首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Whole-cell recordings were used to investigate the effects of a 3-week period of hypoxia (10% O2) on the properties of K+ and Ca2+ currents in type I cells isolated from adult rat carotid bodies. Chronic hypoxia significantly increased whole-cell membrane capacitance. K+ current amplitudes were not affected by this period of hypoxia, but K+ current density was significantly reduced in cells from chronically hypoxic rats as compared with normoxically maintained, age-matched controls. K+ current density was separated into Ca2+-dependent and Ca2+-independent components by bath application of 200 μM Cd2+, which blocked Ca2+ currents and therefore, indirectly, Ca2+-dependent K+ currents. Ca2+-dependent K+ current density was not significantly different in control and chronically hypoxic type I cells. Cd2+-resistant (Ca2+-insensitive) K+ current densities were significantly reduced in type I cells from chronically hypoxic rats. Acute hypoxia (Po2 15–22 mmHg) caused reversible, selective inhibition of Ca2+-dependent K+ currents in both groups of cells and Ca2+-insensitive K+ currents were unaffected by acute hypoxia. Ca2+ channel current density was not significantly affected by chronic hypoxia, nor was the degree of Ca2+ channel current inhibition caused by nifedipine (5 μM). Acute hypoxia did not affect Ca2+ channel currents in either group. Our results indicate that adult rat type I cells undergo a selective suppression of Ca2+-insensitive, voltage-gated K+ currents in response to chronic hypoxia in vivo. These findings are discussed in relation to the known adaptations of the intact carotid body to chronic hypoxia.  相似文献   

2.
The effect of Toosendanin (TSN), a presynaptic transmission blocker, on the outward delayed rectifier potassium current (IKD) of NG108-15 cells was studied by using the whole-cell voltage-clamp technique. It was observed that externally applying TSN not only reduced IKD amplitude in a dose-dependent and partial reversible manner but also accelerated its inactivation. The effect of internally applying TSN was also examined by including TSN in the electrode, and it was the same as that of externally applying TSN. Further, comparison observations with TEA, 4-AP, verapamil, nifedipine, and (±)-Bay K 8644 were also made, and the results were as follows. The time courses of TSN's inhibition effect as well as its recovery after washing were much slower than those of TEA and 4-AP. Externally applying TEA or 4-AP reduced IKD amplitude but did not accelerate its inactivation. Externally applying verapamil, nifedipine, or (±)-Bay K 8644, however, similarly to the effect of TSN, not only reduced IKD amplitude but also accelerated its inactivation. Thus, from the obtained results it is suggested that TSN might diffuse into the cell interior and act intracellularly, and the underlying mechanism might be different from that of TEA and 4-AP but similar to that of verapamil, nifedipine, and (±)-Bay K 8644 to some extent. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

3.
Whole-cell patch-clamp recordings were used to investigate the effects of arachidonic acid (AA) on K+ and Ca2+ channels in isolated rat type I carotid body cells. AA (2–20 μM) produced a concentration-dependent inhibition of both K+ currents and Ca2+ channel currents. The effects of AA on K+ currents were unaffected by indomethacin (5 μM), phenidone (5 μM) or 1-aminobenzotriazole (3 mM), suggesting that AA did not exert its effects via cyclo-oxygenase, lipoxygenase or cytochrome P-450 (cP-450) metabolism. Our results suggest that AA directly and non-selectively inhibits ionic currents in rat type I carotid body cells.  相似文献   

4.
C. Peers   《Brain research》1991,568(1-2):116-122
Whole-cell patch-clamp recordings were used to investigate the effects of the respiratory stimulant doxapram on K+ and Ca2+ currents in isolated type I cells of the neonatal rat carotid body. Doxapram (1-100 microM) caused rapid, reversible and dose-dependent inhibitions of K+ currents recorded in type I cells (IC50 approximately 13 microM). Inhibition was voltage-dependent, in that the effects of doxapram were maximal at test potentials where a shoulder in the current-voltage relationship was maximal. These K+ currents were composed of both Ca(2+)-activated and Ca(2+)-independent components. Using high [Mg2+], low [Ca2+] solutions to inhibit Ca(2+)-activated K+ currents, doxapram was also seen to directly inhibit Ca(2+)-independent K+ currents. This effect was voltage-independent and was less potent (IC50 approximately 20 microM) than under control conditions, suggesting that doxapram was a more potent inhibitor of the Ca(2+)-activated K+ currents recorded under control conditions. Doxapram (10 microM) was without effect on L-type Ca2+ channel currents recorded under conditions where K+ channel activity was minimized and was also without significant effect on K+ currents recorded in the neuronal cell line NG-108 15, suggesting a selective effect on carotid body type I cells. The effects of doxapram on type I cells show similarities to those of the physiological stimuli of the carotid body, suggesting that doxapram may share a similar mechanism of action in stimulating the intact organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号