首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5-HT3 receptors modulate spinal nociceptive reflexes   总被引:1,自引:0,他引:1  
The selective 5-HT3 receptor agonist 2-methyl-serotonin (2-Me-5-HT) mimicked the antinociceptive activity of 5-HT when intrathecally administered to rats. Two hundred micrograms (i.t.) doses of these agonists produced similar increases in tail flick latency. However, equal doses of 2-Me-5-HT and 5-HT doubled and tripled, respectively, the mean response latency as measured by the hot plate test. The potent and selective 5-HT3 receptor antagonists ICS 205-930 (3-tropanyl-indole-3-carboxylate) and MDL 72222 (3-tropanyl-3,5-dichlorobenzoate) antagonized the antinociceptive effects of both 5-HT and 2-Me-5-HT. However, there were differences in the efficacy of these antagonists. Thus, intrathecal pretreatment with ICS 205-930 (0.05 micrograms) or MDL 72222 (0.1 micrograms) blocked the antinociceptive effects of 5-HT (200 micrograms, i.t.) as measured by the tail flick test, however, higher doses (0.1 and 1.0 micrograms, respectively) were required in the hot plate test. Pretreatment with ICS 205-930 (0.1 microgram) or MDL 72222 (0.1 microgram) blocked the effects of 2-Me-5-HT (200 micrograms, i.t.) in both analgesiometric tests. It is concluded that 5-HT3 receptors are intimately involved in the modulation of spinal nociceptive responses.  相似文献   

2.
In the present study, the ability of 5-hydroxytryptamine-4 (5-HT4) receptors in the hippocampus to enhance locomotor activity in rats was investigated by local infusion via microdialysis probes. The local infusion of 5-HT bilaterally into the striatum did not alter rat motor activity. The local infusion of 1.0 mM 5-HT into the bilateral hippocampus, but not lower doses, significantly increased motor activity as compared with the baseline values or the control rats. During the day hours (0700-1900, light on), the local infusion of either 5-HT4 agonist, 5-MeOT (100 microM) or mosapride (10 microM), but not in their lower concentrations, into the bilateral hippocampus significantly increased motor activity as compared with the baseline values or the control rats. Almost all increased motor activity was normal forward locomotion. This 5-MeOT-induced hyperlocomotion was completely reversed by the combined infusion of a 5-HT4 antagonist, either GR125487D (100 microM), SB204070 (100 microM) or RS23597-190 (100 microM). During the night hours (1900-0700, light off), the local infusion of either SB204070 (100 microM) or RS23597-190 (100 microM), but not in their lower concentrations, into the bilateral hippocampus significantly decreased rat motor activity and inhibited rat nocturnal hyperactivity. These hypoactivities during the night hours induced by 5-HT4 antagonist were reversed by the combined infusion of a 5-HT4 agonist, 5-MeOT (100 microM). The present study demonstrates that the serotonergic neurons projecting to the hippocampus, but not to the striatum, modulate rat locomotor activity by stimulating 5-HT4 receptors in the hippocampus.  相似文献   

3.
By taking up serotonin (5-hydroxytryptamine, 5-HT) released in the extracellular space, the 5-HT transporter (5-HTT) regulates central 5-HT neurotransmission. Possible adaptive changes in 5-HT neurotransmission in knock-out mice that do not express the 5-HT transporter were investigated with special focus on 5-HT1A and 5-HT1B receptors. Specific labelling with radioligands and antibodies, and competitive RT-PCR, showed that 5-HT1A receptor protein and mRNA levels were significantly decreased in the dorsal raphe nucleus (DRN), increased in the hippocampus and unchanged in other forebrain areas of 5-HTT-/- vs. 5-HTT+/+ mice. Such regional differences also concerned 5-HT1B receptors because a decrease in their density was found in the substantia nigra (-30%) but not the globus pallidus of mutant mice. Intermediate changes were noted in 5-HTT+/- mice compared with 5-HTT+/+ and 5-HTT-/- animals. Quantification of [35S]GTP-gamma-S binding evoked by potent 5-HT1 receptor agonists confirmed such changes as a decrease in this parameter was noted in the DRN (-66%) and the substantia nigra (-30%) but not other brain areas in 5-HTT-/- vs. 5-HTT+/+ mice. As expected from actions mediated by functional 5-HT1A and 5-HT1B autoreceptors, a decrease in brain 5-HT turnover rate after i.p. administration of ipsapirone (a 5-HT1A agonist), and an increased 5-HT outflow in the substantia nigra upon local application of GR 127935 (a 5-HT1B/1D antagonist) were observed in 5-HTT+/+ mice. Such effects were not detected in 5-HTT-/- mice, further confirming the occurrence of marked alterations of 5-HT1A and 5-HT1B autoreceptors in these animals.  相似文献   

