首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outward currents in isolated ventral cochlear nucleus neurons   总被引:13,自引:0,他引:13  
Neurons of the ventral cochlear nucleus (VCN) perform diverse information processing tasks on incoming activity from the auditory nerve. We have investigated the cellular basis for functional diversity in VCN cells by characterizing the outward membrane conductances of acutely isolated cells using whole-cell, tight-seal, current- and voltage-clamp techniques. The electrical responses of isolated cells fall into two broad categories. Type 1 cells respond to small depolarizations with a regular train of action potentials. Under voltage clamp, these cells exhibit a noninactivating outward current for voltage steps positive to -35 mV. Analysis of tail currents reveals two exponentially decaying components with slightly different voltage dependence. These currents reverse at -73 mV, near the potassium equilibrium potential of -84 mV, and are blocked by tetraethylammonium (TEA). The major outward current in Type I cells thus appears to be mediated by potassium channels. In contrast to Type I cells, Type II cells respond to small depolarizations with only one to three short-latency action potentials and exhibit strong rectification around -70 mV. Under voltage clamp, these cells exhibit a noninactivating outward current with a threshold near -70 mV. Analysis of tail currents reveals two components with different voltage sensitivity and kinetics. A low-threshold current with slow kinetics is partly activated at rest. This current reverses at -77 mV and is blocked by 4-aminopyridine (4-AP) but is only partly affected by TEA. The other component is a high-threshold current activated by steps positive to -35 mV. This current is blocked by TEA, but not by 4-AP. A simple model based on the voltage dependence and kinetics of the slow low-threshold outward current in Type II cells was developed. The model produces current- and voltage-clamp responses that resemble those recorded experimentally. Our results indicate that the two major classes of acoustic response properties of VCN neurons are in part attributable to the types of outward (potassium) conductances present in these cells. The low-threshold conductance in the Type II (bushy) cells probably plays a role in the preservation of information about the acoustic stimulus phase from the auditory nerve to central auditory nuclei involved in low-frequency sound localization.  相似文献   

2.
Different classes of potassium (K+) outward current activated by depolarization were characterized in relay neurons acutely isolated from the rat lateral geniculate nucleus (LGN), using the whole-cell version of the patch-clamp technique. A fast-transient current (IA), activated at around - 70 mV, declined rapidly with a voltage-dependent time constant (tau=6 ms at + 45 mV), was 50% steady-state inactivated at - 70 mV, and rapidly recovered from inactivation with a monoexponential time course (tau=21 ms). IA was blocked by 4-aminopyridine (4-AP, 2 - 8 mM) and was relatively insensitive to tetraethylammonium (TEA, 2 - 10 mM). After elimination of IA by a conditioning prepulse (30 ms to - 50 mV), a slow-transient K+ current could be studied in isolation, and was separated into three components, IKm, IKs and a calcium (Ca2+)-dependent current, IK[Ca]. The slow-transient current was not consistently affected by 4-AP (up to 8 mM), while TEA (2 - 10 mM) predominantly blocked IKs and IK[Ca]. The component IKm persisted in a solution containing TEA and 4-AP, activated at around - 55 mV, declined monoexponentially during maintained depolarization (tau=98 ms at + 45 mV), was 50% inactivated at - 39 mV, and recovered with tau=128 ms from inactivation. IKs activated at a similar threshold, but declined much slower with tau=2662 ms at + 45 mV. Steady-state inactivation of IKs was half-maximal at - 49 mV, and recovery from inactivation occurred relatively fast with tau=116 ms. From these data and additional current-clamp recordings it is concluded that the K+ currents, due to their wide range of kinetics and dependence on membrane voltage or internal Ca2+ concentration, are capable of cooperatively controlling the firing threshold and of shaping the different states of electrophysiological behaviour in LGN relay cells.  相似文献   

