首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A major mechanism through which melatonin reduces the development of breast cancer is based on its anti-estrogenic actions by interfering at different levels with the estrogen-signalling pathways. Melatonin inhibits both aromatase activity and expression in vitro (MCF-7 cells) as well as in vivo, thus behaving as a selective estrogen enzyme modulator. The objective of this study was to study the effect of MT1 melatonin receptor overexpression in MCF-7 breast cancer cells on the aromatase-suppressive effects of melatonin. Transfection of the MT1 melatonin receptor in MCF-7 cells significantly decreased aromatase activity of the cells and MT1-transfected cells showed a level of aromatase activity that was 50% of vector-transfected MCF-7 cells. The proliferation of estrogen-sensitive MCF-7 cells in an estradiol-free media but in the presence of testosterone (an indirect measure of aromatase activity) was strongly inhibited by melatonin in those cells overexpressing the MT1 receptor. This inhibitory effect of melatonin on cell growth was higher on MT1 transfected cells than in vector transfected ones. In MT1-transfected cells, aromatase activity (measured by the tritiated water release assay) was inhibited by melatonin (20% at 1 nM; 40% at 10 microM concentrations). The same concentrations of melatonin did not significantly influence the aromatase activity of vector-transfected cells. MT1 melatonin receptor transfection also induced a significant 55% inhibition of aromatase steady-state mRNA expression in comparison to vector-transfected MCF-7 cells (p<0.001). In addition, in MT1-transfected cells melatonin treatment inhibited aromatase mRNA expression and 1 nM melatonin induced a higher and significant down-regulation of aromatase mRNA expression (p<0.05) than in vector-transfected cells. The findings presented herein point to the importance of MT1 melatonin receptor in mediating the oncostatic action of melatonin in MCF-7 human breast cancer cells and confirm MT1 melatonin receptor as a major mediator in the melatonin signalling pathway in breast cancer.  相似文献   

2.
Melatonin inhibits the growth of breast cancer cells by interacting with estrogen-responsive pathways, thus behaving as an antiestrogenic hormone. Recently, we described that melatonin reduces aromatase expression and activity in MCF-7 human breast cancer cells, thus modulating the local estrogen biosynthesis. To investigate the in vivo aromatase-inhibitory properties of melatonin in our current study, this indoleamine was administered to rats bearing DMBA-induced mammary tumors, ovariectomized (ovx) and treated with testosterone. In these castrated animals, the growth of the estrogen-sensitive mammary tumors depends on the local aromatization of testosterone to estrogens. Ovariectomy significantly reduced the size of the tumors while the administration of testosterone to ovx animals stimulated tumor growth, an effect that was suppressed by administration of melatonin or the aromatase inhibitor aminoglutethimide. Uterine weight of ovx rats, which depends on the local synthesis of estrogens, was increased by testosterone, except in those animals that were also treated with melatonin or aminoglutethimide. The growth-stimulatory effects of testosterone on the uterus and tumors depend exclusively on locally formed estrogens, since no changes in serum estradiol were appreciated in testosterone-treated rats. Tumors from animals treated with melatonin had lower microsomal aromatase activity than tumors of animals from other groups, and incubation with melatonin decreased the aromatase activity of microsomal fractions of tumors. Animals treated with melatonin had the same survival probability as the castrated animals and significantly higher survival probability than the uncastrated. We conclude that melatonin could exert its antitumoral effects on hormone-dependent mammary tumors by inhibiting the aromatase activity of the tumoral tissue.  相似文献   

3.
Breast cancer prevention has focused heavily on endocrine interventions using selective estrogen receptor modulators and aromatase inhibitors. Tamoxifen, the stereotypical selective estrogen receptor modulator, significantly reduces the breast cancer incidence in high-risk women. Selective estrogen receptor modulators and aromatase inhibitors, however, only prevent the development of estrogen receptor-positive breast cancer and have no effect in reducing the risk of estrogen receptor-negative breast cancer, which has poor prognosis. Thus, preventive therapies for estrogen receptor-negative breast cancer are clearly needed. Recently, a number of novel chemopreventive agents targeting nonendocrine pathways have been developed and shown to prevent estrogen receptor-negative mammary tumorigenesis in animal models. These agents include rexinoids, selective cyclooxygenase-2 inhibitors, tyrosine kinase inhibitors, and others. In this review, we discuss the effects of selective estrogen receptor modulators and aromatase inhibitors, as well as novel agents targeting nonendocrine pathways. We also discuss the promise of combining these agents for the effective prevention of all forms of breast cancer.  相似文献   

