首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Plasmodium parasites are exposed to higher fluxes of reactive oxygen species and need high activities of intracellular antioxidant systems providing a steady glutathione flux. As a future generation of dual drugs, 18 naphthoquinones and phenols (or their reduced forms) containing three different linkers between the 4-aminoquinoline core and the redox active component were synthesized. Their antimalarial effects have been characterized in parasite assays using chloroquine-sensitive and -resistant strains of Plasmodium, alone or in drug combination, and in the Plasmodium berghei rodent model. In particular, two tertiary amides 34 and 36 showed potent antimalarial activity in the low nanomolar range against CQ-resistant parasites. The ability to compete both for (Fe (III))protoporphyrin and for chloroquine transporter was determined. The data are consistent with the presence of a carrier for uptake of the short chloroquine analogue 2 but not for the potent antimalarial amide 34, suggesting a mode of action distinct from chloroquine mechanism.  相似文献   

2.
2,4-Dihydroxybenzylamine: a specific inhibitor of glutathione reductase   总被引:1,自引:0,他引:1  
The high intracellular level of glutathione is maintained, in part, by the important redox enzyme glutathione reductase. This report describes the properties of a new inhibitor of glutathione reductase, 2,4-dihydroxybenzylamine (2,4-DHBA). The inhibition of glutathione reductase by both 2,4-DHBA and 1,3-bischloroethyl-nitrosourea (BCNU) requires the presence of the co-factor NADPH. However, the inhibition caused by 2,4-DHBA was found to occur much more rapidly. Inhibition of glutathione reductase was time dependent, involved a stoichiometric titration of the enzyme, and was not reversed by gel-filtration indicating an irreversible inhibitory mechanism. The drug interacted at two inhibitory sites as determined by a Hill-type plot analysis. 2,4-DHBA was shown to compete with the substrate oxidized glutathione, and the reducing agents, glutathione and dithioerythritol, were found to protect the enzyme from its inhibitory effect. These results suggest that the inhibition may entail a free radical effect at or near the active site. A structure-activity analysis with other meta-dihydroxybenzene derivatives revealed that the inhibition of glutathione reductase was unique to 2,4-dihydroxybenzylamine.  相似文献   

3.
Plasmodium falciparum glutathione reductases involved in redox homeostasis pathway of parasite are found to be the most emerging target in the treatment of malaria. In the present study, a 3D-QSAR pharmacophore model was developed, based on twenty-three 1,4-naphthoquinone derivatives reported previously with marked inhibition against glutathione reductase (GR). The pharmacophore model development and 3D-QSAR analysis was carried out by PHASE program. The hypothesis with best survival score was found to be AAHRR. Thus the resulting pharmacophore model contained two aromatic rings, a hydrophobic and two hydrogen-bond acceptor sites. A statistically reliable model with good predictive power (r 2 = 0.8155, q 2 = 0.7054, average r m 2  = 0.745) was obtained. Using these pharmacophore features, we screened a library of 214,029 compounds (Asinex Database) to find potential ligands that could inhibit the PFGR protein. The compounds then subjected to a number of filters of virtual screening workflow of Schrödinger software. Here, we report the best seven compounds based on their docking scores and mode of interactions. The aromatic ring, hydrophobic group and hydrogen-bond acceptor effects contribute to the inhibitory activity. Binding interaction of the inhibitors can further provide the information regarding the role of different features in ligands responsible for linkage with receptor. Both compound 1 and screened hit with highest docking score (lead-1) found to interact with ASN 278, LYS 32, GLU 31, GLU 277, ASP 275, THR 38, LYS 151 within same binding pocket of PFGR enzyme. The backbone structural scaffolds of these seven lead compounds obtained after screening could serve as building blocks when designing drug-like molecules for inhibition of P. falciparum GR.  相似文献   

4.
Enoyl acyl carrier protein (ACP) reductase, one of the enzymes of the type II fatty acid biosynthesis pathway, has been established as a promising target for the development of new drugs for malaria. Here we present the discovery of a rhodanine (2-thioxothiazolidin-4-one) class of compounds as inhibitors of this enzyme using a combined approach of rational selection of compounds for screening, analogue search, docking studies, and lead optimization. The most potent inhibitor exhibits an IC(50) of 35.6 nM against Plasmodium falciparum enoyl ACP reductase (PfENR) and inhibits growth of the parasite in red blood cell cultures at an IC(50) value of 750 nM. Many more compounds of this class were found to inhibit PfENR at low nanomolar to low micromolar concentrations, expanding the scope for developing new antimalarial drugs. The structure-activity relationship of these rhodanine compounds is discussed.  相似文献   