3.
Intracellular free Ca2+ levels are critical to the activity of BK channels in inner ear type I spiral ligament fibrocytes. However, the mechanisms for regulating intracellular Ca2+ levels in these cells are currently poorly understood. Using patch-clamp technique, we have identified a voltage-dependent L-type Ca2+ channel in type I spiral ligament fibrocytes cultured from gerbil inner ear. With 10 mM Ba2+ as the conductive cation, an inwardly rectifying current was elicited with little inactivation by membrane depolarization. The voltage activation threshold and the half-maximal voltage activation were -40 and -6 mV, respectively. This inward whole-cell current reached its peak at around 10 mV of membrane potential. The amplitude of the peak current varied among cells ranging from 50 to 274 pA with an average of 132.4 +/- 76.2 pA (n = 19); 10(-6) M nifedipine significantly inhibited the inward currents by 90.3 +/- 1.2% (n = 11). RT-PCR analysis revealed that cultured type I spiral ligament fibrocytes express the alpha1C isoform of the L-type Ca2+ channels encoded by the Cav1.2 gene. The expression of this channel in gerbil inner ear was confirmed by RT-PCR analysis using freshly isolated spiral ligament tissues. The Cav1.2 channel may function in conjunction with a previously identified intracellular Ca-ATPase (SERCA) to regulate intracellular free Ca2+ levels in type I spiral ligament fibrocytes, and thus modulate BK channel activity in these cells.  相似文献   

4.
5.
The peptide L-phenylalanyl-L-methionyl-L-arginyl-L-phenylalaninamide (FMRF-amide) was pressure-applied onto the somata of bursting neurons L4 and L6 in the Aplysia abdominal ganglion. FMRF-amide causes a biphasic response, first depolarizing and then hyperpolarizing the neuron. In voltage-clamp experiments, FMRF-amide induces an inward current that begins 100-200 msec after applying the peptide and peaks in 2-10 sec. This is followed by an outward current that begins with a latency of 2-5 sec and peaks in 15-65 sec. The entire response lasts 1-5 min. Experiments were done to separate the two currents induced by FMRF-amide on the basis of ion selectivity and kinetics and to determine their I(V) relationships. The currents were studied using a method to quickly measure I(V) curves. The inward current is caused by a conductance increase and has a reversal potential of approximately +18 mV. This current depends on the concentration of extracellular Na ions but not Ca, Cl, or K ions and is insensitive to tetrodotoxin, hexamethonium, and curare. The outward current is caused by a conductance increase and has a reversal potential of approximately -61 mV, which is similar to the reversal potential of the fast, transient K current (IA) in the same cells. This current is sensitive to changes in the external K ion concentration but not to changes in Cl, Ca, or Na concentration. The outward current is partially blocked by 1 mM 4-aminopyridine but not TEA or curare. Neither current is significantly voltage dependent within the range from -70 to -40 mV.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The bag cell neurons of the abdominal ganglion of Aplysia are a useful system for the study of peptidergic neurotransmission. A 20 min burst of impulse activity in the bag cells induces or augments repetitive firing in LB and LC neurons in the abdominal ganglion for up to several hours. Previous experiments have indicated that this effect is mediated by the putative bag cell transmitter egg-laying hormone (ELH). Using voltage-clamp analysis we found that bag cell bursts (BCBs) evoke long-lasting changes in membrane current in these neurons that are mimicked by the application of ELH. The combined ELH-evoked current is inward at all membrane potentials between -110 and -10 mV and consists of 3 separable currents persisting for 30-120 min. They include (1) a depolarizing current that is activated at membrane potentials above -40 mV. This current, termed ISI, is blocked by prolonged exposure to 10 mM Ni2+/0 mM Ca2+ and is not abolished by 0 mM Na+ or 100 mM TEA+/0 mM Na+ in the bathing medium. It is therefore a Ca2+-sensitive current and does not involve Na+ as a charge carrier. (2) There is a hyperpolarizing current that is activated at membrane potentials below approximately -70 mV. This current, termed IR, is blocked by external Rb+ (5 mM) and Cs+ (10 mM) and has a chord-conductance that shifts with the external [K+] according to the Nernst potential for potassium. It is therefore an inwardly rectifying K+ current. (3) There is a small, steady depolarizing current, termed Ix. This current is the only one that remains after prolonged exposure to 10 mM Ni2+/0 mM Ca2+-containing bathing medium. It is Na+ dependent and is associated with a small increase in membrane conductance that is largely independent of membrane voltage. All 3 currents are slow to inactivate; they appear to sum algebraically to produce the net BCB- or ELH-evoked current.  相似文献   

