首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Glycogen storage disease type 0 is an autosomal recessive disease presenting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting and postprandial hyperglycemia and hyperlactatemia. Sixteen different mutations have been identified to date in the gene which encodes hepatic glycogen synthase, resulting in reduction of glycogen storage in the liver.  相似文献   

3.
We investigated the prevalence of mutations in the PHD finger protein 8 (PHF8) gene in X-linked mental retardation (XLMR) and facial cleft starting from the original cohort of 7712 patients operated on since 1 January 1950 for cleft lip/cleft palate in the Cleft Centre at the Helsinki University Hospital. From this nationwide material, 18 patients including one family with two male patients with cleft lip/cleft palate and unknown cause of mental retardation (MR) were sequenced for the coding regions and splice sites of the PHF8 gene. A novel missense mutation c.836C>T of the PHF8 gene was identified in a Finnish family with multiple-affected male patients. The mutation resides in exon 8 and changes phenylalanine to serine (F279S) in the functionally important Jmonji C domain of the protein. The clinical phenotype of the male patients was characterized by mild MR, mild dysmorphic features, unilateral cleft lip and cleft palate in one and bilateral cleft lip and cleft palate in the other sibling. The mutation was not present in 200 anonymous blood donors (approximately 300 X-chromosomes). To our knowledge, F279S is the third mutation of the PHF8 gene identified so far.  相似文献   

4.
Patients with glycogen storage disease type II (GSDII, Pompe disease) suffer from progressive muscle weakness due to acid alpha-glucosidase deficiency. The disease is inherited as an autosomal recessive trait with a spectrum of clinical phenotypes. We have investigated 29 cases of GSDII and thereby identified 55 pathogenic mutations of the acid alpha-glucosidase gene (GAA) encoding acid maltase. There were 34 different mutations identified, 22 of which were novel. All of the missense mutations and two other mutations with an unpredictable effect on acid alpha-glucosidase synthesis and function were transiently expressed in COS cells. The effect of a novel splice-site mutation was investigated by real-time PCR analysis. The outcome of our analysis underscores the notion that the clinical phenotype of GSDII is largely dictated by the nature of the mutations in the GAA alleles. This genotype-phenotype correlation makes DNA analysis a valuable tool to help predict the clinical course of the disease.  相似文献   

5.
Glycogen storage disease type II (GSDII) is an autosomal recessive disorder due to the deficiency of the lysosomal enzyme acid alpha glucosidase. Four novel mutations (C670T, G989A, G2188T, and Delta 23 nt 828-850) were identified in five Italian patients with the infantile form of the disease. The C670T mutation was present in two unrelated patients in heterozygosity; the effect on enzyme activity was assessed by in vitro expression. COS-1 cells expressing the C670T allele had a twofold higher activity than the negative control cells. The G989A and G2188T point mutations lead to the introduction of premature stop signals that results in truncated forms of alpha glucosidase. The in vitro expression of G2188T allele demonstrated no increment in activity compared to negative control. The frame shifting deletion of nucleotides 828-850 was identified in one patient in heterozygosity. The shift in the reading frame introduces a stop codon 135 nucleotides downstream the deletion junction that results in a truncated protein without catalytic activity. Nested PCR screening showed that the mutation was carried by the mother and was absent in the other members of the family. The four novel severe mutations herein described concerned only infantile onset GSDII patients; the loss of enzyme activity is correlated with the severity of the disease.  相似文献   

6.
We identified the presumably rare event of de novo mutationin an autosomal recessive disorder, glycogen storage diseasetype II (GSDII). GSDII results from inherited deficiency ofacid  相似文献   

7.
Jalili syndrome (JS) is an autosomal recessive disease characterized by a combination of cone-rode retinal dytrophy (CRD) and amelogenesis imperfect (AI). Mutations in cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene cause JS. Here we described 2 families (3 members) affected by JS. In the first family, JS was caused by the homozygous p.Leu324Pro (c.971T > C) missense mutation and the affected patient developed both CRD and AI. In the second family, a specific combination of a compound heterozygous mutation was found – the p.Leu324Pro (c.971T > C) missense transition and the novel p.Tyr581* (c.1743C > G) nonsense mutation. The proband showed CRD and AI, but her father just developed eye alterations. Together, these findings suggest that the p.Leu324Pro mutation in homozygosis induces a complete phenotype with both CRD and AI, but in heterozygosis and in composition with the novel p.Tyr581* nonsense mutation in CNNM4 promotes variable clinical expressivity, particularly with lack of dental phenotypes. These different phenotypes could be explained by deletions affecting the proband's homologous allele, epistasia or interactions with environmental factors leading to residual activity of protein.  相似文献   