4.
We have studied the effects of 5-HT(1A) and 5-HT(7) serotonin receptor activation in hippocampal CA3-CA1 synaptic transmission using patch clamp on mouse brain slices. Application of either 5-HT or 8-OH DPAT, a mixed 5-HT(1A)/5-HT(7) receptor agonist, inhibited AMPA receptor-mediated excitatory post synaptic currents (EPSCs); this effect was mimicked by the 5-HT(1A) receptor agonist 8-OH PIPAT and blocked by the 5-HT(1A) antagonist NAN-190. 8-OH DPAT increased paired-pulse facilitation and reduced the frequency of mEPSCs, indicating a presynaptic reduction of glutamate release probability. In another group of neurons, 8-OH DPAT enhanced EPSC amplitude but did not alter paired-pulse facilitation, suggesting a postsynaptic action; this effect persisted in the presence of NAN-190 and was blocked by the 5-HT(7) receptor antagonist SB-269970. To confirm that EPSC enhancement was mediated by 5-HT(7) receptors, we used the compound LP-44, which is considered a selective 5-HT(7) agonist. However, LP-44 reduced EPSC amplitude in most cells and instead increased EPSC amplitude in a subset of neurons, similarly to 8-OH DPAT. These effects were respectively antagonized by NAN-190 and by SB-269970, indicating that under our experimental condition LP-44 behaved as a mixed agonist. 8-OH DPAT also modulated the current evoked by exogenously applied AMPA, inducing either a reduction or an increase of amplitude in distinct neurons; these effects were respectively blocked by 5-HT(1A) and 5-HT(7) receptor antagonists, indicating that both receptors exert a postsynaptic action. Our results show that 5-HT(1A) receptors inhibit CA3-CA1 synaptic transmission acting both pre- and postsynaptically, whereas 5-HT(7) receptors enhance CA3-CA1 synaptic transmission acting exclusively at a postsynaptic site. We suggest that a selective pharmacological targeting of either subtype may be envisaged in pathological loss of hippocampal-dependent cognitive functions. In this respect, we underline the need for new selective agonists of 5-HT(7) receptors.  相似文献   

5.
Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different subtypes of SK channels (SK1, SK2, and SK3) in Xenopus laevis oocytes. SK channels were activated by intracellular injection of Cd2+. Subsequent activation of 5-HT1A receptors by 8-OH-DPAT always produced an inhibition of the SK current, showing the existence of a specific pathway between the receptor and the ion channel. To investigate the physiological relevance of this pathway, we characterized the mAHP present after action potentials in spinal motoneurons recorded in a slice preparation from the lumbar spinal cord of the adult turtle. By performing current and voltage clamp recordings, we showed that 8-OH-DPAT specifically inhibited the fraction of the AHP mediated by SK channels. We conclude that the activity of SK channels is modulated by activation of serotonergic receptors.  相似文献   

6.
The characteristics of the spontaneous firing of serotoninergic neurons in the dorsal raphe nucleus and its control by serotonin (5-hydroxytryptamine, 5-HT) receptors were investigated in wild-type and 5-HT1B knock-out (5-HT1B-/-) mice of the 129/Sv strain, anaesthetized with chloral hydrate. In both groups of mice, 5-HT neurons exhibited a regular activity with an identical firing rate of 0.5-4.5 spikes/s. Intravenous administration of the 5-HT reuptake inhibitor citalopram or the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced a dose-dependent inhibition of 5-HT neuronal firing which could be reversed by the selective 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohe xane carboxamide (WAY 100635). Both strains were equally sensitive to 8-OH-DPAT (ED50 approximately 6.3 microgram/kg i.v.), but the mutants were less sensitive than wild-type animals to citalopram (ED50 = 0.49 +/- 0.02 and 0.28 +/- 0.01 mg/kg i.v., respectively, P < 0.05). This difference could be reduced by pre-treatment of wild-type mice with the 5-HT1B/1D antagonist 2'-methyl-4'-(5-methyl-[1,2,4]oxadiazol-3-yl)-biphenyl-4-carbox yli c acid [4-methoxy-3-(4-methyl-piperazine-1-yl)-phenyl]amide (GR 127935), and might be accounted for by the lack of 5-HT1B receptors and a higher density of 5-HT reuptake sites (specifically labelled by [3H]citalopram) in 5-HT1B-/- mice. In wild-type but not 5-HT1B-/- mice, the 5-HT1B agonists 3-(1,2,5, 6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3,2-b]pyridine (CP 94253, 3 mg/kg i.v.) and 5-methoxy-3-(1,2,3, 6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 0.6 mg/kg i.v.) increased the firing rate of 5-HT neurons (+22.4 +/- 2.8% and +13.7 +/- 6.0%, respectively, P < 0.05), and this effect could be prevented by the 5-HT1B antagonist GR 127935 (1 mg/kg i.v.). Altogether, these data indicate that in the mouse, the firing of 5-HT neurons in the dorsal raphe nucleus is under both an inhibitory control through 5-HT1A receptors and an excitatory influence through 5-HT1B receptors.  相似文献   

