive neurons were observed in the ventral tegmental area, in the substantia nigra, and in the nucleus reticularis isthmi. These latter nuclei, the periventricular area, the posterior commissure, the nucleus lentiformis mesencephali, the oculomotor nucleus, and the raphe nuclei contained a dense plexus of substance P immunoreactive fibers. No immunoreactive cell bodies were observed in raphe nuclei. In the spinal cord, no substance P-like immunoreactive neurons were observed, but a large number of substance P immunostained fibers were seen in the dorsal and lateral part of the dorsal horn and surrounding the dorsal parts of the central canal. The results of the present study are discussed with respect to those obtained in other species of reptiles, the main differences concerning the lateral septum, the habenula, the area of the paraventricular organ, and the raphe nuclei.  相似文献   

11.
The distribution of immunoreactive substance P (IR-SP) neurons was examined in the hypothalamus and pituitary gland of the rhesus monkey by using the peroxidase-antiperoxidase immunocytochemical technique. Immunoreactive SP cell bodies were observed in the arcuate nucleus, in the region lateral to the arcuate nucleus, and in the median eminence (ME). Immunoreactive SP cells were also seen in the periventricular area of the dorsal tuberal region. A rich network of SP fibers was concentrated in the arcuate region, and the fiber stain was particularly dense in the external zone of the median eminence and in the external layer of the infundibular stalk. Also, substance P fibers were seen in the internal layer of the pituitary stalk and in the neural lobe of the pituitary gland. Outside the hypothalamus a dense network of IR-SP fibers was observed in the globus pallidus.  相似文献   

12.
In the diencephalons of the adult zebrafish brain, all catecholamine-containing neurons are dopaminergic. The organization and projection pattern of these neurons are studied using tyrosine hydroxylase immunocytochemistry. By their locations, 3 neuronal complexes and 17 cell groups are identified on the bases of their morphology, staining intensity, and projection pattern: 1) the preoptic complex (5 groups); 2) the posterior tuberal complex (4 groups); and 3) the hypothalamic complex (5 groups). In addition, three other groups can be distinguished: one group in the ventral thalamus; one in the pretectal area, and one found in the postoptic commissure and above the pituitary stalk in a few brains. Two dopaminergic pathways are defined: 1) the preoptico-hypophyseal tract runs in close association with the lateral forebrain bundle along the base of the brain between the preoptic area and the pituitary stalk, and neurons of the preoptic complex are major contributors to this pathway; additional fibers come from the large periventricular organ-associated neurons of the posterior tuberal; 2) the endohypothalamic tract links neurons of the hypothalamic complex and consists mainly of processes from hypothalamic neurons. Axons from neurons of the suprachiasmatic, periventricular organ-associated, and posterior tuberal nuclei also join this pathways after entering the hypothalamus. Several groups of neurons contact the cerebrospinal fluid. These appear to be primarily local neurons because none have processes that join the two major pathways. The preoptic area, dorsal thalamus, tuberal and hypothalamic areas, optic tectum, and pituitary are the major targets of diencephalic dopaminergic neurons. The dorsal telencephalon does not receive input from these cells. The large periventricular organ-accompanying neurons have descending projections beyond the diencephalon and isthmus. Some cells of this group terminate in the crista cerebellaris. A few axons also exit the medulla via a branch of the octavolateralis nerve.  相似文献   