5.
Malarial parasites are believed to be more susceptible to oxidative stress than their hosts. BCNU(1,3-bis(2-chloroethyl)-1-nitrosourea) and HeCNU(1-(2-chloroethyl)-3-(2-hydroxythyl)-1-nitrosourea), inhibitors of the antioxidant enzyme glutathione reductase, were found to prevent the growth of Plasmodium falciparum in all intraerythrocytic stages. When exposing infected red blood cells to 38 microM BCNU or 62 microM HeCNU for one life cycle of synchronously growing parasites, the parasitemia decreased by 90%. During the formation of new ring forms, the parasites are even more susceptible to these drugs. The treatment with BCNU or HeCNU produced a rapid depletion of GSH in the parasites and their host cells; in addition, protection against lipid peroxidation was impaired in these cells. Possible mechanisms for the antimalarial action of the inhibitors are discussed. Our results suggest that erythrocyte glutathione reductase, an enzyme of known structure, might be considered as a target for the design of antimalarial drugs.  相似文献   

6.
Novel analogues of pyrimethamine (Pyr) and cycloguanil (Cyc) have been synthesized and tested as inhibitors of Plasmodium falciparum dihydrofolate reductase carrying triple (N51I+C59R+S108N, C59R+S108N+I164L) and quadruple (N51I+C59R+S108N+I164L) mutations responsible for antifolate resistance. The inhibitors were designed to avoid steric clash of the p-Cl group of the inhibitors with the side chain of Asn108, augmented by additional mutations of the resistant mutants. Cycloguanil derivatives were also designed to avoid steric clash with the side chain of Val16 in the A16V+S108T mutant. Many compounds have inhibition constants (K(i)) at the low nanomolar level against the mutant enzymes and a number have good antimalarial activities against resistant P. falciparum parasites bearing multiple mutations in the S108N series and A16V+S108T mutant enzymes. These compounds in the Pyr and Cyc series exhibit low and moderate cytotoxicity to nontumor (Vero) and tumor (KB, BC) cell lines. Some of these inhibitors are therefore potential candidates for further development as antimalarials.  相似文献   

7.
Despite the successful reduction in the malaria health burden in recent years, it continues to remain a significant global health problem mainly because of the emerging resistance to first-line treatments. Also because of the disruption in malaria prevention services during the COVID-19 pandemic, there was an increase in malaria cases in 2021 compared to 2020. Hence, the present study outlined the in silico study, synthesis, and antimalarial evaluation of 1,3,5-triazine hybrids conjugated with PABA-glutamic acid. Docking study revealed higher binding energy compared to the originally bound ligand WR99210, predominant hydrogen bond interaction, and involvement of key amino acid residues, like Arg122, Ser120, and Arg59. Fourteen compounds were synthesized using traditional and microwave synthesis. The in vitro antimalarial evaluation against chloroquine-sensitive 3D7 and resistant Dd2 strain of Plasmodium falciparum showed a high to moderate activity range. Compounds C1 and B4 showed high efficacy against both strains and a further study revealed that compound C1 is non-cytotoxic against the HEK293 cell line with no acute oral toxicity. In vivo, study was performed for the most potent antimalarial compound C1 to optimize the research work and found to be effectively suppressing parasitemia of Plasmodium berghei strain in the Swiss albino mice model.  相似文献   

