首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repair of articular cartilage injuries is impeded by the avascular and non-innervated nature of cartilage. Transplantation of autologous chondrocytes has a limited ability to augment the repair process due to the highly differentiated state of chondrocytes and the risks of donor-site morbidity. Mesenchymal stem cells can undergo chondrogenesis in the presence of growth factors for cartilage defect repair. Growth and differentiation factor-5 (GDF5) plays an important role in chondrogenesis. In this study, we examined the effects of GDF5 on chondrogenesis of adipose-derived stem cells (ADSCs) and evaluate the chondrogenic potentials of GDF5 genetically engineered ADSCs using an in vitro pellet culture model. Rat ADSCs were grown as pellet cultures and treated with chondrogenic media (CM). Induction of GDF5 by an adenovirus (Ad-GDF5) was compared with exogenous supplementation of GDF5 (100 ng/ml) and transforming growth factor-beta (TGF-beta1; 10 ng/ml). The ADSCs underwent chondrogenic differentiation in response to GDF5 exposure as demonstrated by production of proteoglycan, and up-regulation of collagen II and aggrecan at the protein and mRNA level. The chondrogenic potential of a one-time infection with Ad-GDF5 was weaker than exogenous GDF5, but equal to that of TGF-beta1. Stimulation with growth factors or CM alone induced transient expression of the mRNA for collagen X, indicating a need for optimization of the CM. Our findings indicate that GDF5 is a potent inducer of chondrogenesis in ADSCs, and that ADSCs genetically engineered to express prochondrogenic growth factors, such as GDF5, may be a promising therapeutic cell source for cartilage tissue engineering.  相似文献   

2.
3.
Kim M  Kim SE  Kang SS  Kim YH  Tae G 《Biomaterials》2011,32(31):7883-7896
Partial-thickness cartilage defects, with no subchondral bone injury, do not repair spontaneously, thus there is no clinically effective treatment for these lesions. Although the autologous chondrocyte transplantation (ACT) is one of the promising approaches for cartilage repair, it requires in vitro cell expansion to get sufficient cells, but chondrocytes lose their chondrogenic phenotype during expansion by monolayer culture, leading to de-differentiation. In this study, a heparin-based hydrogel was evaluated and optimized to induce cartilage regeneration with de-differentiated chondrocytes. First, re-differentiation of de-differentiated chondrocytes encapsulated in heparin-based hydrogels was characterized in vitro with various polymer concentrations (from 3 to 20 wt.%). Even under a normal cell culture condition (no growth factors or chondrogenic components), efficient re-differentiation of cells was observed with the optimum at 10 wt.% hydrogel, showing the complete re-differentiation within a week. Efficient re-differentiation and cartilage formation of de-differentiated cell/hydrogel construct were also confirmed in vivo by subcutaneous implantation on the back of nude mice. Finally, excellent cartilage regeneration and good integration with surrounding, similar to natural cartilage, was also observed by delivering de-differentiated chondrocytes using the heparin-based hydrogel in partial-thickness defects of rabbit knees whereas no healing was observed for the control defects. These results demonstrate that the heparin-based hydrogel is very efficient for re-differentiation of expanded chondrocytes and cartilage regeneration without using any exogenous inducing factors, thus it could serve as an injectable cell-carrier and scaffold for cartilage repair. Excellent chondrogenic nature of the heparin-based hydrogel might be associated with the hydrogel characteristic that can secure endogenous growth factors secreted from chondrocytes, which then can promote the chondrogenesis, as suggested by the detection of TGF-β1 in both in vitro and in vivo cell/hydrogel constructs.  相似文献   