4.
Therapeutic actions of melatonin in cancer: possible mechanisms   总被引:1,自引:0,他引:1  
Melatonin is a phylogenetically well-preserved molecule with diverse physiological functions. In addition to its well-known regulatory control of the sleep/wake cycle, as well as circadian rhythms generally, melatonin is involved in immunomodulation, hematopoiesis, and antioxidative processes. Recent human and animal studies have now shown that melatonin also has important oncostatic properties. Both at physiological and pharmacological doses melatonin exerts growth inhibitory effects on breast cancer cell lines. In hepatomas, through its activation of MT1 and MT2 receptors, melatonin inhibits linoleic acid uptake, thereby preventing the formation of the mitogenic metabolite 1,3-hydroxyoctadecadienoic acid. In animal model studies, melatonin has been shown to have preventative action against nitrosodiethylamine (NDEA)-induced liver cancer. Melatonin also inhibits the growth of prostate tumors via activation of MT1 receptors thereby inducing translocation of the androgen receptor to the cytoplasm and inhibition of the effect of endogenous androgens. There is abundant evidence indicating that melatonin is involved in preventing tumor initiation, promotion, and progression. The anticarcinogenic effect of melatonin on neoplastic cells relies on its antioxidant, immunostimulating, and apoptotic properties. Melatonin's oncostatic actions include the direct augmentation of natural killer (NK) cell activity, which increases immunosurveillance, as well as the stimulation of cytokine production, for example, of interleukin (IL)-2, IL-6, IL-12, and interferon (IFN)-gamma. In addition to its direct oncostatic action, melatonin protects hematopoietic precursors from the toxic effect of anticancer chemotherapeutic drugs. Melatonin secretion is impaired in patients suffering from breast cancer, endometrial cancer, or colorectal cancer. The increased incidence of breast cancer and colorectal cancer seen in nurses and other night shift workers suggests a possible link between diminished secretion of melatonin and increased exposure to light during nighttime. The physiological surge of melatonin at night is thus considered a "natural restraint" on tumor initiation, promotion, and progression.  相似文献   

5.
Although many factors have been suggested as causes for breast cancer, the increased incidence of the disease seen in women working in night shifts led to the hypothesis that the suppression of melatonin by light or melatonin deficiency plays a major role in cancer development. Studies on the 7,12-dimethylbenz[a]anthracene and N-methyl-N-nitrosourea experimental models of human breast cancer indicate that melatonin is effective in reducing cancer development. In vitro studies in MCF-7 human breast cancer cell line have shown that melatonin exerts its anticarcinogenic actions through a variety of mechanisms, and that it is most effective in estrogen receptor (ER) α-positive breast cancer cells. Melatonin suppresses ER gene, modulates several estrogen dependent regulatory proteins and pro-oncogenes, inhibits cell proliferation, and impairs the metastatic capacity of MCF-7 human breast cancer cells. The anticarcinogenic action on MCF-7 cells has been demonstrated at the physiological concentrations of melatonin attained at night, suggesting thereby that melatonin acts like an endogenous antiestrogen. Melatonin also decreases the formation of estrogens from androgens via aromatase inhibition. Circulating melatonin levels are abnormally low in ER-positive breast cancer patients thereby supporting the melatonin hypothesis for breast cancer in shift working women. It has been postulated that enhanced endogenous melatonin secretion is responsible for the beneficial effects of meditation as a form of psychosocial intervention that helps breast cancer patients.  相似文献   