7.
Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. We have previously reported that cholinergic stimulation of the dorsal periaqueductal gray matter (PAG) decreases the duration of TI episodes, while stimulation of the ventrolateral region increases it. The ventrolateral PAG modulates this behavior via a similar neural circuit proposed to be involved in the antinociceptive system. Some studies have indicated that alterations in the levels of cerebral 5-hydroxytryptamine (5-HT) mediate or modulate the analgesic effect of PAG stimulation. Thus, in this study we investigated the possibility that the serotoninergic system is involved in the modulation of TI by this neural substrate. Our results showed that the effect of serotonin into the ventrolateral and dorsal PAG seems to be biphasic and dose dependent. The microinjection of low doses (0.1 microg) of 5-HT into the PAG increased the duration of TI, while high doses (1, 3 and 6 microg) decreased this behavior. Our results also showed that microinjection of a 5-HT(1A) agonist (0.003, 0.01 and 0.1 microg of 8-hydroxy-dipropylaminotretalin (8-OH-DPAT)) into the PAG increased the duration of TI episodes. However, the microinjection of 5-HT(2) agonist (0.01 and 0.1 microg of alpha-methyl-5-HT) into the PAG decreased the duration of TI and this effect could be reversed by pretreatment with an ineffective dose (0.01 microg) of ketanserin. In contrast, ketanserin (0.03 and 0.16 microg) increased this behavior in a dose-dependent manner. These results suggest that the PAG 5-HT(1A) and 5-HT(2) receptors have different roles in the modulation of TI in guinea pigs, since the 5-HT(1A) and 5-HT(2) agonists, respectively, increased and decreased the duration of TI.  相似文献   

8.
The involvement of 5-HT1B receptors in the regulation of vigilance states was assessed by investigating the spontaneous sleep-waking cycles and the effects of 5-HT receptor ligands on sleep in knock-out (5-HT1B-/-) mice that do not express this receptor type. Both 5-HT1B-/- and wild-type 129/Sv mice exhibited a clear-cut diurnal sleep-wakefulness rhythm, but knock-out animals were characterized by higher amounts of paradoxical sleep and lower amounts of slow-wave sleep during the light phase and by a lack of paradoxical sleep rebound after deprivation. In wild-type mice, the 5-HT1B agonists CP 94253 (1-10 mg/kg, i.p.) and RU 24969 (0.25-2.0 mg/kg, i.p.) induced a dose-dependent reduction of paradoxical sleep during the 2-6 hr after injection, whereas the 5-HT1B/1D antagonist GR 127935 (0.1-1.0 mg/kg, i.p.) enhanced paradoxical sleep. In addition, pretreatment with GR 127935, but not with the 5-HT1A antagonist WAY 100635, prevented the effects of both 5-HT1B agonists. In contrast, none of the 5-HT1B receptor ligands, at the same doses as those used in wild-type mice, had any effect on sleep in 5-HT1B-/- mutants. Finally, the 5-HT1A agonist 8-OH-DPAT (0.2-1.2 mg/kg, s.c.) induced in both strains a reduction in the amount of paradoxical sleep. Altogether, these data indicate that 5-HT1B receptors participate in the regulation of paradoxical sleep in the mouse.  相似文献   

