首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Sun H  Baserga R 《Endocrinology》2004,145(11):5332-5343
32D IGF-I receptor (IR) cells are IL-3-dependent myeloid cells that can be induced to differentiate into granulocytes by IGF-I. Like the parental 32D cells, 32D IGF-IR cells do not express the insulin receptor substrate (IRS)-1 or IRS-2. We investigated the effect of ectopic expression of IRS-2 in 32D IGF-IR cells. Expression in these cells of a wild-type IRS-2 inhibits IGF-I-induced differentiation, and the cells grow indefinitely in the absence of IL-3. We also investigated the effect of a mutant IRS-2 lacking both the pleckstrin (PH) and the phosphotyrosine-binding (PTB) domains, which are known to bind to the IR. The partial differentialPHPTB IRS-2 is fully as capable as the wild-type IRS-2 (and wild-type IRS-1) to stimulate the growth and inhibit the differentiation of 32D IGF-IR cells. In contrast, an IRS-1 protein lacking the same PH and PTB domains is completely inactive in blocking differentiation and stimulating IL-3-independent growth of 32D IGF-IR cells. The partial differentialPHPTB IRS-2 protein is dependent for its effect on an activated IGF-IR, is cytoplasmic, binds to the beta-subunit of the IGF-IR, and requires for its action the presence of phosphatidylinositol 3-kinase binding sequences. These experiments show that the PH and PTB domains of IRS-2 (but not IRS-1) are dispensable for the IGF-I/IRS-2-mediated growth of 32D myeloid cells. Our results also indicate that IRS-2 (either wild type or partial differentialPHPTB) is capable of inhibiting the differentiation of 32D cells.  相似文献   

2.
The Id family of helix-loop-helix proteins is known to be involved in the proliferation and differentiation of several types of cells. The type 1 IGF receptor (IGF-IR) induces either proliferation or differentiation in 32D cells, a murine hemopoietic cell line, depending on the availability of the appropriate substrates for the receptor. We have previously reported that the IGF-IR regulates the expression of the Id2 gene in 32D cells. We now show that the IGF-IR controls the increase in Id2 gene expression through at least three pathways. These three pathways originate from the tyrosine residue at 950, a domain in the C-terminus, and the activation of the insulin receptor substrate-1 (IRS-1) by the receptor. IRS-1 is the preponderant signal, and its effect on Id2 gene expression requires a functional phosphotyrosine binding domain. With wild-type IRS-1, Id2 gene expression is increased, even in those cells that express IGF-I receptors defective in Id2 signaling. Rapamycin, an inhibitor of p70(S6K), a downstream effector of IRS-1 signaling, partially inhibits (but does not completely abrogate) the increase in Id2 gene expression. A mutant IRS-1 with a deletion of the Pleckstrin domain is as effective as wild-type IRS-1 in up-regulating Id2 gene expression. In addition, it seems to increase the stability of p70(S6K). Our results indicate that the IGF-IR regulates Id2 gene expression through different pathways. At least in 32D cells, increased Id2 gene expression seems to correlate more with inhibition of differentiation than with proliferation.  相似文献   

3.
4.
To analyze the roles of insulin receptor substrate (IRS) proteins in insulin-stimulated cell cycle progression, we examined the functions of rat IRS-1 and IRS-3 in Chinese hamster ovary cells overexpressing the human insulin receptor. In this type of cell overexpressing IRS-1 or IRS-3, we showed that: 1) overexpression of IRS-3, but not IRS-1, suppressed the G1/S transition induced by insulin; 2) IRS-3 was more preferentially localized to the nucleus than IRS-1; 3) phosphorylation of glycogen synthase kinase 3 and MAPK/ERK was unaffected by IRS-3 overexpression, whereas that of protein kinase B was enhanced by either IRS; 4) overexpressed IRS-3 suppressed cyclin D1 expression in response to insulin; 5) among the signaling molecules regulating cyclin D1 expression, activation of the small G protein Ral was unchanged, whereas insulin-induced gene expression of c-myc, a critical component for growth control and cell cycle progression, was suppressed by overexpressed IRS-3; and 6) insulin-induced expression of p21, a cyclin-dependent kinase inhibitor, was decreased by overexpressed IRS-3. These findings imply that: 1) IRS-3 may play a unique role in mitogenesis by inhibiting insulin-stimulated cell cycle progression via a decrease in cyclin D1 and p21 expressions as well as suppression of c-myc mRNA induction in a manner independent of the activation of MAPK, protein kinase B, glycogen synthase kinase 3 and Ral; and 2) the interaction of IRS-3 with nuclear proteins may be involved in this process.  相似文献   