6.
CONTEXT: Despite growing support for melatonin as a promising agent for cancer treatment and possibly cancer prevention, few studies have elucidated factors that influence endogenous melatonin. This overview summarizes dietary and lifestyle factors that have been shown to affect circulating melatonin levels. BIOLOGICAL MECHANISMS: To date, many animal studies and in vitro experiments have illustrated that melatonin possesses oncostatic activity. Mechanisms that are currently being studied include melatonin's activity as an indirect antioxidant and free radical scavenger; its action on the immune system; suppression of fatty acid uptake and metabolism; and its ability to increase the degradation of calmoduline and to induce apoptosis. Studies further suggest that melatonin reduces local estrogen synthesis, through down-regulation of the hypothalamic-pituitary reproductive axis and direct actions of melatonin at the tumor cell level, thus behaving as a SERM. THERAPEUTIC APPLICATIONS: Several small clinical trials have demonstrated that melatonin has some potential, either alone or in combination with standard cancer therapy, to yield favorable responses. Melatonin or its precursor tryptophan have been found in numerous edible plants, but more studies are needed to evaluate the influence of diets rich in tryptophan and melatonin on circulating melatonin levels in humans. Age, BMI, parity, and the use of certain drugs remain the factors that have been associated most consistently with aMT6s levels. DISCUSSION: Further insights into the effects of dietary and lifestyle factors that modulate circulating melatonin levels may provide the basis for novel interventions to exploit melatonin for the prevention and treatment of human diseases.  相似文献   

7.
MCF-7 human breast cancer cells, which are estrogen receptor (ER)-positive and responsive to the mitogenic actions of estrogen, were used to examine the possible association between the growth-inhibitory activity of melatonin and its ability to modulate the estrogen-response pathway. Melatonin at physiologic concentrations (10(-8)-10(-11) M) significantly decreased estrogen binding activity and the expression of immunoreactive ER in a dose-specific and time-dependent manner. However, melatonin did not alter receptor affinity and was unable to compete with estrogen for binding to the ER. Studies in a yeast trancriptional assay system confirmed that melatonin does not directly bind to the ER to modulate ER expression. Thus, it appears that the antimitotic actions of melatonin may be mediated, at least in part, through the suppression of the estrogen-response pathway of MCF-7 cells.  相似文献   

8.
Several decades of observational data have accumulated to implicate a potential role for melatonin in cancer prevention. Experimental studies suggest that the antineoplastic action of melatonin arises through many different mechanisms, including melatonin’s antioxidant, antimitotic, and antiangiogenic activity, as well as its ability to modulate the immune system and alter fat metabolism. Melatonin interacts with membrane and nuclear receptors, and may be linked to the regulation of tumor growth. Of particular relevance to breast cancer risk, melatonin may also block the estrogen receptor ERα and impact the enzyme aromatase, which produces estradiol. A growing number of epidemiologic studies have evaluated the relationship between night shift work as well as how varying duration of sleep affects peak melatonin secretion at night. While the studies demonstrate lower nightly melatonin levels in night workers, the evidence for an association between sleep duration and melatonin production is less clear. Similarly, both case-control and prospective cohort studies have consistently linked night shift work with breast cancer risk and, more recently, endometrial cancer – another tumor highly sensitive to estrogens. While, to date, the evidence for an association between sleep duration and breast cancer risk is less convincing, overall, there is increasing support for a potentially important link between melatonin and breast cancer risk and perhaps the risk of other tumors. As evidence increases, modifiable factors that have been shown to affect melatonin production, such as night shift work, are likely to gain increasing recognition as potential public health hazards. Additional studies are needed to delineate further the potential of melatonin in cancer prevention.  相似文献   

9.
An interaction between cellular estrogen response and melatonin signaling mediated by G-protein coupled receptors is present in breast cancer cells. In this study, the effect of antiestrogens on basal and melatonin-modulated expression of MT1 melatonin receptor in breast and ovarian cancer cells was examined. For this purpose, the effects of the selective estrogen receptor modulator tamoxifen and pure antiestrogen ICI 182,780 on MT1 expression in estrogen receptor (ER) alpha-positive and -negative breast and ovarian cancer cell lines cultured in medium supplemented with 1 nM 17-beta estradiol were assessed by Western blot analysis. We were able to detect expression of the MT1 receptor in SK-OV-3 and OVCAR-3 cells and report its up-regulation by melatonin in both ovarian cancer cell lines. MT1 expression was observed to be significantly weaker in ERalpha-positive MCF-7 and OVCAR-3 cells than in ERalpha-negative MDA-MB-231 and SK-OV-3 cells. Treatment with the pure antiestrogen ICI 182,780 increased MT1 receptor expression in OVCAR-3 ovarian cancer cells, but decreased MT1 expression in MCF-7 breast cancer cells. No effect of ICI 182,780 on MT1 expression was observed in the ERalpha-negative cell lines SK-OV-3 and MDA-MB-231. After treatment with 4-OH tamoxifen, down-regulation of basal MT1 receptor expression in ERalpha-positive MCF-7 cells and inhibition of melatonin-induced up-regulation of MT1 in OVCAR-3 ovarian cancer cells were observed. In contrast, treatment with 4-OH tamoxifen increased the MT1 receptor level in ERalpha-negative SK-OV-3 ovarian cancer cells. Our findings support the existence of close interaction between estrogen and melatonin signaling. Moreover, our data suggest that melatonin signaling is modulated by antiestrogens in breast and ovarian cancer cells.  相似文献   