7.
An important modulatory cell type, found in all molluscan feeding networks, was investigated using two-electrode voltage- and current-clamp methods. In the cerebral giant cells of Lymnaea, a transient inward Na+ current was identified with activation at -58 +/- 2 mV. It was sensitive to tetrodotoxin only in high concentrations (approximately 50% block at 100 microm), a characteristic of Na+ channels in many molluscan neurons. A much smaller low-threshold persistent Na+ current (activation at < -90 mV) was also identified. Two purely voltage-sensitive outward K+ currents were also found: (i) a transient A-current type which was activated at -59 +/- 4 mV and blocked by 4-aminopyridine; (ii) a sustained tetraethylammonium-sensitive delayed rectifier current which was activated at -47 +/- 2 mV. There was also evidence that a third, Ca2+-activated, K+ channel made a contribution to the total outward current. No inwardly rectifying currents were found. Two Ca2+ currents were characterized: (i) a transient low-voltage (-65 +/- 2 mV) activated T-type current, which was blocked in NiCl2 (2 mm) and was completely inactivated at approximately -50 mV; (ii) A sustained high voltage (-40 +/- 1 mV) activated current, which was blocked in CdCl2 (100 microm) but not in omega-conotoxin GVIA (10 microm), omega-agatoxin IVA (500 nm) or nifedipine (10 microm). This current was enhanced in Ba2+ saline. Current-clamp experiments revealed how these different current types could define the membrane potential and firing properties of the cerebral giant cells, which are important in shaping the wide-acting modulatory influence of this neuron on the rest of the feeding network.  相似文献   

8.
This paper presents the kinetic and pharmacological properties of voltage-gated K(+) currents in anatomically identified glandular postganglionic sympathetic neurons isolated from the superior cervical ganglia in rats. The neurons were labelled by injecting the fluorescent tracer Fast Blue into the submandibular gland. The first group of neurons remained intact, i.e. innervated by the preganglionic axons until the day of current recordings (control neurons). The second group of neurons was denervated by severing the superior cervical trunk 4-6 weeks prior to current recordings (decentralized neurons). In every control and decentralized neuron three categories of voltage-dependent K(+) currents were found. (i) The I(Af) K(+) current, steady state, inactivated at hyperpolarized membrane potentials. This current was fast activated and fast time-dependently inactivated, insensitive to TEA and partially depressed by 4-AP. (ii) The I(As) K(+) current, which was steady-state inactivated at less hyperpolarized membrane potentials than I(Af). The current activation and time-dependent inactivation kinetics were slower than those of I(Af). I(As) was blocked by TEA and partially inhibited by 4-AP. (iii) The IK K(+) current did not undergo steady-state inactivation. In decentralized compared to control neurons the maximum I(Af) K(+) current density (at +50 mV) increased from 116.9 +/- 8.2 to 189.0 +/- 11.5 pA/pF, the 10-90% current rise time decreased from 2.3 to 0.7 ms and the recovery from inactivation was faster. Similarly, in decentralized compared to control neurons the maximum I(As) K(+) current density (at +50 mV) increased from 49.9 +/- 3.5 to 74.3 +/- 5.0 pA/pF, the 10-90% current rise time shortened from 29 to 16 ms and the recovery from inactivation of the current was also faster. The maximum density (at +50 mV) of I(K) in decentralized compared to control neurons decreased from 76.6 +/- 3.9 to 60.7 +/- 6.3 pA/pF. We suggest that the upregulation of voltage-gated time-dependently-inactivated K(+) currents and their faster recovery from inactivation serve to restrain the activity of glandular sympathetic neurons after decentralization.  相似文献   

9.
The electrophysiological properties and opioid responsiveness of the dopamine-containing neurons in the arcuate nucleus of the guinea pig hypothalamus were examined. Dopamine-containing neurons, identified immunocytochemically by the presence of tyrosine hydroxylase, had a mean length-to-width profile of 14.9 +/- 4.4 x 11.5 +/- 3.1 microns (N = 14). The Na+ action potential of these neurons was of short duration, and induction of repetitive firing (20-50 Hz) caused an afterhyperpolarization of 6-9 mV in amplitude, with a decay half-time of approximately 1.5 sec. Dopamine-containing cells exhibited a low threshold spike, which induced 1-4 Na+ action potentials. This potential had a threshold close to -65 mV, could not be induced without prior hyperpolarization and was not sensitive to TTX. Dopamine-containing neurons also exhibited a time- and voltage-dependent inward current at potentials negative to -70 mV, and Cs+ blocked this conductance. The mu-opioid agonist Tyr-D-Ala-Gly-mePhe-Gly-ol hyperpolarized (14 +/- 3 mV) dopamine neurons via induction of an outward current (93 +/- 44 pA near the resting membrane potential) which had a reversal potential similar to that expected for a selective potassium conductance. TTX (1 microM) did not block the opioid effects. These results show that dopamine neurons of the arcuate nucleus differ in their intrinsic conductances and their responsiveness to opioids from other CNS dopaminergic neurons. Furthermore, opioid activation of a potassium conductance resulted in a direct hyperpolarization of dopamine neurons of the arcuate nucleus, and we suggest that this mechanism may underlie the effects of opioids on dopamine-mediated prolactin release.  相似文献   