4.
目的研究重组hTGF-β1腺病毒(AdhTGF-β1)转染人脂肪干细胞(ADSCs)对其向软骨分化的作用。方法重组AdhTGF-β1转染人ADSCs,对照组转染AdLacZ,腺病毒的量以200pfu/细胞计算,体外细胞团聚集连续诱导培养21d,酶联免疫吸附定量检测(ELISA)hTGF-β1蛋白的表达,然后分别从大体观察、组织学和II型胶原蛋白免疫组化的检测对形成组织进行评价。结果 hTGF-β1蛋白量在14d时达最高峰,随后逐渐降低。连续细胞团聚集诱导培养21d,细胞团收缩成近似小球形的组织块,外观成乳白色。HE染色可见细胞团外周为由数层扁平状成纤维样细胞组成的纤维软骨膜,下部区域有巢状软骨样细胞组成,有些区域可见软骨样细胞包埋在软骨陷窝内。Safranin'O染色显示,形成的软骨组织区域有被染成桔红色蛋白多糖类基质分泌。而对照组苏木素-伊红染色观察见无软骨样组织形成或有向软骨分化现象。Ⅱ型胶原免疫组化染色检测显示实验组细胞团出现较明显的阳性染色区域,可见棕黄色的颗粒分布于胞浆内。对照组Ⅱ型胶原免疫组化染色检测显示无明显的阳性染色区。结论重组hTGF-β1腺病毒转染人ADSCs诱导人ADSCs向软骨细胞表型分化形成软骨样组织,为hTGF-β1基因转染的人ADSCs在软骨组织工程应用中奠定了基础。  相似文献   

5.
Mesenchymal stem cells (MSCs) are regarded as a potential autologous source for cartilage repair, because they can differentiate into chondrocytes by transforming growth factor-beta (TGF-β) treatment under the 3-dimensional (3-D) culture condition. In addition to these molecular and biochemical methods, the mechanical regulation of differentiation and matrix formation by MSCs is only starting to be considered. Recently, mechanical loading has been shown to induce chondrogenesis of MSCs in vitro. In this study, we investigated the effects of a calibrated agitation on the chondrogenesis of human bone MSCs (MSCs) in a 3-D alginate culture (day 28) and on the maintenance of chondrogenic phenotypes. Biomechanical stimulation of MSCs increased: (i) types 1 and 2 collagen formation; (ii) the expression of chondrogenic markers such as COMP and SOX9; and (iii) the capacity to maintain the chondrogenic phenotypes. Notably, these effects were shown without TGF-β treatment. These results suggest that a mechanical stimulation could be an efficient method to induce chondrogenic differentiation of MSCs in vitro for cartilage tissue engineering in a 3-D environment. Additionally, it appears that MSCs and chondrocyte responses to mechanical stimulation are not identical.  相似文献   

6.
Delta like-1 (Dlk1)/preadipocyte factor-1 (Pref-1)/fetal antigen-1 (FA1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis are not known. Thus, we examined the effect of a number of signaling molecules and their inhibitors on Dlk1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1/Pref-1 was initially expressed during mesenchymal condensation and chondrocyte proliferation, in parallel with expression of Sox9 and Col2a1, and was downregulated upon the expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, transforming growth factor-β1 (TGF-β1)-induced proliferation of chondroprogenitors was associated with decreased Dlk1 expression. This effect was abolished by TGF-β signaling inhibitor SB431542, suggesting regulation of Dlk1/FA1 by TGF-β1 signaling in chondrogenesis. TGF-β1-induced Smad phosphorylation and chondrogenesis were significantly increased in Dlk1(-/-) MEF, while they were blocked in Dlk1 overexpressing MEF, in comparison with wild-type MEF. Furthermore, overexpression of Dlk1 or addition of its secreted form FA1 dramatically inhibited TGF-β1-induced Smad reporter activity. In conclusion, our data identified Dlk1/FA1 as a downstream target of TGF-β1 signaling molecule that mediates its function in embryonic chondrogenesis. The crosstalk between TGF-β1 and Dlk1/FA1 was shown to promote early chondrogenesis during the embryonic endochondral ossification process.  相似文献   

7.
Synovium-derived mesenchymal stem cells (SMSC), a novel line of stem cells, are regarded as a promising cell source for cartilage tissue engineering. The goal of this study was to investigate rabbit SMSC coupled with injectable gellan hydrogels for in vitro engineered cartilage. SMSC were isolated from rabbit synovial tissue, amplified to passage 4 in monolayer, and encapsulated in injectable gellan hydrogels, constructs of which were cultured in chondrogenic medium supplemented with TGF-β1, TGF-β3 or BMP-2 for up to 42 days. The quality of the constructs was assessed in terms of cell proliferation and chondrocytic gene/protein expression using WST-1 assay, real-time RT-PCR, biochemical analysis, histology and immunohistochemical analysis. Results indicate that the viability of SMSC in hydrogels treated with TGF-β1, TGF-β3 and BMP-2 remained high at culture time. The constructs formed cartilaginous tissue with the expression of chondrocytic genes (collagen type II, aggrecan, biglycan, SOX 9) and cartilaginous matrix (sulphated glycosaminoglycan and collagen) as early as 21 days in culture. Both TGF-β1 and TGF-β3 treated SMSC-laden hydrogels showed more chondrogenesis compared with BMP-2 treated SMSC-laden hydrogels. It demonstrates that injectable SMSC-laden gels, when treated with TGF-β1, TGF-β3 or BMP-2, are highly competent for in vitro engineered cartilage formation, which lays a foundation for their potential application in clinical cartilage repair.  相似文献   