5.
To define the specific role of IGF-I receptor (IGF-IR) in adipogenic and thermogenic differentiation of brown adipocytes during late fetal life, we have established immortalized brown adipocyte cell lines from fetuses of IGF-IR-deficient mice (IGF-IR(-/-)) as well as from wild-type mice (IGF-IR(+/+)). IGF-IR(-/-) cells showed an increased insulin sensitivity regarding insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation despite a substantial reduction in IRS-1 protein content. Furthermore, insulin-induced total and IRS-1-associated phosphatidylinositol 3-kinase activities were augmented in IGF-IR-deficient cells compared with wild-type cells. Downstream phosphatidylinositol 3-kinase activation of Akt, but not p70s6 kinase, were elicited at lower doses of insulin in IGF-IR(-/-) brown adipocytes. Activation of protein kinase Czeta by insulin was similar in both cell types as was insulin-induced glucose uptake. Treatment of wild-type brown adipocytes with insulin for 12 h up-regulated fatty acid synthase (FAS) and adipocyte determination and differentiation (ADD1/SREBP) mRNAs; this effect was impaired in the absence of IGF-IR. At the protein level, insulin increased FAS content and the amount of the mature form of adipocyte determination and differentiation (ADD1/SREBP) in the nucleus in wild-type cells, but not in IGF-IR(-/-) cells. Furthermore, 24 h of insulin stimulation induced the expression of both uncoupling protein-1 and CCAAT/enhancer-binding protein alpha (C/EBPalpha) in wild-type brown adipocytes; these effects were abolished in IGF-I-R(-/-) cells. Retrovirus-mediated reexpression of peroxisomal proliferator-activated receptor gamma (PPARgamma) in IGF-IR(-/-) brown adipocytes could overcome FAS mRNA impairment, bypassing insulin signaling. However, insulin further increased FAS mRNA expression in C/EBPalpha-IGF-IR(-/-) cells, but not in PPARgamma-IGF-IR(-/-) cells. In addition, fetal brown adipocytes lacking IGF-IR up-regulated uncoupling protein-1 expression in the absence of insulin when PPARgamma, but not C/EBPalpha, was overexpressed. These data provide strong evidence for a critical role of IGF-IR in the differentiation of the brown adipocyte phenotype in fetal life; this effect is mimicked by PPARgamma in an insulin-independent manner.  相似文献   

6.
We have investigated the role of the NPXY motif in the insulin-like growth factor I receptor (IGF-IR) by focusing on the activation of the phosphatidylinositol-3' kinase (PI3-K) pathway and DNA synthesis following IGF-I stimulation. For this purpose, we established stable R-cell lines, which are deficient in endogenous IGF-IR, and express human IGF-IR lacking the whole NPEY(950) sequence (DeltaNPEY). The DeltaNPEY cells showed an apparent autophosphorylation of IGF-IR, albeit with reduced sensitivity to stimulation compared with cells expressing similar levels of wild-type IGF-IR. Activation of insulin receptor substrate (IRS)-1 and IRS-2 was severely impaired in DeltaNPEY cells even at high concentrations of IGF-I. However, recruitment of p85, a regulatory subunit of PI3-K, to activated IRS-2 was similar between the cell lines, but recruitment of p85 to IRS-1 was reduced in DeltaNPEY cells. Essentially similar levels of p85- or phosphotyrosine-associated PI3-K and Akt activities were observed between the cell lines, although the sensitivity to stimulation was reduced in DeltaNPEY cells. Activation of extracellular signal-regulated kinase and DNA synthesis were virtually unaffected by the mutation, in terms of both sensitivity to stimulation and responsiveness. DNA synthesis was completely inhibited by the PI3-K inhibitor, LY294002. These results indicate that the IGF-IR is able to activate the PI3-K pathway and induce DNA synthesis in a normal fashion without the NPXY motif when the receptor is fully activated.  相似文献   

