首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
 We examined the expression and activity of the Na+/H+ exchanger in the human choriocarcinoma BeWo cell line. When treated with methotrexate, these cells differentiated from cytotrophoblast-like cells to enlarged multinucleate syncytiotrophoblast-like cells. There was no change in the apparent K m for Na+ between undifferentiated and differentiated cells. However, differentiated cells could transport more than five times the proton flux of undifferentiated cells. There was no difference in the Hill coefficient between undifferentiated and differentiated cells. However, the maximal flux (J max) for undifferentiated cells was higher than that for differentiated cells. Inhibition of Na+/H+ exchange activity by an amiloride analog and Hoe694 revealed a sensitive and a resistant component in both differentiated and undifferentiated cells. Northern blot analysis and immunocytochemistry suggested that the sensitive component was due to the NHE1 isoform of the protein while the resistant component was due to the NHE3 isoform. The NHE1 isoform was localized to the brush border membrane of BeWo cells and Western blot analysis showed that the NHE1 protein was more abundant in brush border membranes from differentiated BeWo cells compared to undifferentiated cells. The results show that BeWo cells contain the NHE1 and NHE3 isoforms of the Na+/H+ exchanger and that the NHE1 isoform is primarily localized to the brush border membrane. Received: 25 July 1996 / Received after revision: 25 Novembber 1996 / Accepted: 3 December 1996  相似文献   

3.
4.
目的:检测人星形细胞瘤和正常脑组织中钠氢交换体1( NHE1)的表达差异及其与恶性程度的关系,探 讨星形细胞瘤增殖、生长的分子机制。方法:收集人星形细胞瘤标本51 例,低、高级别星形细胞瘤组织分别为 22 例、29 例,以肿瘤周围相对正常脑组织作为对照。用H-E 染色进行诊断和分级,免疫组织化学和免疫印迹检 测肿瘤组织与正常脑组织中NHE1表达变化。结果:NHE1主要分布在对照组神经元和少量星形胶质细胞胞膜上; 在肿瘤组织中,NHE1分布在低级别星形细胞瘤细胞膜上,并强烈表达于高级别星形细胞瘤的胞质和胞膜上。与 对照组相比较,在低级别和高级别星形细胞瘤组织中NHE1表达上调,其中,恶性程度较高的高级别肿瘤相对于 恶性程度低的低级别肿瘤,NHE1的表达更为强烈。结论:NHE1在人星形细胞瘤组织中表达增强,其强度变化 与肿瘤的恶性程度有关。  相似文献   

5.
 Inhibition of Na+/H+ exchange (NHE) subtypes has been investigated in a study of the mouse fibroblast L cell line (LAP1) transfected with human (h) NHE1, rabbit (rb) NHE2, rat (rt) or human (h) NHE3 as well as an opossum kidney cell line (OK) and porcine renal brush-border membrane vesicles (BBMV). S3226 {3-[2-(3-guanidino-2-methyl-3-oxo-propenyl)-5-methyl-phenyl]-N-isopropylidene-2-methyl-acrylamide dihydro-chloride} was the most potent and specific NHE3 inhibitor with an IC50 value of 0.02 μmol/l for the human isoform, whereas its IC50 value for hNHE1 and rbNHE2 was 3.6 and @80 μmol/l, respectively. In contrast, amiloride is a weak NHE3 inhibitor (IC50>100 μmol/l) with a higher affinity to hNHE1 and rbNHE2. Cariporide (4-isopropyl-3-methylsulphonyl-benzoyl-guanidine methane-sulphonate), which has an IC50 for NHE3 of approximately 1 mmol/l, is a highly selective NHE1 inhibitor (0.08 μmol/l). Therefore, S3226 is a novel tool with which to investigate the physiological and pathophysiological roles of NHE3 in animal models. Received: 14 May 1998 / Received after revision: 29 June 1998 / Accepted: 2 July 1998  相似文献   