8.
Liu X  Sun H  Yan D  Zhang L  Lv X  Liu T  Zhang W  Liu W  Cao Y  Zhou G 《Biomaterials》2010,31(36):9406-9414
In vivo niche plays an important role in determining the fate of exogenously implanted stem cells. Due to the lack of a proper chondrogenic niche, stable ectopic chondrogenesis of mesenchymal stem cells (MSCs) in subcutaneous environments remains a great challenge. The clinical application of MSC-regenerated cartilage in repairing defects in subcutaneous cartilage such as nasal or auricular cartilage is thus severely limited. The creation of a chondrogenic niche in subcutaneous environments is the key to solving this problem. The current study demonstrates that bone marrow stromal cells (BMSCs) could form cartilage-like tissue in a subcutaneous environment when co-transplanted with articular chondrocytes, indicating that chondrocytes could create a chondrogenic niche to direct chondrogenesis of BMSCs. Then, a series of in vitro co-culture models revealed that it was the secretion of soluble factors by chondrocytes but not cell-cell contact that provided the chondrogenic signals. The subsequent studies further demonstrated that multiple factors currently used for chondroinduction (including TGF-β1, IGF-1 and BMP-2) were present in the supernatant of chondrocyte-engineered constructs. Furthermore, all of these factors were required for initiating chondrogenic differentiation and fulfilled their roles in a coordinated way. These results suggest that paracrine signaling of soluble chondrogenic factors provided by chondrocytes was an important mechanism in directing the in vivo ectopic chondrogenesis of BMSCs. The multiple co-culture systems established in this study provide new methods for directing committed differentiation of stem cells as well as new in vitro models for studying differentiation mechanism of stem cells determined by a tissue-specific niche.  相似文献   

9.
目的观察转化生长因子-β(transforming growth factor-β,TGF-β)、胰岛素样生长因子-Ⅰ(insulin—like growth factor-Ⅰ,IGF-Ⅰ)对关节软骨缺损修复的作用。方法采用组织工程方法制备骨基质明胶(BMG)软骨细胞移植物。将40只4月龄的新西兰兔随机分为TGF-β组、IGF-Ⅰ组、TGF-β联合IGF-Ⅰ组、空白对照组(前三组为实验组)。各组制备关节软骨缺损模型,实验组兔膝关节腔注射对应等量人重组蛋白,对照组注射等量盐水。术后行组织学观察及免疫组化检测。结果TGF-β联合IGF-Ⅰ组软骨细胞生长较快,术后24周修复的软骨组织HE染色与正常关节软骨一致,软骨细胞呈柱状排列,免疫组化见Ⅱ型胶原染色较深;TGF-β组、IGF-Ⅰ组术后24周部分软骨细胞呈柱状排列,免疫组化见Ⅱ型胶原染色较浅;空白对照组未修复。结论联合应用TGF-β及IGF-Ⅰ可较好促进关节软骨缺损修复,其作用优于两者单独应用。  相似文献   

10.
The purpose of this study was to test the hypothesis that the SOX trio genes (SOX-5, SOX-6, and SOX-9) have a lower level of expression during the chondrogenic differentiation of mesenchymal stem cells (MSCs) compared with chondrocytes and that the electroporation-mediated gene transfer of SOX trio promotes chondrogenesis from human MSCs. An in vitro pellet culture was carried out using MSCs or chondrocytes at passage 3 and analyzed after 7 and 21 days. Then, MSCs were transfected with SOX trio genes and analyzed for the expression of chondrogenic markers after 21 days of in vitro culture. Without transforming growth factor-β1, the untransfected MSCs had a lower level of SOX trio gene and protein expression than chondrocytes. However, the level of SOX-9 gene expression increased in MSCs when treated with transforming growth factor-β1. GAG level significantly increased 7-fold in MSCs co-transfected with SOX trio, which was corroborated by Safranin-O staining. SOX trio co-transfection significantly increased COL2A1 gene and protein and decreased COL10A1 protein in MSCs. It is concluded that the SOX trio have a significantly lower expression in human MSCs than in chondrocytes and that the electroporation-mediated co-transfection of SOX trio enhances chondrogenesis and suppresses hypertrophy of human MSCs.  相似文献   