10.
The MT1 melatonin receptor is bound and activated by the pineal hormone melatonin. This G protein-coupled melatonin receptor is expressed in human breast tumor cell lines, and when activated, mediates the growth-suppressive and steroid hormone/nuclear receptor modulatory actions of melatonin on breast tumor cells. In the current studies, we have examined the expression of the MT1 receptor in breast cancer cell lines and primary human breast tumors and correlated MT1 receptor expression with the deletion, rearrangement and amplification of the MT1 gene and established markers of breast cancer such as tumor size, stage, estrogen receptor alpha (ERα) and progesterone receptor (PR) expression. Theses studies suggest amplification of the MT1 gene in some breast tumors and an inverse correlation with ERα, PR and MT1 protein expression. Furthermore, these approaches employing immunohistochemical and immunofluorescent/confocal microscopic studies demonstrate that the MT1 receptor is localized to the caveoli and that MT1 expression in MCF-7 breast cancer cells can be repressed by estradiol and melatonin.  相似文献   

11.
BACKGROUND: In patients with early-stage breast cancer, 5 years of treatment with the selective estrogen receptor modulator (SERM) tamoxifen reduces breast cancer recurrence and mortality, whereas more than 5 years of tamoxifen does not further reduce breast cancer recurrence and doubles the risk of endometrial cancer. We evaluated the effects on tumor growth of raloxifene, another SERM, after tamoxifen treatment in mouse models of breast and endometrial cancers. METHODS: Athymic, ovariectomized mice were bitransplanted with tumors derived from human breast cancer and endometrial cancer cells that either were tamoxifen-naive or had been exposed to tamoxifen for short (6 months) or long (>5 years) terms. The effects of raloxifene (two dose levels) and tamoxifen on tumor growth in the presence and absence of low-dose estrogen were evaluated. All statistical tests were two-sided. RESULTS: Raloxifene was less effective than tamoxifen in blocking the stimulatory effects of low-dose estrogen on the growth of tamoxifen-naive breast (P<.001) and endometrial (P =.001) tumors. Raloxifene and tamoxifen had similar inhibitory effects on the growth of short-term tamoxifen-exposed breast tumors. Raloxifene and tamoxifen had similar stimulatory effects on the growth of breast and endometrial tumors that had been exposed to at least 5 years of tamoxifen. However, neither drug blocked the stimulatory effects of estrogen on the growth of these tumors. Raloxifene was less effective than tamoxifen (P<.001) in blocking the stimulatory effects of estrogen on endometrial tumors that had been exposed to tamoxifen in the past. CONCLUSIONS: Raloxifene and tamoxifen had similar effects on these mouse models of tamoxifen-naive and tamoxifen-resistant breast and endometrial cancer. Treatment with raloxifene following 5 years of adjuvant tamoxifen may not further decrease breast cancer recurrence and may increase endometrial cancer incidence.  相似文献   

12.
At the present time, the only approved method of breast cancer prevention is use of the selective estrogen receptor modulator (SERM) tamoxifen. Many breast cancers are driven to grow by estrogen, and tamoxifen exploits this by blocking estrogen action at the estrogen receptor. A counter-intuitive and controversial approach to breast cancer prevention is administration of estrogen and progestin at an early age to achieve pregnancy levels. This approach is supported by the fact that breast cancer incidence is halved by early (≤ 20 years of age) full-term pregnancy. Moreover, it has been demonstrated in rodent models that mimicking the hormonal milieu can effectively prevent carcinogen-induced mammary cancer. In this issue of Breast Cancer Research Rajkumar and colleagues use the rodent model to further define the timing and type of hormonal therapy that is effective in preventing mammary carcinogenesis. Clearly, application of this approach in humans may be difficult, but the potential benefit is intriguing.  相似文献   