6.
Bellizzi A, Mangia A, Malfettone A, Cardone R A, Simone G, Reshkin S J & Paradiso A
(2011) Histopathology 58, 1086–1095
Na + /H + exchanger regulatory factor 1 expression levels in blood and tissue predict breast tumour clinical behaviour Aims: Several studies have demonstrated that Na+/H+ exchanger regulatory factor 1 (NHERF1) protein, which is overexpressed and heterogeneously distributed in different stages of breast cancer, could be used as a tumour marker for prognosis in molecular detection strategies. We observed that tumour‐infiltrated lymphocytes in the tumour tissue display a high level of NHERF1 staining, in contrast to those present in the contiguous non‐involved tissue. Hypothesizing that cancer cells elicit a specific T‐cell response associated with the characteristics of the solid tumour, our aim was to evaluate NHERF1 in peripheral lymphocytes from healthy donors and breast cancer patients. Methods and results: NHERF1 levels were analysed in 55 breast cancer patients and 40 healthy donors, and these levels were compared with clinical pathological features. NHERF1 was overexpressed in circulatory peripheral lymphocytes from patients as compared with those from healthy subjects. Furthermore, in both circulatory lymphocytes and tissues, NHERF1 was positively associated with tumour grade, Nottingham Prognostic Index and oestrogen receptor, whereas there was no association with other clinical parameters in either tissue. Conclusions: We propose that NHERF1 measurements in circulatory lymphocytes of breast cancer patients may be a valid method for the prediction of breast cancer occurrence and prognosis, and may have value in the management of cancer patients.  相似文献   

7.
The liver has many significant functions, such as detoxification, the urea cycle, gluconeogenesis, and protein synthesis. Systemic diseases, hypoxia, infections, drugs, and toxins can easily affect the liver, which is extremely sensitive to injury. Systemic infection of severe acute respiratory syndrome coronavirus 2 can cause liver damage. The primary regulator of intracellular p H in the liver is the Na+/H+ exchanger(NHE). Physiologically, NHE protects hepatocytes from ap...  相似文献   

8.
The expression of the Na+/H+ exchanger isoform NHE1 was quantified in homogenates of various rat skeletal muscles by means of immunoblotting, and the effect of 3 weeks of treadmill training on NHE1 expression was determined in a red (oxidative) as well as a white (glycolytic)‐muscle preparation. The NHE1 antibodies recognized a glycosylated protein at 101–111 kDa. There was a positive correlation between the NHE1 expression in the muscle and percent type IIB fibres and percent type IID/X fibres, whereas the NHE1 expressions were negatively correlated to percent type I fibres and percent type I + IIA fibres. Thus the highest NHE1 expression was evident in the most glycolytic fibres. Treadmill training increased (P < 0.05) the NHE1 content by 29 and 36% in oxidative and glycolytic fibres, respectively, suggesting that training enhanced the NHE1 content of all muscle‐fibre types. Therefore training may improve the capacity for pH regulation in skeletal muscle.  相似文献   

9.
 We investigated how Ca2+-sensitive transient outward current, I to(Ca), is activated in rabbit ventricular myocytes in the presence of intracellular Na+ (Na+ i) using the whole-cell patch-clamp technique at 36°C. In cells dialysed with Na+-free solutions,the application of nicardipine (5 μM) to block L-type Ca2+ current (I Ca) completely inhibited I to(Ca). In cells dialysed with a [Na+]i≥5 mM, however, I to(Ca) could be observed after blockade of I Ca, indicating the activity of an I Ca-independent component. The amplitude of I Ca-independent I to(Ca) increased with voltage in a [Na+]i-dependent manner. The block of Ca2+ release from the sarcoplasmic reticulum by caffeine, ryanodine or thapsigargin blocked I Ca-independent I to(Ca). In Ca2+-free bath solution I to(Ca) was completely abolished. The application of 2 mM Ni2+ or the newly synthesized compound KBR7943, a selective blocker of the reverse mode of Na+/Ca2+ exchange, or perfusion with pipette solution containing XIP (10 μM), a selective blocker of the exchanger, blocked I Ca-independent I to(Ca). From these results we conclude that, in the presence of Na+ i, I to(Ca) can be activated via Ca2+-induced Ca2+ release triggered by Na+/Ca2+ exchange operating in the reverse mode after blockade of I Ca. Received: 20 January 1998 / Received after revision: 6 July 1998 / Accepted: 25 July 1998  相似文献   

10.
 A conventional patch-clamp technique was used to record the whole-cell current from the cloned canine cardiac Na+/Ca2+ exchanger NCX1 overexpressed in a fibroblast cell. Ca2+ was extracellularly applied to the Na+-loaded cell to activate the outward current by operating the reverse mode of NCX1. No measurable outward current was ever elicited from the nontransfected cell. Na+/Ca2+ exchange blocker 5 mM Ni2+ or 3 μM KB-R7943 that was applied extracellularly abolished the outward current. With 140 mM external Li+ (replacing Na+), the outward current was transient during the Ca2+ application. In contrast, with 140 mM external Na+, the outward current was maintained without any inactivation during the Ca2+ application. I–V relations predicted from the whole-cell clamp protocols used were obtained both before and during the Ca2+ application. The exchanger whole-cell currents are thus successfully detectable from NCX1 which is overexpressed in this stable transfectant system. Received: 28 February 1997 / Accepted: 9 April 1997  相似文献   