8.
Plasmodium falciparum dihydrofolate reductase (PfDHFR) is an important target for antimalarial chemotherapy. Unfortunately, the emergence of resistant parasites has significantly reduced the efficiency of classical antifolate drugs such as cycloguanil and pyrimethamine. In this study, an approach toward molecular docking of the structures contained in the Available Chemicals Directory (ACD) database to search for novel inhibitors of PfDHFR is described. Instead of docking the whole ACD database, specific 3D pharmacophores were used to reduce the number of molecules in the database by excluding a priori molecules lacking essential requisites for the interaction with the enzyme and potentially unable to bind to resistant mutant PfDHFRs. The molecules in the resulting "focused" database were then evaluated with regard to their fit into the PfDHFR active site. Twelve new compounds whose structures are completely unrelated to known antifolates were identified and found to inhibit, at the micromolar level, the wild-type and resistant mutant PfDHFRs harboring A16V, S108T, A16V + S108T, C59R + S108N + I164L, and N51I + C59R + S108N + I164L mutations. Depending on the functional groups interacting with key active site residues of the enzyme, these inhibitors were classified as N-hydroxyamidine, hydrazine, urea, and thiourea derivatives. The structures of the complexes of the most active inhibitors, as refined by molecular mechanics and molecular dynamics, provided insight into how these inhibitors bind to the enzyme and suggested prospects for these novel derivatives as potential leads for antimalarial development.  相似文献   

9.
A structure-activity study of fourteen chemically related flavonoids was conducted to evaluate their abilities to inhibit glutathione reductase (GR). By comparing the I50 values of flavonoids from different classes possessing an identical hydroxyl configuration, we determined the following order of potency for inhibition of GR: anthocyanidin > dihydroflavonol = chalcone > flavonol > catechin. Enzyme inhibition by delphinidin chloride and myricetin was partially prevented in a N2 atmosphere which implicates a role for oxygen in the mechanism of inhibition. To determine the role of oxygen species in enzyme inhibition, GR was preincubated with either mannitol, diethylenetriaminepenta-acetic acid (DETAPAC), superoxide dismutase (SOD), catalase (CAT), or SOD and CAT prior to assays for enzyme inhibition by flavonoids. Enzyme inhibition by delphinidin chloride and myricetin was suppressed by the addition of SOD, suggesting that superoxide (O2-.) is involved. However, inhibition by quercetin and morin was not sensitive to antioxidants. To further investigate the role of O2-. in GR inhibition, a superoxide generating system was utilized in the presence and absence of flavonoid. The O2-. generating system failed to inhibit GR in the absence of flavonoid but enhanced the inhibition by myricetin, indicating that the O2-. did not directly inhibit GR but reacted directly with certain flavonoids to form a reactive intermediate which, in turn, inhibited GR. These findings suggest that the mechanism of inhibition of GR by flavonoids is complex and may have oxygen-dependent and oxygen-independent components.  相似文献   

10.
Nitric oxide (NO) is an endogenous, diffusible, transcellular messenger shown to affect regulatory and signaling pathways with impact on cell survival. Exposure to NO can impart direct post-translational modifications on target proteins such as nitration and/or nitrosylation. As an alternative, after interaction with oxygen, superoxide, glutathione, or certain metals, NO can lead to S-glutathionylation, a post-translational modification potentially critical to signaling pathways. A novel glutathione S-transferase pi (GSTpi)-activated pro-drug, O(2)-[2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl]1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate (PABA/NO), liberates NO and elicits toxicity in vitro and in vivo. We now show that PABA/NO induces nitrosative stress, resulting in undetectable nitrosylation, limited nitration, and high levels of S-glutathionylation. After a single pharmacologically relevant dose of PABA/NO, S-glutathionylation occurs rapidly (<5 min) and is sustained for approximately 7 h, implying a half-life for the deglutathionylation process of approximately 3 h. Two-dimensional SDS-polyacrylamide gel electrophoresis and immunoblotting with a monoclonal antibody to S-glutathionylated residues indicated that numerous proteins were S-glutathionylated. Subsequent matrix-assisted laser desorption ionization/time of flight analysis identified 10 proteins, including beta-lactate dehydrogenase, Rho GDP dissociation inhibitor beta, ATP synthase, elongation factor 2, protein disulfide isomerase, nucleophosmin-1, chaperonin, actin, protein tyrosine phosphatase 1B (PTP1B), and glucosidase II. In addition, we showed that sustained S-glutathionylation was temporally concurrent with drug-induced activation of the stress kinases, known to be linked with cell death pathways. This is consistent with the fact that PABA/NO induces S-glutathionylation and inactivation of PTP1B, one phosphatase that can participate in deactivation of kinases. These effects were consistent with the presence of intracellular PABA/NO or metabolites, because cells overexpressing MRP1 were less sensitive to the drug and had reduced levels of S-glutathionylated proteins.  相似文献   