13.
At the present time, the only approved method of breast cancer prevention is use of the selective estrogen receptor modulator (SERM) tamoxifen. Many breast cancers are driven to grow by estrogen, and tamoxifen exploits this by blocking estrogen action at the estrogen receptor. A counter-intuitive and controversial approach to breast cancer prevention is administration of estrogen and progestin at an early age to achieve pregnancy levels. This approach is supported by the fact that breast cancer incidence is halved by early (≤ 20 years of age) full-term pregnancy. Moreover, it has been demonstrated in rodent models that mimicking the hormonal milieu can effectively prevent carcinogen-induced mammary cancer. In this issue of Breast Cancer Research Rajkumar and colleagues use the rodent model to further define the timing and type of hormonal therapy that is effective in preventing mammary carcinogenesis. Clearly, application of this approach in humans may be difficult, but the potential benefit is intriguing.  相似文献   

14.
Xu L  Liao Y  Tang H  Zhang C  Liu Z 《中国肺癌杂志》2011,14(9):727-732
越来越多的证据表明,雌激素对多种肿瘤的发生发展有促进作用,不仅包括雌激素靶器官肿瘤,还包括非靶器官肿瘤。雌激素通过两种不同的雌激素受体(estrogen receptor,ER)亚型--ERα和ERβ来发挥其调节作用,介导细胞增殖和分化。近几十年来,随着ERα介导的信号通路在乳腺癌中作用的阐明,针对ER信号的靶向治疗已经成功地应用于临床,其经典药物他莫昔芬是一种选择性雌激素受体调节剂(selective estrogen receptor modulator,SERM)。随着雌激素在肺癌恶性进展中的作用逐渐为人们所认识,针对ER信号通路的靶向治疗在肺癌中的应用也逐渐受到重视,并将有可能成为肺癌综合治疗的重要组成部分。  相似文献   

15.
Increased breast cancer risks have been reported among women with gross cystic breast disease (GCBD), although the mechanism for this increase remains unexplained. Relationships between GCBD characteristics, breast cancer risk factors, and the biochemical composition and growth properties of 142 breast cyst fluid (BCF) samples were studied among 93 women with GCBD. Concentrations of melatonin, estrogen (17-beta-estradiol), dehydroepiandrosterone-sulfate (DHEA-S), epidermal growth factor (EGF), transforming growth factor beta (TGF-B1 and TGF-B2), sodium (Na), and potassium (K) were quantified in BCF samples, and human breast cancer cells (MCF-7) were treated with BCF in vitro. Patients were grouped according to BCF Na:K ratios previously linked with increased breast cancer risks (Na:K ≤ 3, Type 1), and mean concentrations of BCF constituents were compared with low risk (Na:K > 3, Type 2) and mixed cyst groups. Women with larger and more frequently occurring cysts had higher BCF estrogen and DHEA-S, and lower TGF-B1 levels. Women with Type 1 cysts had elevated BCF melatonin, estrogen, DHEA-S, and EGF, and lower concentrations of TGF-B2 compared to women with Type 2 cysts. BCF generally inhibited cell growth relative to serum-treated controls, consistent with previous studies. Melatonin and estrogen in BCF independently predicted growth inhibition and stimulation, respectively. Biological monitoring of BCF may help identify women with GCBD at greatest risk for breast cancer development.  相似文献   

16.
Despite the common expression of death receptors, many types of cancer including gliomas are resistant to the death receptor ligand (TRAIL). Melatonin antitumoral actions have been extensively described, including oncostatic properties on several tumor types and improvement of chemotherapeutic regimens. Here, we found that melatonin effectively increase cell sensitivity to TRAIL-induced cell apoptosis in A172 and U87 human glioma cells. The effect seems to be related to a modulation of PKC activity which in turns decreases Akt activation leading to an increase in death receptor 5 (DR5) levels and a decrease in the antiapoptotic proteins survivin and bcl-2 levels.  相似文献   