7.
The insulin-like growth factor I receptor (IGF-IR) is expressed in many cell types and is critical for normal growth and development. In the healthy mammary gland, the role of IGF-IR is not fully elucidated. However, IGF-IR, which is primarily expressed in the mammary epithelial cells, is known to play an obligatory role in cellular transformation, facilitating the progression to breast cancer. We have utilized the tetracycline regulatory (tet-on) system to generate an in vitro model system to allow us to further investigate IGF-I/IGF-IR function in mammary epithelial cells. A plasmid construct containing a mutant IGF-I receptor (IGF-IR-DN) fused to the tetracycline operator (tetOPhCMV-IGF-IR-DN) was stably transfected into MCF-7 human breast cancer cells. The conditional regulation of the IGF-IR-DN gene expression was studied in four independent clonal lines. The translated IGF-IR-DN protein was detected only in the stably transfected doxycycline-induced cells, and its expression was up-regulated (three- to sixfold) following induction. IGF-I stimulated cell proliferation diminished (twofold) in doxycycline-induced cells compared to uninduced cells, demonstrating that the transgene construct was functional and ruling out any pleiotropic effect that may be attributed to doxycycline. Interestingly, autophosphorylation of the IGF-IR and phosphorylation of the downstream substrate, insulin receptor substrate-1 (IRS-1), was not inhibited in doxycycline/IGF-I treated cells, suggesting the possibility that activation of downstream substrates other than the IRS-1 may be critical for optimal cell proliferation. This novel in vitro model should allow us to more directly examine the role of IGF-I/IGF-IR signaling and function in mammary epithelial cells.  相似文献   

8.
Liang L  Jiang J  Frank SJ 《Endocrinology》2000,141(9):3328-3336
Interaction of GH with the cell-surface GH receptor (GHR) causes activation of the GHR-associated tyrosine kinase, JAK2, and consequent triggering of signaling cascades including the STAT, Ras/Raf/MEK1/MAP kinase, and insulin receptor substrate-1(IRS-1)/PI3kinase pathways. We previously showed that IRS- and GHR-deficient 32D cells that stably express the rabbit GHR and rat IRS-1 (32D-rbGHR-IRS-1) exhibited markedly enhanced GH-induced proliferation and MAP kinase (ERK1 and ERK2) activation compared with cells expressing only the GHR (32D-rbGHR). We now examine biochemical mechanism(s) by which IRS-1 augments GH-induced MAP kinase activation. Time-course experiments revealed a similarly transient (maximal at 15 min) GH-induced ERK1 and ERK2 activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells, but, consistent with our prior findings, substantially greater activation was seen in the IRS-1-containing cells. In both cells, GH-induced MAP kinase activation was markedly blunted by the MEK1 inhibitor, PD98059, but not by the PKC inhibitor, GF109203X. Interestingly, pretreatment with the PI3K inhibitor, wortmannin (EC50 approximately 10 nM), significantly reduced GH-induced MAP kinase activation in both 32D-rbGHR and 32D-rbGHR-IRS-1 cells. This same pattern in both cells of IRS-1-dependent augmentation and IRS-1-independent wortmannin sensitivity was also observed for GH-induced activation of Akt and MEK1 (using state-specific antibody blotting for both), despite the lack of difference in GHR, JAK2, SHP-2, p85, Akt, Ras, Raf-1, MEK1, ERK1, or ERK2 abundance between the two cells. A different PI3K inhibitor, LY294002 (50 microM), substantially inhibited (roughly 72%) GH-induced MAP kinase activation in 32D-rbGHR-IRS-1 cells, but only marginally (and statistically insignificantly) inhibited GH-induced MAP kinase activation in 32D-rbGHR cells. Because GH-induced Akt activation was completely inhibited in both cells by the same concentration of LY294002, these findings indicate that the wortmannin sensitivity of both the IRS-1-independent and -dependent GH-induced MAP kinase activation may reflect the activity of another wortmannin-sensitive target(s) in addition to PI3K in mediation of GH-induced MAP kinase activation in these cells. Notably, GH-induced STAT5 tyrosine phosphorylation, unlike Akt or MAPK activation, did not differ between the cells. Finally, while GH promoted accumulation of activated Ras in both cells, both basal and GH-induced activated Ras levels were greater in cells expressing IRS-1 than in 32D-rbGHR cells. These data indicate that while GH induces tyrosine phosphorylation of STAT5 and activation of the Ras/Raf/MEK1/MAPK and PI3K pathways, IRS-1 expression augments the latter two more than the former.  相似文献   