11.
 The intracellular pH (pHi) of epithelial cells from the endolymphatic sac (ES) of the guinea-pig was measured microfluorometrically with the pH-sensitive fluorescent dye, 2′,7′-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) to examine the presence of a Na+-H+ exchanger (NHE) in the ES epithelial cells. pHi recovery from acid loading with an NH4 +-prepulse in a nominally HCO3-free solution was dependent on extracellular Na+ ([Na+]o) and was inhibited by amiloride and its analogue ethylisopropylamiloride (EIPA), suggesting that a decreased pHi induced by an acute acid load may be equilibrated by a NHE. In the steady-state, amiloride had no effect on pHi, indicating that the NHE activity is low at the resting pHi. However, the intracellular acidification induced by the removal of [Na+]o was inhibited by the simultaneous application of amiloride. H+-efflux rate (J H, mean activity of NHE), which was calculated as the product of the recovery rate (dpHi/dt) from the acid loading and the intrinsic buffering capacity (βi) at the corresponding pHi, was decreased as pHi was increased. The concentration/response curve for the inhibition of initial J H by EIPA revealed an apparent 50% inhibitory constant (K i ) of 0.85 μM. Kinetic analysis of initial J H as a function of [Na+]o revealed a Michaelis-Menten constant (K m) of 24.14 mM for Na+-dependent H+ efflux. The results indicate that NHE in the ES epithelium belongs to an amiloride-sensitive subtype. Received: 5 August 1997 / Received after revision and accepted: 26 February 1998  相似文献   

12.
13.
 Our understanding of the control and effects of intracellular [Na+] ([Na+]i) in intact smooth muscle is limited by the lack of data concerning [Na+]i. The initial aim of this work was therefore to investigate the suitability of using the Na+-sensitive fluorophore SBFI in intact smooth muscle. We find this to be a good method for measuring [Na+]i in ureteric smooth muscle. Resting [Na+]i was found to be around 10 mM and rose to 25 mM when the Na+-K+-ATPase was inhibited by ouabain. This relatively low [Na+]i in the absence of Na+-K+-ATPase suggests that other cellular processes, such as Na+-Ca2+ exchange, play a role in maintaining [Na+]i under these conditions. Simultaneous measurements of [Na+]i or [Ca2+] i and force showed that Na+-Ca2+ exchange can play a functional role in ureteric smooth muscle. We found that the greater the driving force for Na+ exit and hence Ca2+ entry, the larger the contraction. In addition the Na+-Ca2+ exchanger activity under these conditions was found to be pH sensitive: acidification reduced the contraction and concomitant changes in [Ca2+] and [Na+]i. We conclude that SBFI is a useful method for monitoring [Na] in smooth muscle and that Na+-Ca2+ exchange may play a functional role in the ureter. Received: 26 August 1997 / Received after revision: 27 October 1997 / Accepted: 28 October 1997  相似文献   

14.
The Na+/Ca2+ exchanger (NCX) is a membrane transporter that can switch Na+ and Ca2+ in either direction to maintain the homeostasis of intracellular Ca2+. Three isoforms (NCX1, NCX2, and NCX3) have been characterized in excitable cells, e.g. neurons and muscle cells. We examined the expression of these NCX isoforms in primary human lung macrophages (HLM) and blood monocytes. NCX1 and NCX3, but not NCX2, are expressed in HLM and monocytes at both mRNA and protein levels. Na+‐free medium induced a significant increase in intracellular calcium concentration ([Ca2+]i) in both cell types. This response was completely abolished by the NCX inhibitor 5‐(N‐4‐chlorobenzyl)‐20,40‐dimethylbenzamil (CB‐DMB). Moreover, inhibition of NCX activity during Ca2+‐signaling induced by histamine caused a delay in restoring baseline [Ca2+]i. Na+‐free medium induced TNF‐α expression and release in HLM comparable to that caused by LPS. TNF‐α release induced by Na+‐free medium was blocked by CB‐DMB and greatly reduced by RNAi‐mediated knockdown of NCX1. These results indicate that human macrophages and monocytes express NCX1 and NCX3 that operate in a bidirectional manner to restore [Ca2+]i, to generate Ca2+‐signals, and to induce TNF‐α production. Therefore, NCX may contribute to regulate Ca2+ homeostasis and proinflammatory functions in human macrophages and monocytes.  相似文献   