9.
The object exploration task allows the measure of changes in locomotor and exploratory activities, habituation, and reaction to a spatial change and to novelty. The effects of intrahippocampal (dorsal CA1 field) microinjections of serotonin 1 receptor (5-HT1) agonists on these behavioral components were evaluated in the rat. 8-Hydroxy-2-(din-propylamino)-tetralin (8-OH-DPAT,5 μg/μl) was used as a 5-HT1A agonist, 3-(1,2,5,6-tetrahydropyrid-4-yl) pyrrolo[3,2-b] pyrid-5-one (CP 93,129, 16 μg/μl) as a 5-HT1B agonist, and scopolamine (10 μg/μl) as a muscarinic cholinergic antagonist. Scopolamine induced a long-lasting increase in locomotor activity and a lack of reaction to spatial change; both these results are in agreement with the known crucial influence of the septo-hippocampal cholinergic system in hippocampal functioning. Stimulation of 5-HT1A and 5-HT1B receptors induced a decrease in object exploration and habituation without affecting the retrieval of spatial information. But stimulation of hippocampal 5-HT1B receptors induced a selective change in the animal's emotional state, i.e., an initial decrease in locomotor activity and a neophobic reaction in response to a new object; such effects did not occur following stimulation of 5HT1A receptors. These results have to be considered in the light of the anxiogenic propety of 5-HT1B agonists. On the whole, they support the hypothesis of the involvement of the serotonergic system, via 5HT1A and 5-HT1B receptors, in the modulation of hippocampal functions. © 1995 Wiley-Liss, Inc.  相似文献   

10.
11.
In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.  相似文献   

12.
P K Eide  N M Joly  K Hole 《Brain research》1990,536(1-2):195-200
The role of the 5-hydroxytryptamine (5-HT) receptor subtypes in the spinal cord in the regulation of nociception is unknown. This study examined whether administration of different 5-HT1 receptor agonists into the spinal subarachnoid space of mice modulates the nociceptive tail-flick reflex, and whether effects on the tail-flick reflex involve changes in tail skin temperature. The tail-flick latencies (the time needed to evoke the tail-flick reflex by noxious radiant heat) were significantly increased after intrathecal (i. th.) injection of 5-HT (10-20 micrograms), the 5-HT1A/5-HT1B receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeODMT, 10-20 micrograms), the selective 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 20 micrograms) and after i.th. injection of 1(m-chlorophenyl)piperazine (mCPP, 5-20 micrograms) and 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (RU 24969, 5-20 micrograms) which have high affinity for the 5-HT1B receptors. None of the 5-HT1 receptor agonists had the ability to change the tail skin temperature. The results show that in the mouse i.th. injection of both 5-HT1A and 5-HT1B receptor agonists has the ability to inhibit the tail-flick reflex without interfering with the tail skin temperature.  相似文献   

13.
The suprachiasmatic nucleus (SCN), a circadian oscillator, receives glutamatergic afferents from the retina and serotonergic (5-HT) afferents from the median raphe. 5-HT(1B) and 5-HT(7) receptor agonists inhibit the effects of light on SCN circadian activity. Electron microscopic (EM) immunocytochemical procedures were used to determine the subcellular localization of 5-HT(1B) and 5-HT(7) receptors in the SCN. 5-HT(1B) receptor immunostaining was associated with the plasma membrane of thin unmyelinated axons, preterminal axons, and terminals of optic and nonoptic origin. 5-HT(1B) receptor immunostaining in terminals was almost never observed at the synaptic active zone. To a much lesser extent, 5-HT(1B) immunoreaction product was noted in dendrites and somata of SCN neurons. 5-HT(7) receptor immunoreactivity in gamma-aminobutyric acid (GABA), vasoactive intestinal polypeptide (VIP), and vasopressin (VP) neuronal elements in the SCN was examined by using double-label procedures. 5-HT(7) receptor immunoreaction product was often observed in GABA-, VIP-, and VP-immunoreactive dendrites as postsynaptic receptors and in axonal terminals as presynaptic receptors. 5-HT(7) receptor immunoreactivity in terminals and dendrites was often associated with the plasma membrane but very seldom at the active zone. In GABA-, VIP-, and VP-immunoreactive perikarya, 5-HT(7) receptor immunoreaction product was distributed throughout the cytoplasm often in association with the endoplasmic reticulum and the Golgi complex. The distribution of 5-HT(1B) receptors in presynaptic afferent terminals and postsynaptic SCN processes, as well as the distribution of 5-HT(7) receptors in both pre- and postsynaptic GABA, VIP, and VP SCN processes, suggests that serotonin plays a significant role in the regulation of circadian rhythms by modulating SCN synaptic activity.  相似文献   