9.
We have previously shown that bradykinin potentiated insulin-induced glucose uptake through GLUT4 translocation in canine adipocytes and skeletal muscles. The aim of this study was to determine the molecular mechanism of bradykinin enhancement of the insulin signal. For this purpose, 32D cells, which express a limited number of insulin receptors and lack endogenous bradykinin B2 receptor (BK2R) or insulin receptor substrate (IRS)-1 were transfected with BK2R cDNA and/or insulin receptor cDNA and/or IRS-1 cDNA, and analyzed. In 32D cells that expressed BK2R and insulin receptor (32D-BKR/IR), bradykinin alone had no effect on the phosphorylation of the insulin receptor, but it enhanced insulin-stimulated tyrosine phosphorylation of the insulin receptor. In 32D cells that expressed BK2R, insulin receptor and IRS-1 (32D-BKR/IR/IRS1), bradykinin also enhanced insulin-stimulated tyrosine phosphorylation of the insulin receptor and IRS-1. An increase in insulin-stimulated phosphorylation of IRS-1 by treatment with bradykinin in 32D-BKR/IR/IRS1 cell was associated with increased binding of 85 kD subunit of phosphatidylinositol 3 (PI 3)-kinase and increased IRS-1 associated PI 3-kinase activity. These effects of bradykinin were not observed in 32D cells which lack the expression of BK2R (32D-IR/IRS1) or insulin receptor (32D-BKR/IRS1). Furthermore, tyrosine phosphatase activity against insulin receptor beta-subunit in plasma membrane fraction of 32D-BKR/IR cells was significantly reduced by bradykinin, suggesting that the effect of bradykinin was in part mediated by inhibition of protein tyrosine phosphatase(s). Our results clearly demonstrated that bradykinin enhanced insulin-stimulated tyrosine kinase activity of the insulin receptor and downstream insulin signal cascade through the BK2R mediated signal pathway.  相似文献   

10.
Aurintricarboxylic acid (ATA), an endonuclease inhibitor, prevents the death of a variety of cell types in culture. Previously we have shown that ATA, similar to insulin-like growth factor I (IGF-I), protected MCF-7 cells against apoptotic death induced by the protein synthesis inhibitor cycloheximide. Here we show that ATA and a polysulfonated aromatic compound, Evans blue (EB), similar to IGF-I, promote survival and increase proliferation of MCF-7 cells in serum-free culture medium. This may suggest a common signaling pathway shared by the aromatic polyanions and IGF-I. Therefore, the ability of these aromatic compounds to activate the signal transduction pathway of IGF-I was examined. We found that ATA and EB mimicked the IGF-I effect on tyrosine phosphorylation of the IGF-I receptor (IGF-IR) and its major substrates, insulin receptor substrate-1 (IRS-1) and IRS-2; induced the association of these substrates with phosphatidylinositol 3-kinase and Grb2; and activated Akt kinase and p42/p44 mitogen-activated protein kinases. ATA and EB competed for IGF-I binding to the IGF-IR. ATA was found to be selective for the IGF-IR, whereas EB also activated the insulin receptor. Upon fractionation of commercial ATA by size exclusion chromatography, we found that fractions that enhanced the intensity of tyrosyl-phosphorylated IRS-1/IRS-2 also increased the survival of MCF-7 cells in the presence of cycloheximide, whereas fractions devoid of IRS phosphorylation activity had no survival ability. Taken together, these results suggest that the survival/proliferation-promoting effects of ATA and EB in MCF-7 cells are transduced via the IGF-IR signaling pathway.  相似文献   