11.
Scaffold material is expected to play a crucial role in induction of chondrogenic differentiation of mesenchymal stem cells (MSCs) for cartilage tissue engineering. Here we demonstrated the feasibility of a fibrin/hyaluronan (HA) composite hydrogel as a potent scaffold for support of chondrogenesis of rabbit MSCs (rMSCs). rMSCs were prepared in three-dimensional cultures of pellet, alginate layer, and fibrin/HA gel. Specimens in each group were cultured in chondrogenic defined media for 4 weeks in the absence or presence of transforming growth factor β1 (TGF-β1) treatment. Viability of rMSCs was somewhat reduced until 4 weeks, which was less significant in fibrin/HA gels than in the alginate layer (*p?相似文献   

12.
Herein we describe a bio-inspired, affinity binding alginate-sulfate scaffold, designed for the presentation and sustained release of transforming growth factor beta 1 (TGF-β1), and examine its effects on the chondrogenesis of human mesenchymal stem cells (hMSCs). When attached to matrix via affinity interactions with alginate sulfate, TGF-β1 loading was significantly greater and its initial release from the scaffold was attenuated compared to its burst release (>90%) from scaffolds lacking alginate-sulfate. The sustained TGF-β1 release was further supported by the prolonged activation (14 d) of Smad-dependent (Smad2) and Smad-independent (ERK1/2) signaling pathways in the seeded hMSCs. Such presentation of TGF-β1 led to hMSC chondrogenic differentiation; differentiated chondrocytes with deposited collagen type II were seen within three weeks of in vitro hMSC seeding. By contrast, in scaffolds lacking alginate-sulfate, the effect of TGF-β1 was short-term and hMSCs could not reach a similar differentiation degree. When hMSC constructs were subcutaneously implanted in nude mice, chondrocytes with deposited type II collagen and aggrecan typical of the articular cartilage were found in the TGF-β1 affinity-bound constructs. Our results highlight the fundamental importance of appropriate factor presentation to its biological activity, namely - inducing efficient stem cell differentiation.  相似文献   

13.
It is controversial whether a biomaterial itself, rather than addition of any exogenous growth factor, could induce mesenchymal stem cells (MSCs) to differentiate into chondrogenic lineage, further to regenerate cartilage. Previous studies have shown that collagen-based hydrogel could induce MSCs to differentiate into chondrocytes in vivo but the in vitro studies only have a few reports. The evidence that biomaterials could induce chondrogenesis is not adequate. In this study, we tried to address whether type I collagen hydrogel has chondro-inductive capability in vitro and how this scaffold induces MSCs to generate cartilage tissue without exogenous growth factors in the culture medium. We encapsulated neonatal rabbit bone marrow mesenchymal stem cells (BMSCs) in type I collagen hydrogel homogeneously or implanted cell aggregates in hydrogel, and cultured them in nonchondrogenic inductive media. After at least 28 days culture, cells in the homogeneous group were tending to chondrogenic differentiation while cell density was high, and cells in the aggregate group have almost gone through chondrogenesis and formed neo-cartilage tissue with abundant specific extracellular matrix (ECM) deposition. These results indicate collagen hydrogel has inherent inductivity for the chondrogenic differentiation of BMSCs, and the optimum specification and tissue formation were accompanied with local high cell density. This research suggests a feasible strategy to induce the chondro differentiation of BMSCs independent of exogenous growth factors, which may greatly contribute to clinical cartilage regeneration. ? 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A 100A: 2717-2725, 2012.  相似文献   