11.
A 3D pharmacophore model able to quantitatively predict inhibition constants was derived for a series of inhibitors of Plasmodium falciparum dihydrofolate reductase (PfDHFR), a validated target for antimalarial therapy. The data set included 52 inhibitors, with 23 of these comprising the training set and 29 an external test set. The activity range, expressed as Ki, of the training set molecules was from 0.3 to 11 300 nM. The 3D pharmacophore, generated with the HypoGen module of Catalyst 4.7, consisted of two hydrogen bond donors, one positive ionizable feature, one hydrophobic aliphatic feature, and one hydrophobic aromatic feature and provided a 3D-QSAR model with a correlation coefficient of 0.954. Importantly, the type and spatial location of the chemical features encoded in the pharmacophore were in full agreement with the key binding interactions of PfDHFR inhibitors as previously established by molecular modeling and crystallography of enzyme-inhibitor complexes. The model was validated using several techniques, namely, Fisher's randomization test using CatScramble, leave-one-out test to ensure that the QSAR model is not strictly dependent on one particular compound of the training set, and activity prediction in an external test set of compounds. In addition, the pharmacophore was able to correctly classify as active and inactive the dihydrofolate reductase and aldose reductase inhibitors extracted from the MDDR database, respectively. This test was performed in order to challenge the predictive ability of the pharmacophore with two classes of inhibitors that target very different binding sites. Molecular diversity of the data sets was finally estimated by means of the Tanimoto approach. The results obtained provide confidence for the utility of the pharmacophore in the virtual screening of libraries and databases of compounds to discover novel PfDHFR inhibitors.  相似文献   

12.
Glutathione S-sulfonate (GSSO3H) is a reaction product of glutathione disulfide (GSSG) and sulfite, the hydrated form of sulfur dioxide. In the present study, GSSO3H was found to be a potent competitive inhibitor of the glutathione S-transferases (GST) in the rat liver (Ki = 14 microM) and lung (Ki = 9 microM), and in human lung tumor-derived A549 cells (Ki = 4 microM). GSSO3H was also reduced by a cytosolic enzyme in the rat liver (Km = 313 microM) and lung (Km = 200 microM), and human lung A549 cells (Km = 400 microM). These results suggest that SO2 may affect the detoxification of xenobiotic compounds by inhibiting, via formation of GSSO3H, the enzymatic conjugation of glutathione (GSH) and reactive electrophiles. Although GSSO3H can be enzymatically degraded, the high substrate Km value suggests that this compound may not be readily reduced at low concentrations.  相似文献   

13.
OBJECTIVE: To summarize the relevant pharmacologic, clinical, and safety data regarding rosuvastatin (Crestor--AstraZeneca), the most recently marketed 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor approved for the treatment of dyslipidemia. DATA SOURCES: Medline search from years 1990 thru 2005 using the keywords HMG-CoA reductase inhibitor, hypercholesterolemia, lipid-lowering agents, rosuvastatin, and statins. Study Selection: Review articles, clinical trials, case reports, abstracts, and data on file from the manufacturer concerning rosuvastatin and other statins were considered for inclusion. DATA EXTRACTION: English-language studies were selected for inclusion. DATA SYNTHESIS: Multiple clinical trials have revealed that use of rosuvastatin is associated with greater reductions in low-density lipoprotein cholesterol (LDL-C) across the dose range of 5-40 mg/day than any other currently available statins. Rosuvastatin also significantly increases high-density lipoprotein cholesterol and reduces triglycerides significantly as well. In clinical trials, rosuvastatin was well tolerated, with a low incidence of adverse events and a safety profile similar to that of the other marketed statins. At present, no large-scale primary or secondary prevention clinical trials document either long-term safety of rosuvastatin or its effectiveness in preventing coronary events. CONCLUSION: Compared with other statins, rosuvastatin offers the greatest lipid-lowering efficacy at the lowest dose in treating patients with dyslipidemia and with a similar safety profile over the short-term. Rosuvastatin may allow more patients to achieve their LDL-C goals than any other statin and at a lower dose than other agents.  相似文献   