10.
The voltage-gated currents of the astrocytes associated with the retinal capillaries of the rabbit retina were studied using whole-cell patch clamp recording. The resting potential of these cells was −70 ± 4.8 mV (mean ± SEM; n = 54), and the input resistance and cell capacitance were 558 ± 3.6 MΩ and 19.5 ± 1.8 pF respectively. Depolarization to potentials positive to −50 mV evoked rapidly activating inward and outward currents. The inward current was transient, eliminated by substitution of choline for Na+ in the bathing solution, and reduced by 50% in the presence of 1 μM tetrodotoxin. The time-to-peak of the Na+ current was more than twice that for the Na+ current found in retinal neurons. The glial Na+ current was half-inactivated at −55 mV. A transient component of the outward K+ current was blocked by external 4-aminopyridine while a more sustained component was blocked by external tetraethylammonium. At potentials between −150 and −50 mV the membrane behaved Ohmically. Voltage-gated currents in retinal astrocytes recorded in situ appear qualitatively similar to those described for some glial cells in vitro.  相似文献   

11.
Tubocurarine (Tc) effect on membrane currents elicited by acetylcholine (ACh) was studied in isolated superior cervical ganglion neurons of rat using patch-clamp method in the whole-cell recording mode. The "use-dependent" block of ACh current by Tc was revealed in the experiments with ACh applications, indicating that Tc blocked the channels opened by ACh. Mean lifetime of Tc-open channel complex, tau, was found to be 9.8 +/- 0.5 s (n = 7) at -50 mV and 20-24 degrees C. tau exponentially increased with membrane hyperpolarization (e-fold change in tau corresponded to the membrane potential shift by 61 mV). Inhibition of the ACh-induced current by Tc (3-30 microM/1) was completely abolished by membrane depolarization to the level of 80-100 mV. Inhibition of ACh-induced current was augmented at increased ACh doses. It is concluded that the open channel block produced by Tc is likely to be the only mechanism for Tc action on nicotinic acetylcholine receptors in superior cervical ganglion neurons of rat.  相似文献   

12.
The symptoms of Parkinson disease are thought to result in part from increased burst activity in globus pallidus neurons. To gain a better understanding of the factors governing this activity, we studied delayed rectifier K(+) conductances in acutely isolated rat globus pallidus (GP) neurons, using whole-cell voltage-clamp and single-cell RT-PCR techniques. From a holding potential of -40 mV, depolarizing voltage steps in identified GP neurons evoked slowly inactivating K(+) currents. Analysis of the tail currents revealed rapidly and slowly deactivating currents of similar amplitude. The fast component of the current deactivated with a time constant of 11. 1 +/- 0.8 msec at -40 mV and was blocked by micromolar concentrations of 4-AP and TEA (K(D) approximately 140 microM). The slow component of the current deactivated with a time constant of 89 +/- 10 microseconds at -40 mV and was less sensitive to TEA (K(D) = 0.8 mM) and 4-AP (K(D) approximately 6 mM). Organic antagonists of Kv1 family channels had little or no effect on somatic currents. These properties are consistent with the hypothesis that the rapidly deactivating current is attributable to Kv3.1/3.2 channels and the slowly deactivating current to Kv2.1-containing channels. Semiquantitative single-cell RT-PCR analysis of Kv3 and Kv2 family mRNAs supported this conclusion. An alteration in the balance of these two channel types could underlie the emergence of burst firing after dopamine-depleting lesions.  相似文献   