14.
5-Hydroxytryptamine (5-HT, serotonin), synthesized in midbrain raphe nuclei and released in various hypothalamic sites, decreases food intake but the specific 5-HT receptor subtypes involved are controversial. Here, we have studied changes in the regional density of binding to 5-HT receptors and transporters and the levels of tryptophan hydroxylase, in rats with obesity induced by feeding a palatable high-energy diet for 7 weeks. We mapped binding at 5-HT receptor subtypes and transporters using quantitative autoradiography and determined tryptophan hydroxylase protein levels by Western blotting. In diet-induced obese (DiO) rats, specific binding to 5-HT(1A) receptors ([3H]8-OH-DPAT) was significantly increased in the dorsal and median raphe by 90% (P<0.01) and 132% (P<0.05), respectively, compared with chow-fed controls. 5-HT(1B) receptor binding sites ([125I]cyanopindolol) were significantly increased in the hypothalamic arcuate nucleus (ARC) of DiO rats (58%; P<0.05), as were 5-HT(2A) receptor binding sites ([3H]ketanserin) in both the ARC (44%; P<0.05) and lateral hypothalamic area (LHA) (121%; P<0.05). However, binding to 5-HT(2C) receptors ([3H]mesulgergine) in DiO rats was not significantly different from that in controls in any hypothalamic region. Binding to 5-HT transporters ([3H]paroxetine) was significantly increased (P<0.05) in both dorsal and median raphe, paraventricular nuclei (PVN), ventromedial nuclei (VMH), anterior hypothalamic area (AHA) and LHA of DiO rats, by 47%-165%. Tryptophan hydroxylase protein levels in the raphe nuclei were not significantly different between controls and DiO rats. In conclusion, we have demonstrated regionally specific changes in binding to certain 5-HT receptor subtypes in obesity induced by voluntary overeating of a palatable diet. Overall, these changes are consistent with reduced 5-HT release and decreased activity of the 5-HT neurons. Reduction in the hypophagic action of 5-HT, possibly acting at 5-HT(1A), 5-HT(1B) and 5-HT(2A) receptors, may contribute to increased appetite in rats presented with highly palatable diet.  相似文献   

15.
The activation of different subtypes of the 5-HT1 receptor can be associated with specific behavioral responses. The present review discusses different categories of behavioral studies that have examined functional distinctions among 5-HT1 receptors. These include: 1) behavioral responses elicited by selective 5-HT receptor agonists; 2) drug discrimination experiments; 3) studies of sensorimotor reactivity and motivated behavior; and 4) behavioral models of clinical psychotherapeutic effects.  相似文献   

16.
The 5-HT1A and 5-HT1B receptors of serotonin play important roles as auto- and heteroreceptors controlling the release of serotonin itself and of other neurotransmitters/modulators in the central nervous system (CNS). To determine the precise localization of these receptors, we examined their respective cellular and subcellular distributions in the nucleus raphe dorsalis and hippocampal formation (5-HT1A) and in the globus pallidus and substantia nigra (5-HT1B), using light and electron microscopic immunocytochemistry with specific antibodies. Both immunogold and immunoperoxidase preembedding labelings were achieved. In the nucleus raphe dorsalis, 5-HT1A immunoreactivity was found exclusively on neuronal cell bodies and dendrites, and mostly along extrasynaptic portions of their plasma membrane. After immunogold labeling, the density of membrane-associated 5-HT1A receptors could be estimated to be at least 30-40 times that in the cytoplasm. In the hippocampal formation, the somata as well as dendrites of pyramidal and granule cells displayed 5-HT1A immunoreactivity, which was also prominent on the dendritic spines of pyramidal cells. In both substantia nigra and globus pallidus, 5-HT1B receptors were preferentially associated with the membrane of fine, unmyelinated, preterminal axons, and were not found on axon terminals. A selective localization to the cytoplasm of endothelial cells of microvessels was also observed. Because the 5-HT1A receptors are somatodendritic, they are ideally situated to mediate serotonin effects on neuronal firing, both as auto- and as heteroreceptors. The localization of 5-HT1B receptors to the membrane of preterminal axons suggests that they control transmitter release from nonserotonin as well as serotonin neurons by mediating serotonin effects on axonal conduction. The fact that these two receptor subtypes predominate at extrasynaptic and nonsynaptic sites provides further evidence for diffuse serotonin transmission in the CNS.  相似文献   