15.
 Intracellular free calcium concentration ([Ca2+]i) and intracellular pH (pHi) were monitored in Ehrlich ascites tumor cells using Fura-2 or 2′,7′,-bis-(2-carboxyethyl)-5,6-carboxyfluorescein (BCECF), or both probes in combination. An increase in [Ca2+]i induced by thrombin or bradykinin, agonists known to elicit transient cell shrinkage in these cells, evoked a transient intracellular acidification, followed by an alkalinization. The latter was due to activation of a Na+/H+ exchanger and was inhibited under conditions preventing agonist-induced cell shrinkage without preventing the increase in [Ca2+]i. In contrast, a smaller, slower increase in [Ca2+]i elicited by thapsigargin did not cause cell shrinkage, and did not activate the Na+/H+ exchanger. Exposure to hypertonic solution was not associated with an increase in [Ca2+]i, but elicited an intracellular alkalinization similar to that induced by thrombin or bradykinin, via activation of the Na+/H+ exchanger. Thus, activation of the exchanger by the Ca2+-mobilizing agonists is suggested to be secondary to the cell shrinkage induced by these compounds. NH4Cl-induced intracellular alkalinization resulted in an increase in [Ca2+]i, apparently via stimulation of Ca2+ influx, whereas shrinkage-induced intracellular alkalinization did not stimulate Ca2+ influx. Thus, cell shrinkage appears to inhibit the Ca2+ influx otherwise resulting from alkalosis. In agreement with that notion, thapsigargin-induced Ca2+ influx was inhibited by cell shrinkage. Received: 6 January 1998 / Received after revision: 10 March 1998 / Accepted: 11 March 1998  相似文献   

16.
 The inhibitors of the Na+/H+-exchange (NHE1) system Hoe 694 and Hoe 642 possess cardioprotective effects in ischaemia/reperfusion. It is assumed that these effects are due to the prevention of intracellular sodium (Nai) and calcium (Cai) overload. The purpose of the present study was to investigate the effects of Hoe 642 on intracellular pH, Na+ and Ca2+ (pHi, Nai and Cai) in isolated rat ventricular myocytes under anoxic conditions or in cells in which oxidative phosphorylation had been inhibited by 1.5 mmol/l cyanide. In cells which were dually loaded with the fluorescent dyes 2,7-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and Fura-2, anoxia caused acidification of the cells (from pHi 7.2 to pHi 6.8) and an increase in Cai from about 50 nmol/l to about 1 μmol/l. The decrease in pHi began before the cells underwent hypoxic (rigor) contracture, whereas Cai only began to rise after rigor shortening had taken place. After reoxygenation, pHi returned to its control value and Cai oscillated and then declined to resting levels. It was during this phase that the cells rounded up (hypercontracture). When 10 μmol/l Hoe 642 was present from the beginning of the experiment, pHi and Cai were not significantly different from control experiments. At reoxygenation, pHi did not recover, but Cai oscillated and returned to its resting level. To monitor Nai, the cells were loaded with the dye SBFI. After adding 1.5 mmol/l cyanide or 100 μmol/l ouabain, Nai increased from the initial 8 mmol/l to approximately 16 mmol/l. Hoe 642 or Hoe 694 (10 μmol/l) did not prevent the increase in Nai. In contrast, the blocker of the persistent Na+ current R56865 (10 μmol/l) attenuated the CN-induced rise in Nai. The substance ethylisopropylamiloride was not used because it augmented considerably the intensity of the 380 nm wavelength of the cell’s autofluorescence. In conclusion, the specific NHE1 inhibitor Hoe 642 did not attenuate anoxia-induced Cai overload, nor CN-induced Nai and Cai overload. Hoe 642 prevented the recovery of pHi from anoxic acidification. This low pHi maintained after reoxygenation may be cardioprotective. Other possible mechanisms of NHE1 inhibitors, such as prevention of Ca2+ overload in mitochondria, cannot be ruled out. The increase in Nai during anoxia is possibly due to an influx of Na+ via persistent Na+ channels. Received: 1 March 1996 / Received after revision: 30 April 1996 / Accepted: 12 July 1996  相似文献   