13.
Inositol 1,4,5-trisphosphate (InsP3) has been proposed to be the intracellular second messenger in the mobilization of Ca2+ from intracellular stores in a variety of cell types. The ionic mechanism of the effect of intracellularly injected InsP3 on the membrane of identified neurons (R9-R12) of Aplysia kurodai was investigated with conventional voltage-clamp, pressure-injection, and ion-substitution techniques. Brief pressure injection of InsP3 into a neuron voltage-clamped at -40 mV reproducibly induced an outward current (10-60 sec in duration, 20-60 nA in amplitude) associated with a conductance increase. The current was increased by depolarization and decreased by hyperpolarization up to -80 mV, where it disappeared. Extracellular application of tetraethylammonium (TEA; 5 mM) blocked the InsP3-induced outward current, and the current was not affected by the presence of bath-applied 4-aminopyridine (4-AP; 5 mM). The InsP3-induced outward current recorded at a holding potential of -40 mV increased in amplitude in low-K+ solutions and decreased in amplitude in high-K+ solutions. Alteration of [Cl-]0, as well as perfusion with Ca2+ free plus 2 mM EGTA solution, did not affect the outward current. The InsP3-induced outward current was found to disappear when the neuron was injected with the Ca2+ chelator EGTA. The outward current evoked by repeated InsP3 injection at low doses exhibited summation and facilitation and, at high doses, was shown to desensitize. The calmodulin inhibitor N-(6-amino-hexyl)-5-chloro-1-naphthalene sulfonamide (W-7; 20-50 microM), inhibited both the InsP3-induced and the Ca2+-activated outward currents. An intracellular pressure injection of Ca2+ ions into the same identified neuron was shown to produce an outward current associated with a K+ conductance increase similar to the InsP3-induced current, and the current was blocked by bath-applied TEA (5mM). These results suggest that brief pressure injection of InsP3 into certain identified neurons of Aplysia induces a 4-AP-resistant, TEA-sensitive K+ current activated by increased intracellular free Ca2+ concentration, and this increase might be the result of the mobilization of Ca2+ from intracellular stores by InsP3.  相似文献   

14.
Membrane currents in identified lactotrophs of rat anterior pituitary   总被引:3,自引:0,他引:3  
Qualitative features of the primary inward and outward current components of identified lactotrophs of the rat anterior pituitary were examined. Identification of lactotrophs in heterogeneous dissociated anterior pituitary cultures was accomplished by application of the reverse hemolytic plaque assay. Currents in lactotrophs were subsequently examined using whole-cell or patch recording techniques. Two components of inward calcium current were observed: a transient component and a sustained component. The transient component activated at voltages as negative as -50 mV and was the major contributor to total lactotroph calcium current. The sustained component activated at voltages above about -10 mV. The 2 currents could be qualitatively separated by differences in inactivation properties and in sensitivity to cadmium. At least 3 components of outward current were distinguished. Either 30 mM TEA or 0 calcium eliminated a major portion of sustained outward current. This is likely to represent primarily calcium- and voltage-activated potassium current. The remaining current could be further differentiated into a transient current component that could be inactivated with conditioning potentials above -60 mV. A slowly activating and deactivating potassium current remained following inactivation of the transient current. Although the time course of the transient current is reminiscent of "A" current, activation of this current required potentials above -30 mV. Candidates for the single-channel currents that underlie the whole-cell outward currents were observed in cell-attached recordings. When combined with patch-clamp electrophysiological methods, the reverse hemolytic plaque assay promises to be a powerful technique for the electrophysiological characterization of specific cell subtypes in heterogeneous dissociated cell populations.  相似文献   