8.
The autosomal recessive disorder Glycogen Storage Disease Type II (GSDII) is caused by a deficiency in the lysosomal enzyme acid α-glucosidase. We have optimised a procedure to use fluorescent DNA sequencing technology to screen for mutations within the α-glucosidase gene from UK patients with GSDII. Five previously unknown mutations in six patients (4 early onset infantile and 2 late onset adult) have been found. The mutations are an insertion of a C residue in exon 2 (InsC258), an insertion of a G residue in exon 16 (InsG2242), a deletion of 20 nucleotides in exon 4 Δ, and a nonsense mutation in exon 16 (G2237A - Trp746Stop). All will result in the introduction of a premature stop codon in the coding region, predicting a truncated and non-functional protein. The final mutation is a duplication of 18 nucleotides in exon 19 (Ins18nt2776) and will result in the insertion of an additional six amino acids into the protein chain after Asn925 (Gly-Val-Pro-Val-Ser-Asn). Hum Mutat 11:413, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
We identified a novel mutation (867delA) in the glucose-6-phosphatase gene of two siblings with glycogen storage disease type Ia. Although both siblings share the same mutations, their phenotype regarding adult height and hepatomegaly differs. In glycogen storage disease type Ia, substantial heterogeneity in phenotype is observed. So far, no evidence for a clear genotype-phenotype correlation has been found. Hum Mutat 15:381, 2000.  相似文献   

10.
Glycogen storage disease type III (GSD-III) is an autosomal recessive disease resulting from deficient glycogen debranching enzyme (GDE) activity. A child with GDE deficient in both liver and muscle (GSD-IIIa) had recurrent hypoglycemia, seizures, severe cardiomegaly, and hepatomegaly and died at 4 years of age. Analysis of the GDE gene in this child by single-strand conformation polymorphism, followed by direct DNA sequencing and restriction analysis, revealed an insertion of a nucleotide A into position 4529 of the GDE cDNA (4529insA). This insertion resulted in substitution of a tyrosine to a stop codon at amino acid 1510 (Y1510X). The 4529insA mutation appeared to be homozygous in this patient and was not found in 20 unrelated controls or 18 other GSD-III patients (14 GSD-IIIa and 4 GSD-IIIb). This is the first identification of a disease mutation in this gene, and the data suggest that homozygous 4529insA may be associated with a severe phenotype in GSD-IIIa. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Glycogen storage disease type III (GSD III) is an autosomal recessive disorder caused by deficiency of glycogen-debranching enzyme (AGL). We studied a 2-year-old GSD III patient whose parents were from different ethnic groups. Nucleotide sequence analysis of the patient showed two novel mutations: a single cytosine deletion at nucleotide 2399 (2399delC) in exon 16, and a G-to-A transition at the +5 position at the donor splice site of intron 33 (IVS33+5G>A). Analysis of the mRNA produced by IVS33+5G>A showed aberrant splicing: skipping of exon 33 and activation of a cryptic splice site in exon 34. Mutational analysis of the family revealed that the 2399delC was inherited from her father, who is of Japanese origin, and the IVS33+5G>A from her mother, who is of Chinese descent, establishing that the patient was a compound heterozygote. To our knowledge, this is the first report of a mutation identified in a GSD III patient from the Chinese population.  相似文献   

12.
13.
Mutations in the glucose-6-phosphatase (G6Pase) gene are responsible for glycogen storage disease type Ia (GSD Ia). A study of the molecular basis of GSD Ia was carried out in 12 Czech and Slovak GSD Ia patients from 10 unrelated families. Mutation analysis was performed for the entire coding region of G6Pase gene using DGGE, sequencing and PCR/digestion. With the strategy used, all mutant alleles were identified in this study. Three novel mutations (K76N, V166A and 540del5), six previously described mutations (W77R, R83C, G188R, R295C, Q347X and 158delC) and one known polymorphism (1176T-->C) were detected. The most common mutation identified was R83C, accounting for 8 out of 20 (40%) mutant alleles. The K76N mutation was found in a Gypsy family: two siblings with GSD Ia were homozygous for this mutation. These findings expand our knowledge of mutations responsible for glycogen storage disease type Ia.  相似文献   

14.
Sanfilippo syndrome type D is an autosomal recessive lysosomal storage disease that is caused by a deficiency of N-acetylglucosamine-6-sulphatase, one of the enzymes involved in the catabolism of heparan sulphate. Only 15 patients have been described in the literature and just two mutations have been reported to date. We present the clinical, biochemical and molecular analysis of two Italian Sanfilippo D families. Novel homozygous mutations were identified in the affected patients from each family: a large intragenic deletion of 8723 bp encompassing exons 2 and 3 in family 1 and a nonsense mutation, Q272X, in family 2. The deletion is the first large intragenic deletion to be reported in any of the four Sanfilippo subtypes, including Sanfilippo type C in which the gene has recently been identified.  相似文献   