11.
Navarro M  Baserga R 《Endocrinology》2001,142(3):1073-1081
The type 1 insulin-like growth factor receptor (IGF-IR) is effective in protecting cells from a variety of apoptotic injuries. In 32D murine hemopoietic cells, the IGF-IR sends three separate survival signals, through insulin receptor substrate-1, Shc, and mitochondrial Raf translocation. We report here that these three pathways for survival have a limited redundancy. If one of these pathways is blocked, the IGF-IR can still protect 32D cells from apoptosis induced by interleukin-3 withdrawal. However, when two of the three pathways are inactivated, the receptor is no longer capable to protect cells from apoptosis. The survival signal can use any two pathway combinations.  相似文献   

12.
Physiological concentration of genistein, a natural isoflavonoid phytoestrogen, stimulates human breast cancer (MCF-7) cells proliferation. In this study, we hypothesize that low concentration of genistein mimics the action of 17beta-estradiol in stimulation of MCF-7 cell growth by enhancement of IGF-I signaling pathway. Genistein, at 1 microM, stimulated the growth of MCF-7 cells. Cell cycle analysis showed that 1 micro M genistein significantly increased the S phase and decreased the G0G1 phase of MCF-7 cells. The protein and mRNA expression of IGF-I receptor (IGF-IR) and insulin receptor substrate (IRS)-1, but not Src homology/collagen protein, increased in response to 1 microM genistein in a time-dependent manner. These effects could be completely abolished by cotreatment of MCF-7 cells with estrogen antagonist ICI 182780 (1 microM) and tamoxifen (0.1 microM). Our results also showed that genistein induction of IGF-IR and IRS-1 expression resulted in enhanced tyrosine phosphorylation of IGF-IR and IRS-1 on IGF-I stimulation. Taken together, these data provide the first evidence that the IGF-IR pathway is involved in the proliferative effect of low-dose genistein in MCF-7 cells.  相似文献   

13.
BACKGROUND: Ethanol inhibits insulin-like growth factor-I receptor (IGF-IR) activation. However, the potency of ethanol for inhibition of the IGF-IR and other receptor tyrosine kinases varies considerably among different cell types. We investigated the effect of ethanol on IGF-I signaling in several neuronal cell types. METHODS: IGF-I signaling was examined in SH-SY5Y neuroblastoma cells, primary cultured rat cerebellar granule neurons, and rat NG-108 neuroblastoma x glioma hybrids. The tyrosine phosphorylation of IGF-IR, IRS-2, Shc, and p42/p44 MAP kinase (MAPK), and the association of Grb-2 with Shc, were examined by immunoprecipitations and Western blotting. RESULTS: IGF-I-mediated tyrosine phosphorylation of MAPK was inhibited by ethanol in all cell lines. IGF-IR autophosphorylation was markedly inhibited by ethanol in SH-SY5Y cells, was only mildly inhibited in cerebellar granule neurons, and was unaffected in rat NG-108 cells. In vitro tyrosine autophosphorylation of immunopurified IGF-IR obtained from all cell lines was inhibited by ethanol. There was also differential ethanol sensitivity of IRS-2 and Shc phosphorylation, and the association of Shc with IRS-2, among the different cell types. CONCLUSIONS: The findings demonstrate that IGF-I-mediated MAPK activation is a sensitive target of ethanol in diverse neuronal cell types. The data are consistent with ethanol-induced inhibition of IGF-IR activity, although the extent of IGF-IR tyrosine autophosphorylation per se is a poor marker of the inhibitory action of ethanol on this receptor. Furthermore, despite uniform inhibition of MAPK in the different neuronal cell types, tyrosine phosphorylation of proximal mediators of the IGF-IR are differentially inhibited by ethanol.  相似文献   