15.
The effects of intracellular Ca2+ (Ca2+i) on K+ currents in hippocampal cells were examined using acutely isolated cells obtained from adult guinea pigs. Whole-cell voltage-clamp recordings were carried out in a configuration that allowed a continuous perfusion of the intracellular medium. Recording media were made to block inward currents and allowed selective activation of K(+)-dependent outward currents. Voltage-dependent outward currents consisted of an initial rapidly decaying component followed by a sustained component. The time constant of decay of the transient current was about 25 msec, and previous studies (Numann et al., 1987) showed that the kinetic and pharmacological properties of this current closely resembled the A current recorded in invertebrate neurons (Connor and Stevens, 1971; Thompson, 1982). Intracellular perfusion of hippocampal cells with a solution containing elevated Ca2+ (about 4.5 x 10(-4) M) elicited outward currents at the holding potential (-45 to -55 mV) and produced changes in voltage-dependent K+ currents. The transient outward current (IA) activated by depolarization was suppressed with increases in Ca2+i. Delayed, sustained K+ currents were greatly potentiated. Data also showed that, among the 3 effects elicited by Ca2+i, suppression of IA was most sensitive to Ca2+i elevation. Previous results (Numann et al., 1987) showed that IA had a lower threshold (about -45 mV) than sustained currents (about -40 mV). By using low levels of depolarization (-40 mV), IA can be selectively activated, and the suppressive effect of Ca2+i on IA was confirmed on the kinetically isolated IA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
During acute pathological processes, microglia transform into an activated state characterized by a defined morphology and current profile, and are recruited to injury sites by chemokines. No information is available on the ion channels and the mode of action of chemokines in microglia in brain slices from humans with a chronic pathology. Thus, patch-clamp recordings of microglia were performed in hippocampal slices from seven patients who underwent surgery for pharmaco-resistant epilepsy. Cells were identified as microglia by positive labelling with fluorescein-conjugated tomato lectin before recording. All the recorded cells had an ameboid morphology characteristic of activated microglia. However, they had a high input resistance (3.6 G omega), a zero-current resting potential of -16 mV, and lacked Na+ currents, inwardly rectifying and delayed rectifying K+ currents such as non-activated microglia. Importantly, recorded cells expressed Ca2+-sensitive outward currents that activated at 0 mV with non-buffered intracellular Ca2+ and were sensitive to 1 mm tetraethylammonium (TEA). The estimated single-channel conductances were 187 pS in cell-attached and 149 pS in outside-out patches, similar to those of high-conductance Ca2+-dependent K+ channels. The chemokine MIP1-alpha increased whole-cell outward current amplitudes measured at +60 mV by a factor of 3.3. Thus, microglia in hippocampi from epileptic patients express high-conductance Ca2+-dependent K+ channels that are modulated by the chemokine MIP1-alpha. This modulation may contribute to the migratory effect of MIP1-alpha on microglia.  相似文献   

17.
Dai X  Ruan D  Chen J  Wang M  Cai L 《Brain research》2001,904(2):327-340
The effects of Pb2+ on transient outward currents (TOCs) were investigated on rat dorsal root ganglia (DRG) neurons at postnatal days of 15 approximately 21, using the conventional whole-cell patch-clamp technique. In media-sized (35 approximately 40 microm) neurons and in the presence of 50 mM TEA, TOCs that preliminarly included an A-current (IA) and a D-current (ID), were clearly present and dominant. Application of Pb2+ lengthened the initial delay of TOCs and increased the onset-peak time in a concentration-dependent manner. The amplitudes of initial outward current peak were reduced with increasing Pb2+ concentrations. The inhibitory effects of Pb2+ on TOCs were reversible with 80 approximately 90% of current reversed in 2 approximately 10 min at 1 approximately 400 microM Pb2+. For the normalized activation curves fitted by a single Boltzmann equation under each condition, there was a shift to more depolarized voltages with increasing concentrations of Pb2+. The V1/2 and the slope factor (k) increased from 12.76+/-1.49 mV and 15.31+/-1.66 mV (n=10) under control condition to 39.91+/-5.44 mV (n=10, P<0.01) and 21.39+/-3.13 mV (n=10, P<0.05) at 400 microM Pb2+, respectively, indicating that Pb2+ decreased the activation of TOCs. For the normalized steady-state inactivation curves, the V1/2 and the k increased from -92.31+/-2.72 and 8.59+/-1.36 mV (n=10) to -55.65+/-3.67 (n=10, P<0.01) and 23.02+/-2.98 mV (n=10, P<0.01) at 400 microM Pb2+, respectively. The curves were shifted to more depolarized voltages by Pb2+, indicating that channels were less likely to be inactivated at higher concentrations of Pb2+ at any given potential. The fast (tf) and slow (ts) decay time-constants were both significantly increased by increasing concentrations of Pb2+ (n=10, P<0.05), indicating that Pb2+ increased the decay time-course of TOCs. These effects were concentration-dependent and partly reversible following washing. Ca2+ modulated the TOCs gating and might share same binding site with Pb2+, for which Ca2+ had very low affinity. In summary, the results demonstrated that Pb2+ was a dose- and voltage-dependent, and reversible blocker of TOCs in rat DRG neurons. After Pb2+ application, normal sensory physiology of DRG neurons was affected, and these neurons might display aberrant firing properties that resulted in abnormal sensations. This variation caused by Pb2+ could underlie the toxical modulation of sensory input to the central nervous system.  相似文献   