14.
Cartilage engineering is a strategic experimental goal for the treatment of multiple joint diseases. Based on the process of embryonic chondrogenesis, we hypothesized that cartilage could be engineered by condensing chondrocytes in pellet culture and, in the present study, examined the quality of regenerated cartilage in direct comparison with native cartilage. Chondrocytes isolated from the sterna of chick embryos were cultured in pellets (4 x 10(6) cells per pellet) for 2 weeks. Cartilage explants from the same source were cultured as controls. After 2 weeks, the regenerated cartilage from pellet culture had a disc shape and was on average 9 mm at the longest diameter. The chondrocyte phenotype was stabilized in pellet culture as shown by the synthesis of type II collagen and aggrecan, which was the same intensity as in the explant after 7 days in culture. During culture, chondrocytes also continuously synthesized type IX collagen. Type X collagen was negatively stained in both pellets and explants. Except for fibril orientation, collagen fibril diameter and density in the engineered cartilage were comparable with the native cartilage. In conclusion, hyaline cartilage engineered by chondrocytes in pellet culture, without the transformation of cell phenotypes and scaffold materials, shares similarities with native cartilage in cellular distribution, matrix composition and density, and ultrastructure.  相似文献   

15.
Regarding cartilage repair, tissue engineering is currently focusing on the use of adult mesenchymal stem cells (MSC) as an alternative to autologous chondrocytes. The potential of stem cells from various tissues to differentiate towards the chondrogenic phenotype has been investigated and it appears that the most common and studied sources are bone marrow (BM) and adipose tissue (AT) for historical and easy access reasons. In addition to three dimensional environment, the presence of member(s) of the transforming growth factor (TGF-β family and low oxygen tension have been reported to promote the in vitro differentiation of MSCs. Our work aimed at characterizing and comparing the degree of chondrogenic differentiation of MSCs isolated from BM and AT cultured in the same conditions. We also further aimed at and at determining whether hypoxia (2% oxygen) could affect the chondrogenic potential of AT-MSCs. Cells were first expanded in the presence of FGF-2, then harvested and centrifuged to allow formation of cell pellets, which were cultured in the presence of TGF-β3 and/or Bone Morphogenetic Protein-2 (BMP-2) and with 2 or 20% oxygen tension, for 24 days. Markers of the chondrocyte (COL2A1, AGC1, Sox9) and hypertrophic chondrocyte (COL10A1, MMP-13) were monitored by real-time PCR and/or by immunohistological staining. Our data show that BMP-2/TGF-β3 combination is the best culture condition to induce the chondrocyte phenotype in pellet cultures of BM and AT-MSCs. Particularly, a switch in the expression of the pre-chondrogenic type IIA form to the cartilage-specific type IIB form of COL2A1 was observed. A parallel increase in gene expression of COL10A1 and MMP-13 was also recorded. However when AT-MSCs were cultured in hypoxia, the expression of markers of hypertrophic chondrocytes decreased when BMP-2/TGF-β3 were present in the medium. Thus it seems that hypoxia participates to the control of AT-MSCs chondrogenesis. Altogether, these cellular model systems will help us to investigate further the potential of different adult stem cells for cartilage engineering.  相似文献   

16.
17.
Calvarial bone healing is difficult and grafts comprising adipose-derived stem cells (ASCs) and PLGA (poly(lactic-co-glycolic acid)) scaffolds barely heal rabbit calvarial defects. Although calvarial bone forms via intramembranous ossification without cartilage templates, it was suggested that chondrocytes/cartilages promote calvarial healing, thus we hypothesized that inducing ASCs chondrogenesis and endochondral ossification involving cartilage formation can improve calvarial healing. To evaluate this hypothesis and selectively induce osteogenesis/chondrogenesis, rabbit ASCs were engineered to express the potent osteogenic (BMP2) or chondrogenic (TGF-β3) factor, seeded into either apatite-coated PLGA or gelatin sponge scaffolds, and allotransplanted into critical-size calvarial defects. Among the 4 ASCs/scaffold constructs, gelatin constructs elicited in vitro chondrogenesis, in vivo osteogenic metabolism and calvarial healing more effectively than apatite-coated PLGA, regardless of BMP2 or TGF-β3 expression. The BMP2-expressing ASCs/gelatin triggered better bone healing than TGF-β3-expressing ASCs/gelatin, filling ≈86% of the defect area and ≈61% of the volume at week 12. The healing proceeded via endochondral ossification, instead of intramembranous pathway, as evidenced by the formation of cartilage that underwent osteogenesis and hypertrophy. These data demonstrated ossification pathway switching and significantly augmented calvarial healing by the BMP2-expressing ASCs/gelatin constructs, and underscored the importance of growth factor/scaffold combinations on the healing efficacy and pathway.  相似文献   