13.
The heterogeneous hypothalamic paraventricular nucleus (PVN) is intimately involved in the regulation of several homeostatic functions. These regulations might, at least partly, be mediated via neuronal projections from the PVN to circumventricular organs outside the blood-brain barrier. To study the efferent projections of the medial and periventricular parvicellular subnuclei of the PVN with particular emphasis on the projections to the circumventricular organs, anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) was applied. Three major efferent pathways and one minor one coursed from the medial and periventricular parvicellular subnuclei to the circumventricular organs. The major fiber projections included a rostral, a lateral, and a dorsocaudal projection tract, whereas the minor projection coursed ventrally. Fibers of the rostral projection were followed to the preoptic area and along the fornix to the subfornical organ. Single fibers originating from this projection coursed further rostrally to the organum vasculosum laminae terminalis. The lateral projection equivalent to the hypothalamo-pituitary tract passed through the lateral hypothalamic area to the median eminence, and nerve terminals were observed throughout the rostrocaudal extent of this structure. A few fibers of this bundle continued into the infundibular stalk and some terminated in the posterior pituitary lobe. Few fibers of the lateral projection descended to caudal pontine levels, where they reached descending fibers of the dorsocaudal projection. The dorsocaudal projection was essentially restricted to midline structures. Along the midline, fibers were followed from the hypothalamus either dorsally through the thalamus to the dorsal part of the third ventricle or caudally alongside the ventricular wall to the mesencephalic periaqueductal grey. The density of fibers decreased along the caudal direction of the neuraxis. The dorsal part of this projection gave rise to terminals in the deep pineal gland and pineal stalk, whereas the caudal part of this projection sent terminating fibers into the area postrema. The minor ventrally directed projection could be followed through the periventricular region to the rostral part of the median eminence. The number of terminals in the circumventricular organs varied. Within the median eminence, a high density of afferents was observed in the entire rostrocaudal extent of the external zone, whereas a low density of fibers was seen in the internal zone. A medium density of afferents was observed in the organum vasculosum laminae terminalis, whereas a relative low density of nerve terminals was observed in the posterior pituitary, the deep pineal gland, the subfornical organ, and the area postrema.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The distribution of neuropeptide Y (NPY)- and the C-fianking peptide of NPY (CPON)-immunoreactive elements in the pineal gland of the macaque was investigated by means of immunohistochemistry. NPY- and CPON-immunoreactive nerve fibres were located in the precommissural nucleus, around the stria medullaris, and in the posterior commissure. NPY- and CPON-immunoreactive nerve fibres endowed with bulbous varicosities, were traced from the brain via the pineal stalk into the rostral part of the pineal gland. Furthermore, CPON-immunoreactive, and to a lesser extent NPY-immunoreactive nerve fibres, were distributed in the méninges, the choroid plexus and the vasculature related to the pineal organ. Nerve fibres located in the pineal capsule penetrated into the pineal parenchyma, where groups of individual fibres were found most often in an interlobular position. Occasionally, individual nerve fibres dispersed between the pinealocytes were observed. In contrast to the nerve fibres originating from the brain, those originating from the periphery were endowed with smaller immunoreactive nerve terminals. Another apparent difference was that the peripheral nerve fibres innervated only the caudal two-thirds of the gland, whereas the central fibres were found exclusively in the rostral part of the pineal organ. Rarely, positive neuronal-like cells were found in the pineal parenchyma. These results show the presence of a moderate number of NPY- and CPON-immunoreactive nerve fibres within the primate pineal organ and strongly indicate that the primate pineal gland is innervated by NPYergic nerve fibres originating from both a peripheral and a central source.  相似文献   

15.
Intrahypothalamic somatostatin-containing neurons were investigated immunohistochemically. In intact rats, immunoreactive cell bodies appeared in the rostral periventricular area, and immunoreactive beaded fibers were observed to terminate in the median eminence and to form delicate networks surrounding immunonegative cell bodies within the medial preoptic, suprachiasmatic, arcuate, ventromedial and premammillary nuclei. Intraventricular colchicine infusion resulted in the appearance of immunoreactive cell bodies in the arcuate, ventromedial and suprachiasmatic nuclei, and an increase in the number of cell bodies seen in the periventricular area. Complete deafferentation of the medial-basal hypothalamus excluding the rostral periventricular area caused the immunoreactive structures in the median eminence to disappear and enhanced the staining of periventricular cell bodies. In the arcuate and ventromedial nuclei, the immunoreactive fiber networks were left intact and the immunoreactive cell bodies were occasionally recognized. Horizontal knife cut between the arcuate nuclei and median eminence did not alter immunoreactivity in either region. Neonatal administration of MSG caused only the disappearance of arcuate nuclei. The results indicate that two kinds of somatostatin neuronal systems exist in rat hypothalamus: one is involved in the production of hormonal somatostatin and the other serves for the regulation of neuronal activities in restricted hypothalamic nuclei.  相似文献   

16.
The distribution of neuropeptide Y (NPY) in the cat hypothalamus and hypophysis was studied with the indirect immunofluorescence technique of Coons and co-workers (Coons, Leduc, and Connolly: J. Exp. Med. 102:49-60, 1955), which provided a detailed map of NPY-like immunoreactive neurons. The immunolabelling was detected in cell bodies, fibers, and terminallike structures widely distributed throughout the whole hypothalamus. A large population of medium-sized NPY-like immunoreactive cell bodies was localized in the area of arcuate nucleus. The number of immunoreactive cell bodies visualized was dramatically increased after intracerebroventricular injections of colchicine. Numerous immunolabelled cell bodies were also visible in the median eminence and scattered in the lateral hypothalamic area. Dense plexuses of NPY-immunoreactive fibers were observed in the arcuate nucleus, internal layer of median eminence, periventricular zone, and paraventricular nucleus. Other regions of hypothalamus displaying numerous NPY-like immunoreactive fibers included dorsal and ventrolateral hypothalamic areas. In contrast, certain hypothalamic areas were almost devoid of NPY-like immunoreactive fibers-namely, the mammillary bodies and suprachiasmatic nucleus. Finally, in neurohypophysis, bright immunofluorescent fibers were observed along the pituitary stalk and penetrating the neural lobe. These results suggest the widespread distribution of the NPY-containing neuronal systems in the cat hypothalamus and hypophysis.  相似文献   