17.
18.
Background. The objective was to determine if EM-652, a novel selective estrogen receptor modulator (SERM) having highly potent and pure antiestrogenic activity in the mammary gland could cause complete regression of the majority of human breast cancer xenografts in nude mice. Methods. Human breast cancer ZR-75-1 xenografts were used as model in nude mice. Results. EM-652 not only prevented estrogen-induced tumor growth but it reduced tumor size to 20% of the pretreatment value. Complete disappearance of the tumors was observed in 65% (106/163) of tumors. No tumor progressed. Most importantly, 93% of the tumors which had become undetectable under EM-652 treatment did not reappear when exposed to estrogen challenge for 12 weeks, thus achieving an overall 61% cure rate. Conclusions. The present data demonstrate that EM-652 is strongly cytotoxic or tumorocidal and not only cytostatic or tumorostatic in estrogen-sensitive breast cancer, thus changing the paradigm of a tumorostatic role of estrogen blockade established with tamoxifen. These findings support the use of such a compound for more efficient breast cancer prevention and therapy.  相似文献   

19.
Hormones, notably estrogens, are pivotal in the origins of breast cancer but androgenic effects, while supported by persistence of AR expression in breast cancers, remain controversial. This study determined the role of the androgen actions via androgen receptor (AR) in experimental mammary cancer. Androgen-resistant female and male mice (ARKO) were generated using Cre/loxP technique and featured a global AR inactivation. The effect of AR inactivation and influence of genetic background on 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis was confirmed using two separate ARKO models with different genetic backgrounds. The onset of palpable mammary tumors was significantly faster in ARKO females (median time 22 vs 34?weeks, respectively; (p?=?0.0024; multivariate Cox regression) compared to WT and independent of the mouse genetic background. The cumulative incidence at 9?months was 81?±?10% [mean?±?SE] for ARKO compared to 50?±?13% in WT females. The increased DMBA susceptibility of ARKO females was associated with a higher epithelial proliferation index but not with major structural or receptor (estrogen or progesterone) expression differences between the virgin WT or ARKO female mammary glands. AR inactivation allowed substantial ductal extension in ARKO males while WT males displayed only rudimentary epithelial branches or complete regression of epithelial structures. Yet, DMBA did not induce epithelial mammary tumors in WT or ARKO males, demonstrating that AR inactivation alone is insufficient to promote mammary tumors. These results demonstrate that AR inactivation accelerates mammary carcinogenesis in female mice exposed to the chemical carcinogen DMBA regardless of mouse genetic background but require prior exposure to endogenous ovarian hormones.  相似文献   

20.
Purpose: Raloxifene is a second-generation selective estrogen receptor modulator that reduces the incidence of breast cancer in postmenopausal women. Exemestane, a steroidal aromatase inhibitor, decreases contralateral new breast cancers in postmenopausal women when taken in the adjuvant setting. Preclinical evidence suggests a rationale for coadministration of these agents to achieve complete estrogen blockade. Experimental design: We tested the safety and tolerability of combination exemestane and raloxifene in 11 postmenopausal women with a history of hormone receptor-negative breast cancer. Patients were randomized to either raloxifene (60 mg PO daily) or exemestane (25 mg PO daily) for 2 weeks. Patients then initiated combination therapy at the same dose levels for a minimum of 1 year. Pharmacokinetic and pharmacodynamic data for plasma estrogens, raloxifene, exemestane, and their metabolites were collected at the end of single-agent therapy and during combination therapy. Results: Plasma concentration-time profiles for each drug were unchanged with monotherapy versus combination therapy. Raloxifene did not affect plasma estrogen levels. Plasma estrogen concentrations were suppressed below the lower limit of detection by exemestane as monotherapy and when administered in combination with raloxifene. The most common adverse events of any grade included arthralgias, hot flashes, vaginal dryness and myalgias. Conclusions: In this small study, coadministration of raloxifene and exemestane did not affect the pharmacokinetics or pharmacodynamics of either agent to a significant degree in postmenopausal women. The combination of estrogen receptor blockade and suppression of estrogen synthesis is well tolerated and warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号