18.
J Dai  J Wang  J Lu  D Zou  H Sun  Y Dong  H Yu  L Zhang  T Yang  X Zhang  X Wang  G Shen 《Biomaterials》2012,33(31):7699-7711
Dental pulp stem cells (DPSCs), which arise from cranial neural crest cells, are multipotent, making them a candidate for use in tissue engineering that may be especially useful for craniofacial tissues. Costal chondrocytes (CCs) can be easily obtained and demonstrate higher initial cell yields and expansion than articular chondrocytes. CCs have been found to retain chondrogenic capacity that can effectively repair articular defects. In this study, human CCs were co-cultured with human DPSCs, and the results showed that the CCs were able to supply a chondro-inductive niche that promoted the DPSCs to undergo chondrogenic differentiation and to enhance the formation of cartilage. Although CCs alone could not prevent the mineralization of chondro-differentiated DPSCs, CCs combined with exogenous FGF9 were able to simultaneously promote the chondrogenesis of DPSCs and partially inhibit their mineralization. Furthermore, FGF9 may activate this inhibition by binding to FGFR3 and enhancing the phosphorylation of ERK1/2 in DPSCs. Our results strongly suggest that the co-culture of CCs and DPSCs combined with exogenous FGF9 can simultaneously enhance chondrogenesis and partially inhibit ossification in engineered cartilage.  相似文献   

19.
In this work, it was hypothesized that co-cultures of articular chondrocytes (ACs) and mesenchymal stem cells (MSCs) would exhibit enhanced sensitivity to chondrogenic stimuli, such as TGF-β3, and would require a reduced concentration of TGF-β3 to achieve an equivalent level of chondrogenesis compared to monocultures of each cell type. Furthermore, it was hypothesized that compared to monocultures, the chondrogenic phenotype of AC/MSC co-cultures would be more stable upon the removal of TGF-β3 from the culture medium. These hypotheses were investigated by culturing ACs and MSCs alone and in a 1:3 ratio on electrospun poly(?-caprolactone) scaffolds. All cell populations were cultured for two weeks with 0, 1, 3, or 10 ng/ml of TGF-β3. After two weeks growth factor supplementation was removed, and the constructs were cultured for two additional weeks. Cell proliferation, extracellular matrix production, and chondrogenic gene expression were evaluated after two and four weeks. The results demonstrated that co-cultures of ACs and MSCs require a reduced concentration and duration of TGF-β3 exposure to achieve an equivalent level of chondrogenesis compared to AC or MSC monocultures. Thus, the present work implicates that the promise of co-cultures for cartilage engineering is enhanced by their robust phenotype and heightened sensitivity to TGF-β3.  相似文献   

20.
Joint-derived stem cells are a promising alternative cell source for cartilage repair therapies that may overcome many of the problems associated with the use of primary chondrocytes (CCs). The objective of this study was to compare the in vitro functionality and in vivo phenotypic stability of cartilaginous tissues engineered using bone marrow-derived stem cells (BMSCs) and joint tissue-derived stem cells following encapsulation in agarose hydrogels. Culture-expanded BMSCs, fat pad-derived stem cells (FPSCs), and synovial membrane-derived stem cells (SDSCs) were encapsulated in agarose and maintained in a chondrogenic medium supplemented with transforming growth factor-β3. After 21 days of culture, constructs were either implanted subcutaneously into the back of nude mice for an additional 28 days or maintained for a similar period in vitro in either chondrogenic or hypertrophic media formulations. After 49 days of in vitro culture in chondrogenic media, SDSC constructs accumulated the highest levels of sulfated glycosaminoglycan (sGAG) (~2.8% w/w) and collagen (~1.8% w/w) and were mechanically stiffer than constructs engineered using other cell types. After subcutaneous implantation in nude mice, sGAG content significantly decreased for all stem cell-seeded constructs, while no significant change was observed in the control constructs engineered using primary CCs, indicating that the in vitro chondrocyte-like phenotype generated in all stem cell-seeded agarose constructs was transient. FPSCs and SDSCs appeared to undergo fibrous dedifferentiation or resorption, as evident from increased collagen type I staining and a dramatic loss in sGAG content. BMSCs followed a more endochondral pathway with increased type X collagen expression and mineralization of the engineered tissue. In conclusion, while joint tissue-derived stem cells possess a strong intrinsic chondrogenic capacity, further studies are needed to identify the factors that will lead to the generation of a more stable chondrogenic phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号