17.
An emerging concept of cortical network organization is that distinct segments of the pyramidal neuron tree are controlled by functionally diverse inhibitory microcircuits. We compared the expression of two serotonin receptor subtypes, the G-protein-coupled 5-hydroxytryptamine2A receptors and the ion-channel gating 5-HT3 receptors, in cortical neuron types, which control these microcircuits. Here we show, using light and electron microscopic immunocytochemical techniques, that 5-HT2A receptors are segregated from 5-HT3 receptors in the macaque cerebral cortex. 5-HT2A receptor immunolabel was found in pyramidal cells and also in GABAergic interneurons known to specialize in the perisomatic inhibition of pyramidal cells: large and medium-size parvalbumin- and calbindin-containing interneurons. In contrast, 5-HT3 label was only present in small GABA-, substance P receptor-, and calbindin-containing neurons and in medium-size calretinin-containing neurons: interneurons known to preferentially target the dendrites of pyramidal cells. This cellular segregation indicates a serotonin-receptor-specific segmentation of the GABAergic inhibitory actions along the pyramidal neuron tree.  相似文献   

18.
Summary The anticonflict activity of m-CPP, a non-selective agonist of 5-HT receptors, was studied in the drinking conflict test in rats. m-CPP administered in doses of 0.125–0. 5 mg/kg increased the number of punished licks, the maximum effect having been observed after a dose of 0.25 mg/kg. The anticonflict effect of m-CPP (0.25 mg/kg) was antagonized by the non-selective 5-HT antagonist metergoline (1–4 mg/kg) and by the -adrenoceptor blocker SDZ 21009 (2 and 4 mg/kg) with affinity for 5-HT1A and 5-HT1B receptors. On the other hand, the 5-HT1A receptor antagonist NAN-190 (0.5 and 1 mg/kg), the 5-HT2 receptor antagonist ritanserin (0.25 and 0.5 mg/kg), and the -blockers betaxolol (8 mg/kg) and ICI 118,551 (8 mg/kg) with no affinity for 5-HT receptors did not affect the effect of m-CPP. The effect of m-CPP was not modified, either, in animals with the 5-HT lesion produced by p-chloroamphetamine.These results suggest that the anticonflict effect of m-CPP described above results from stimulation of 5-HT1B receptors — most probably these which are located postsynaptically.  相似文献   

19.
The 5-HT3 agonist 2-methyl-5-HT had previously been shown to enhance the electrically evoked release of [3H]5-HT from preloaded slices of the guinea pig brain. In the present study, 2-methyl-5-HT (1 μM) was also found to increase the K+ evoked release of [3H]5-HT from preloaded slices of the guinea pig hypothalamus and this effect was blocked by the selective 5-HT3 antagonist ondansetron. In the presence of tetrodotoxin, the enhancement of the K+-evoked release of [3H]5-HT by 2-methyl-5-HT in hypothalamus slices was blocked, thus suggesting that the 5-HT3 receptors mediating this effect are not located directly on 5-HT terminals. In agreement with this, 2-methyl5-HT did not alter the K+-evoked release of [3H]5-HT in a synaptosomal preparation of the same brain structure, even at a concentration 10-fold greater than that used in the slices. Taken together, these data indicate that these facilitatory 5-HT3 receptors are not located on 5-HT terminals in the guinea pig hypothalamus and therefore are not autoreceptors. © 1993 Wiley-Liss, Inc.  相似文献   

20.
BACKGROUND: Serotonin (5-HT) plays a complex regulatory role in processes like anxiety, depression, aggression, and impulse control. Due to the large amount of serotonergic receptors, knockout mice offer an important opportunity to investigate the role of specific receptors. The 5-HT(1B) receptor is thought to mediate aggression and impulse control. This was studied here in mice lacking 5-HT(1B) receptors (5-HT(1B) KO). METHODS: Wild type and 5-HT(1B) KO mice were exposed to several types of entrained and nonentrained stimuli. With telemetry, body temperature, heart rate, and locomotor activity were measured continuously during the different experiments. RESULTS: To nonentrained stimuli like disturbance stress and confrontation with an intruder, 5-HT(1B) KO mice showed exaggerated physiologic and behavioral responses. These mice displayed behavioral disinhibition, measured as increased social interest and aggression to an intruder mouse. However, in response to well-entrained stimuli like daily light transitions, responses were smaller in 5-HT(1B) KO than in wild type mice, suggesting that hyperreactivity is stimulus specific. CONCLUSIONS: Serotonin 1B receptors are essential in impulse control by inhibiting responses to nonentrained stimuli. Therefore, the 5-HT(1B) KO mouse might be an important additional model for studying aspects of disinhibition in aggression and impulse control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号