18.
The anticonvulsant drug phenytoin (diphenylhydantoin, DPH) was examined for its action on potassium currents in cerebellar granule cells using the whole-cell patch-clamp technique. Granular cells expressed two main types of voltage-dependent potassium currents: the first, sensitive to Tetraethylammonium ion (TEA), resembles a delayed rectifier K(+) channel (I(d)); the second shows biophysical and pharmacological properties similar to an I(A)-type potassium current. Phenytoin blocks the I(A) current in a dose-dependent manner, with an apparent dissociation constant K(d) of (73+/-7) microM. The drug shifts the steady-state inactivation curves towards a more negative potential, stabilizing the inactivated state, while the activation kinetics remain unaffected. The estimated K(d) when the cell is held to -100 mV (closed state of the channel) is 145+/-8 microM which decreases to 35+/-10 microM at -80 mV holding potential (partial inactivation of the channel). Phenytoin shows a discriminant behaviour between the two different types of potassium channels because at high concentration the effect of the drug on the delayed rectifier K(+) channel is negligible.  相似文献   

19.
High threshold noxious heat-activated currents and vanilloid receptor-like protein-1 expression were studied in rat cultured primary sensory neurons to find out the molecule(s) responsible for high threshold noxious heat-sensitivity. The average temperature threshold and amplitude of high threshold noxious heat-activated currents were 51.6 +/- 0.13 degrees C and -2.0 +/- 0.1nA (at a holding potential of -60 mV), respectively. The current-voltage relationship of high threshold noxious heat-activated currents was linear at positive membrane potentials, while it showed a weak inward rectification at negative membrane potentials. The average reversal potential measured in control intracellular and extracellular solutions was 4.5 +/- 0.9 mV (n = 6). Ionic substitutions revealed that the high threshold noxious heat-activated current is a nonselective cationic current with calculated ionic permeabilities of Cs+ : Na+ : Ca2+ (1 : 1.3 : 4.5). Consecutive stimuli reduced the heat threshold from 52.2 +/- 1 to 48.4 +/- 1.4 degrees C and then to 44 +/- 0.7 degrees C (n = 3). High threshold noxious heat-activated currents could dose-dependently and reversibly be reduced by ruthenium red (100 nm-10 micro m) but not by capsazepine (10 micro m). The average longest diameter of high threshold noxious heat-sensitive neurons was 31.48 +/- 0.5 micro m (A = approximately 778 micro m2; n = 77). Twenty-three percent of the total neuronal population expressed vanilloid receptor-like protein-1. The average area of the vanilloid receptor-like protein-1-immunopositive cells was 1,696 +/- 65.3 micro m2 (d = approximately 46 micro m). Vanilloid receptor-like protein-1-expressing neurons did not express the vanilloid receptor 1. Comparison of our data with results obtained in vanilloid receptor-like protein-1-expressing non-neuronal cells and previous immunohistochemical findings suggests that high threshold noxious heat-activated currents are produced by vanilloid receptor-like protein-1 and that high threshold heat-sensitive dorsal root ganglion neurons are the perikarya of type I noxious heat-sensitive fibers.  相似文献   

20.
Two-electrode voltage clamp of intact, identified pyloric neurons of the spiny lobster stomatogastric ganglion reveals two major outward currents. A rapidly inactivating, tetraethylammonium- (TEA) insensitive, 4-aminopyridine- (4AP) sensitive, outward current resembles IA of molluscan neurons; it activates rapidly on depolarizations above rest (e.g. -45 mV), delaying both the axonal-sodium and the neuropil-calcium spikes which escape voltage-clamp control. We infer that A-current is distributed both in a space clamped region (on or near the soma) and in a non-space clamped region with access to the generators for sodium and calcium spikes. A calcium-dependent outward current, IO(Ca), activates rapidly at clamp steps above -25 mV and inactivates at depolarizing holding voltages. Increasing depolarization results in an increase in both IO(Ca) and firing rate but a reduction in the amplitude of the sodium spike current. Blockage of IO(Ca) with Cd2+ causes little change in spike firing pattern. These observations are consistent with IO(Ca) being activated primarily in the soma and nearby regions which are under good control with a soma voltage clamp (and distant from the Na(+)-spike trigger zone). While the lack of space clamp limits resolution of charging transients and tail currents, the identification of the major current subgroups can still be readily accomplished, and inferences about the location and function of currents can be made which would not be possible if the cells were space clamped or truncated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号