17.
The distributions of fibers and terminals immunoreactive for somatostatin (SRIF), neuropeptide Y (NPY), substance P (SP) and cholecystokinin octapeptide (CCK), were studied in the diencephalon of cynomolgus monkeys. Immunoreactivity for all 4 peptides is found in extrinsic afferent fibers innervating the dorsal thalamus, ventral thalamus and epithalamus. The distributions of such fibers are more extensive than previously described and include many relay nuclei in their zones of terminations. SP fibers are particularly concentrated in the ventral posteromedial nucleus. All peptides are especially concentrated in fibers in the intralaminar and reticular nuclei. Afferent fibers immunoreactive for each of the 4 peptides approach the thalamus by two pathways. An anterior route is formed by the classical periventricular system ascending from the hypothalamus to the epithalamus. A posterior pathway ascends in the lateral midbrain tegmentum and provides innervation to posterior, intralaminar, and many relay nuclei, plus the ventral thalamus. A basal forebrain pathway, containing SRIF and NPY immunoreactive fibers, enters the thalamus in association with the ansa lenticularis and SP fibers also ascend from the substantia nigra.  相似文献   

18.
To accumulate phylogenetic information on the central histaminergic system, we investigated the histaminergic system in the brain of a teleost, the jack mackerel (Trachurus trachurus), using the indirect immunofluorescent method with antiserum against histamine. A small number of histamine-immunoreactive cell bodies were observed in the posterior hypothalamus around the posterior recess. Histamine-immunoreactive fibers innervated the telencephalon, diencephalon, tegmentum, and rostral part of the medulla oblongata. The immunoreactive fibers were very sparse or absent in the olfactory bulb, optic tectum, cerebellum, caudal part of the medulla oblongata, spinal cord, and hypophysis. Ascending fiber bundles were seen in the basal hypothalamus, supplying fiber collaterals to the telencephalon and diencephalon, whereas descending fibers were observed in the midline of the lower brainstem. These findings suggest that the central histaminergic system of the jack mackerel is homologous to those of mammals, reptiles, and amphibians, although poorly developed compared with them. The histamine-immunoreactive neuronal cell bodies found in the border area between the mesencephalon and rhombencephalon of the river lamprey were not detected in the brain of the jack mackerel.  相似文献   

19.
The peptidergic melanin-concentrating hormone (MCH) system was investigated by immunocytochemistry in several birds. MCH perikarya were found in the periventricular hypothalamic nucleus near the paraventricular organ and in the lateral hypothalamic areas. Immunoreactive fibers were very abundant in the ventral pallidum, in the nucleus of the stria terminalis, and in the septum/diagonal band complex, where immunoreactive pericellular nets were prominent. Many fibers innervated the whole preoptic area, the lateral hypothalamic area, and the infundibular region. Some fibers also reached the dorsal thalamus and the epithalamus. The median eminence contained only sparse projections, and the posterior pituitary was not labeled. Thus, in birds, a neurohormonal role for MCH is not likely. Immunoreactive fibers were observed in other regions, such as the intercollicular nucleus, stratum griseum periventriculare (mesencephalic tectum), central gray, nigral complex (especially the ventral tegmental area), reticular areas, and raphe nuclei. Although no physiological investigation concerning the role of MCH has been performed in birds, the distribution patterns of the immunoreactive perikarya and fibers observed suggest that MCH may be involved in functions similar to those described in rats. In particular, the projections to parts of the limbic system (ventropallidal ganglia, septal complex, hypothalamus, dorsal thalamus, and epithalamus) and to structures concerned with visceral and other sensory information integration suggest that MCH acts as a neuromodulator involved in a wide variety of physiological and behavioral adaptations (arousal) with regard to feeding, drinking, and reproduction.  相似文献   

20.
Development of histamine-immunoreactive neurons in the rat brain   总被引:1,自引:0,他引:1  
This study was undertaken to reveal the cellular stores of histamine in developing rat brain and to determine the stage of development during which the histamine-immunoreactive neurons can first be detected. Rats from embryonal day 12 to postnatal day 14 were studied. The brains were fixed in 4% 1-ethyl-3(3-dimethylaminopropyl)carbodiimide and standard immunofluorescence technique was used. The first histamine-immunoreactive neurons were seen on embryonic day 13 in the border of mesencephalon and metencephalon. On embryonic day 15 immunoreactive neurons were detected in ventral mesencephalon and rhombencephalon. In caudal, tuberal, and postmammillary caudal magnocellular nuclei histamine-immunoreactive neurons were first detected on embryonic day 20 while those in the hindbrain had disappeared. Histamine-immunoreactive nerve fibers were first detected on embryonic day 15 in rhombencephalon and mesencephalon and in some areas of diencephalon including the mammillary bodies and frontal cortex. On embryonic day 18 the number of immunoreactive nerve fibers in the hindbrain had decreased considerably, but the olfactory bulb, septal and hypothalamic area, and the cerebral cortex showed immunoreaction in fibers. The density of histamine-immunoreactive fiber networks increased until postnatal day 14 when an adultlike pattern of neurons and fibers had developed. Histamine-immunoreactive neurons are present in embryonal CNS and they develop extensive projections to various brain areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号