17.
 Vanadium salts mimic most metabolic effects of insulin in vitro. We report here that vanadyl sulfate (VOSO4) and sodium vanadate (NaVO3) stimulate net K+ uptake in isolated perfused rat liver. Stimulation was evident at low concentrations of vanadyl ions (range 1–20 μM) and occurred within minutes following the addition of VOSO4. By comparison with VOSO4, insulin had less of a stimulatory effect on K+ uptake. Ouabain prevented the activating effect of VOSO4 on K+ uptake. Following a VOSO4 challenge, measured intracellular Na+ concentration ([Na+]i) fell (control, 17.1 ± 1.2; VOSO4-treated, 13.0 ± 1.1 mmol·g–1 wet weight, P = 0.027). The results indicate that active K+ uptake via the Na+/K+-ATPase was stimulated by vanadyl ions. An indirect mechanism due to changes in [Na+]i can be excluded. The tyrosine kinase inhibitor genistein was found to inhibit stimulation of K+ by vanadyl and vanadate ions which are known inhibitors of phosphotyrosine phosphatases. We conclude that stimulation of active K+ influx involves a tyrosine kinase. Possible mechanisms include phosphorylation at tyrosine residues and direct activation of the Na+/K+-ATPase, or phosphorylation of other proteins that regulate the activity or number of pumps in the cells. Received: 8 July 1997 / Received after revision: 3 November 1997 / Accepted: 11 November 1997  相似文献   

18.
The Na+/H+ exchangers (NHEs) are a family of antiporters involved in the maintenance of neural steady-state intracellular pH. The NHE3 seems to be the predominant subtype in central chemosensitive cells. We aimed to analyze the effect of a selective NHE3 inhibition on the respiratory pattern in spontaneously breathing rats with intact vagi. Rats were intravenously infused for 10 min with the selective NHE3 inhibitor AVE1599 (Aventis Pharma Deustchland, 0.5 and 2 mg/kg) or with phosphate buffer. Whole-body plethysmography was used to monitor breathing pattern before, during, and up to 30 min after the drug infusion. Immunohistochemistry for the c-Fos protein was performed in the animal brains and c-Fos-positive cells were counted along the brainstem. Selective NHE3 inhibition induced a significant increase in the respiratory frequency and in the number of c-Fos immunopositive cells in the lateral parabrachial nucleus, the pre-Bötzinger complex and a rostral extension of the retrotrapezoid nucleus/parapyramidal region (p < 0.05, ANOVA). We conclude that systemic administration of AVE1599 increases respiratory frequency and activates ponto-medullary areas implicated in the central control of breathing and chemoreception.  相似文献   

19.
 It has been suggested that macula densa cells may be exposed to hyperosmotic stress. Since chronic exposure to hypertonic stress causes the amount of intracellular organic osmolytes to increase, the expression of transporters and enzymes that participate in the intracellular accumulation of organic osmolytes was examined using non-radioactive in situ hybridization in the macula densa region of control rats and furosemide-treated animals. Both the sodium- and chloride-dependent betaine transporter (BGT) and sodium-dependent myo-inositol transporter (SMIT) were expressed preferentially in macula densa cells and for both mRNAs the signal intensity was visibly reduced by furosemide. The enzymes aldose reductase (which mediates the conversion of glucose to sorbitol) and sorbitol dehydrogenase (which converts sorbitol into fructose) were expressed not only in macula densa cells but also in the surrounding tubular cells, and the expression was insensitive to furosemide. Thus it remains unclear whether the expression of BGT and SMIT is related to a putative hypertonic juxtaglomerular region. Received: 27 April 1998 / Accepted: 8 July 1998  相似文献   

20.
 To investigate the Mg2+ regulation in neuropile glial (NG) cells and pressure (P) neurones of the leech Hirudo medicinalis the intracellular free Mg2+ ([Mg2+]i) and Na+ ([Na+]i) concentrations, as well as the membrane potential (E m), were measured using Mg2+- and Na+-selective microelectrodes. The mean steady-state values of [Mg2+]i were found to be 0.91 mM (mean E m=–63.6 mV) in NG cells and 0.20 mM (mean E m=–40.6 mV) in P neurones with a [Na+]i of 6.92 mM (mean E m=–61.6 mV) and 7.76 mM (mean E m=–38.5 mV), respectively. When the extracellular Mg2+ concentration ([Mg2+]o) was elevated, [Mg2+]i in P neurones increased within 5–20 min whereas in NG cells a [Mg2+]i increase occurred only after long-term exposure (6 h). After [Mg2+]o was reduced back to 1 mM, a reduction of the extracellular Na+ concentration ([Na+]o) decreased the inwardly directed Na+ gradient and reduced the rate of Mg2+ extrusion considerably in both NG cells and P neurones. In P neurones Mg2+ extrusion was reduced to 15.4% in Na+-free solutions and to 6.0% in the presence of 2 mM amiloride. Mg2+ extrusion from NG cells was reduced to 6.2% in Na+-free solutions. The results suggest that the major [Mg2+]i-regulating mechanism in both cell types is Na+/ Mg2+ antiport. In P neurones a second, Na+-independent Mg2+ extrusion system may exist. Received: 11 August 1998 / Received after revision: 14 October 1998 / Accepted: 15 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号