14.
The Ala16Val+Ser108Thr (A16V+S108T) mutant of the Plasmodium falciparum dihydrofolate reductase (DHFR) is a key mutant responsible for cycloguanil-resistant malaria due to steric interaction between Val-16 and one of the C-2 methyl groups of cycloguanil. 4,6-Diamino-1,2-dihydrotriazines have been prepared, in which both methyl groups of cycloguanil are replaced by H or by H and an alkyl or phenyl group, and their inhibition constants against wild-type and mutant DHFR determined. The S108T mutation is considered to decrease cycloguanil binding further through the effect on the orientation of the p-chlorophenyl group. By moving the p-chloro-substituent to the m-position in the chlorophenyl group, the activity against the A16V+S108T mutant enzyme is improved, and this effect is reinforced by the p-chloro substituent in the 3, 4-dichlorophenyl group. A lead compound has been found with inhibitory activity similar to that of cycloguanil against the wild-type DHFR and about 120-fold more effective than cycloguanil against the A16V+S108T mutant enzyme. The activity of this compound against P. falciparum clone (T9/94 RC17) which harbors the A16V+S108T DHFR is about 85-fold greater than cycloguanil.  相似文献   

15.
16.
A strain of mice (Gr1a1Neu) that exhibited tissue glutathione reductase (GR) activities that were substantially lower (less than 10% in liver) than the corresponding activities in control mice has been reported. The present report describes characterization of the mutation(s) in the GR gene of these mice. RT-PCR of mRNA from the Neu mice indicated a substantial deletion in the normal GR coding sequence. Southern blots revealed that the deletion involved a region spanning from intron 1 through intron 5. The exact breakpoints of the deletion were characterized by PCR and sequencing through the region encompassing the deletion. The deletion involves nucleotides 10840 through 23627 of the genomic GR gene and functionally deletes exons 2 through 5. In addition, the deletion produces a frame shift in exon 6 and introduces a stop codon in exon 7 that would prevent translation of the remainder of the protein. Consequently, the Neu mice are incapable of producing a functional GR protein and appear to be genetic knockouts for GR. The Neu mice offer live animal models with which to test hypotheses regarding oxidant mechanisms of tissue injury in vivo.  相似文献   

17.
Diphenylmethyleneaminooxycarboxylic acids were found to represent novel type inhibitors of the enzyme aldose reductase. Ester derivatives of the most active compound (3c) (IC(50)=33 microM) were prepared as potential prodrugs and the rate of degradation was studied by treatment with buffers, plasma, and various hydrolytic enzymes. Whereas all compounds were not hydrolysed at physiological pH, incubation in the presence of enzyme led to hydrolysis. The rate of enzymatic degradation, however, depended on the nature of the ester function. Whereas the isopropyl ester (4) turned out to be the most stable compound, the ethyl ester (2c) could be cleaved in the presence of esterase and lipase, respectively. The benzylic and aromatic esters were found to be hydrolysed rapidly in the presence of lipase (benzyl ester, 7), or in plasma, by cholinesterase and esterase (phenyl ester, 6), respectively.  相似文献   

18.
The lactol derivative of a lactone cyclooxygenase-2 inhibitor (DFU) was evaluated in vivo and in vitro for its potential suitability as a prodrug. DFU-lactol was found to be 10 to 20 times more soluble than DFU in a variety of aqueous vehicles. After administration of DFU-lactol at 20 mg kg-1 p.o. in rats, a Cmax of 7.5 microM DFU was reached in the plasma. After oral administration, the ED50s of DFU-lactol in the carrageenan-induced paw edema and lipopolysaccharide-induced pyresis assays in rats are comparable with the ED50s observed when dosing with DFU. Incubations of DFU-lactol with rat and human hepatocytes demonstrated that the oxidation of DFU-lactol can be mediated by liver enzymes and that a competing pathway is direct glucuronidation of the DFU-lactol hydroxyl group. Assays with subcellular fractions from rat liver indicated that most of the oxidation of DFU-lactol occurs in the cytosolic fraction and requires NAD(P)+. Human liver cytosol can also support the oxidation of DFU-lactol to DFU when NAD(P)+ is added to the incubations. Fractionation of human liver cytosolic proteins showed that at least three enzymes are capable of efficiently effecting the oxidation of DFU-lactol to DFU. Incubations with commercially available dehydrogenases suggest that alcohol and hydroxysteroid dehydrogenases are involved in this oxidative process. These data together suggest that lactols may represent useful prodrugs for lactone-containing drugs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号