15.
Glycogen storage disease type III (GSD III) is an autosomal recessive disorder caused by deficiency of glycogen‐debranching enzyme (AGL). We studied a 2‐year‐old GSD III patient whose parents were from different ethnic groups. Nucleotide sequence analysis of the patient showed two novel mutations: a single cytosine deletion at nucleotide 2399 (2399delC) in exon 16, and a G‐to‐A transition at the +5 position at the donor splice site of intron 33 (IVS33+5G>A). Analysis of the mRNA produced by IVS33+5G>A showed aberrant splicing: skipping of exon 33 and activation of a cryptic splice site in exon 34. Mutational analysis of the family revealed that the 2399delC was inherited from her father, who is of Japanese origin, and the IVS33+5G>A from her mother, who is of Chinese descent, establishing that the patient was a compound heterozygote. To our knowledge, this is the first report of a mutation identified in a GSD III patient from the Chinese population. Am. J. Med. Genet. 93:211–214, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

16.
We devised a simple method using a TaqMan fluorogenic probe for detection of a prevalent G6PT1 mutation W118R among Japanese patients with glycogen storage disease type Ib. The W118R mutation was detected in three of six newly diagnosed Japanese patients. The W118R-negative alleles were screened for causative mutations by sequencing analysis, revealing five novel mutations. The genetic tests using the simple TaqMan method coupled with sequencing analysis would facilitate the early diagnosis of this disorder.  相似文献   

17.
Glycogen storage disease, type II (GSDII; Pompe disease; acid maltase deficiency) is an autosomal recessive disease caused by mutations of the GAA gene that lead to deficient acid alpha-glucosidase enzyme activity and accumulation of lysosomal glycogen. Although measurement of acid alpha-glucosidase enzyme activity in fibroblasts remains the gold standard for the diagnosis of GSDII, analysis of the GAA gene allows confirmation of clinical or biochemical diagnoses and permits predictive and prenatal testing of individuals at risk of developing GSDII. We have developed a clinical molecular test for the detection of GAA mutations based on cycle sequencing of the complete coding region. GAA exons 2-20 are amplified in six independent PCR using intronic primers. The resulting products were purified and sequenced. Preliminary studies using this protocol were conducted with DNA from 21 GSDII-affected individuals from five centers across Canada. In total, 41 of 42 mutations were detected (96.7% detection rate). Mutations spanned intron 1 through exon 19 and included nine novel mutations. Haplotype analysis of recurrent mutations further suggested that three of these mutations are likely to have occurred independently at least twice. Additionally, we report the identification of the c.-32-13T>G GAA mutation in an individual with infantile variant GSDII, despite reports of this mutation being associated almost exclusively with late-onset forms of the disease. The development of a clinical molecular test provides an important tool for the management and counseling of families and individuals with GSDII, and has provided useful information about the GAA mutation spectrum in Canada.  相似文献   

18.
Mutations in the 3β-hydroxysteroid dehydrogenase (3β-HSD) type II gene have been reported in a small number of affected females. We report a 46,XX girl born to consanguineous parents from Chile. At birth, she had normal but hyperpigmented female external genitalia. At 60 days she presented salt loss. At 20 months, the diagnosis of classic salt-losing 3β-HSD deficiency was made based on an elevated serum 17-hydroxypregnenolone concentration and a high 17 hydroxypregnenolone/17-hydroxyprogesterone ratio. Genomic DNA was amplified by PCR and screened for mutations by denaturing gradient gel electrophoresis and directly sequenced. A novel homozygous E135* mutation was found in the 3β-HSD type II gene of the patient while her parents were heterozygotes. This novel nonsense homozygous E135* mutation led to encode a predicted truncated 134 amino acid protein instead of the native 371 amino acid 3β-HSD type II protein. This predicted product is consistent with the severe 3β-HSD deficiency in this girl. Hum Mutat 12:139, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
We describe three novel mutations in the human arylsulfatase A gene in three patients with MLD, an autosomal recessive lysosomal storage disorder. An insertion, 2590_2591insCCCC in exon 8 and a deletion, 752_758delGCCGGCC, in exon 3 will both result in frameshifts. A mutation in exon 8, 2566T-->C, results in a missense mutation C488R, disrupting an unusual cysteine-knot at the C-terminal end of the protein. All three mutations are heterozygous with previously documented mutations. A previously reported mutation, R84Q was identified on a pseudodeficiency allele. These mutations are part of a heterogeneous spectrum of mutations found in a collection of DNA samples from MLD patients from across Canada and the USA.  相似文献   

20.
The autosomal recessive disorder Glycogen Storage Type II (GSDII) is caused by a deficiency in the lysosomal enzyme acid alpha-glucosidase. We have optimised a procedure to use fluorescent DNA sequencing technology to screen for mutations within the alpha-glucosidase gene from UK patients with GSDII. Five previously unknown mutations in six patients (4 early onset infantile and 2 late adult) have been found. The mutations are an insertion of a C residue in exon 2 (InsC258), an insertion of a G residue in exon 16 (InsG2242), a deletion of 20 nucleotides in exon 4 delta, and a nonsense mutation in exon 16 (G2237A-Trp746Stop). All will result in the introduction of a premature stop codon in the coding region, predicting a truncated and non-functional protein. The final mutation is a duplication of 18 nucleotides in exon 19 (Ins18nt2776) and will result in the insertion of an additional six amino acids into the protein chain after Asn925 (Gly-Val-Pro-Val-Ser-Asn).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号