14.
IRS-1 is an insulin receptor substrate that undergoes tyrosine phosphorylation and associates with the phosphatidylinositol (PtdIns) 3'-kinase immediately after insulin stimulation. Recombinant IRS-1 protein was tyrosine phosphorylated by the insulin receptor in vitro and associated with the PtdIns 3'-kinase from lysates of quiescent 3T3 fibroblasts. Bacterial fusion proteins containing the src homology 2 domains (SH2 domains) of the 85-kDa subunit (p85) of the PtdIns 3'-kinase bound quantitatively to tyrosine phosphorylated, but not unphosphorylated, IRS-1, and this association was blocked by phosphotyrosine-containing synthetic peptides. Moreover, the phosphorylated peptides and the SH2 domains each inhibited binding of PtdIns 3'-kinase to IRS-1. Phosphorylated IRS-1 activated PtdIns 3'-kinase in anti-p85 immunoprecipitates in vitro, and this activation was blocked by SH2 domain fusion proteins. These data suggest that the interaction between PtdIns 3'-kinase and IRS-1 is mediated by tyrosine phosphorylated motifs on IRS-1 and the SH2 domains of p85, and IRS-1 activates PtdIns 3'-kinase by binding to the SH2 domains of p85. Thus, IRS-1 likely serves to transmit the insulin signal by binding and regulating intracellular enzymes containing SH2 domains.  相似文献   

15.
Kim B  van Golen CM  Feldman EL 《Endocrinology》2005,146(12):5350-5357
Insulin receptor substrate (IRS) signaling is regulated through serine/threonine phosphorylation, with subsequent IRS degradation. This study examines the differences in IRS-1 and IRS-2 degradation in human neuroblastoma cells. SH-EP cells are glial-like, express low levels of the type I IGF-I receptor (IGF-IR) and IRS-2 and high levels of IRS-1. SH-SY5Y cells are neuroblast-like, with high levels of IGF-IR and IRS-2 but virtually no IRS-1. When stimulated with IGF-I, IRS-1 expression remains constant in SH-EP cells; however, IRS-2 in SH-SY5Y cells shows time- and concentration-dependent degradation, which requires IGF-IR activation. SH-EP cells transfected with IRS-2 and SH-SY5Y cells transfected with IRS-1 show that only IRS-2 is degraded by IGF-I treatment. When SH-EP cells are transfected with IGF-IR or suppressor of cytokine signaling, IRS-1 is degraded by IGF-I treatment. IRS-1 and -2 degradation are almost completely blocked by phosphatidylinositol 3-kinase inhibitors and partially by proteasome inhibitors. In summary, 1) IRS-2 is more sensitive to IGF-I-mediated degradation; 2) IRS degradation is mediated by phosphatidylinositol 3-kinase and proteasome sensitive pathways; and 3) high levels of IGF-IR, and possibly the subsequent increase in Akt phosphorylation, are required for efficient IRS degradation.  相似文献   

16.
IGF-I regulates cell growth, differentiation, and survival in many cultured nerve cell lines. The present study was undertaken in the human neuroblastoma cell line, SH-SY5Y, to elucidate whether there are differences in the IGF-dependent signal transduction pathways that stimulate proliferation compared to those that induce differentiation. Quiescent SH-SY5Y cells were treated with IGF-I in the presence or absence of PD98059 (an inhibitor of MEK, a MAP kinase kinase) or LY294002 (an inhibitor of PI 3-kinase). Cell growth was assessed by measuring [3H]thymidine incorporation into DNA and cell number. Cell differentiation was assessed by measuring mRNA levels of NPY and neurite outgrowth. IGF-I both induced cell proliferation and differentiation. It stimulated tyrosine phosphorylation of the type I IGF receptor (IGF-IR) beta-subunit, IRS-I, IRS-2, and Shc, and these changes were associated with activation of Erk and Akt. PD98059 inhibited activation of Erk and LY294002 repressed activation of Akt in response to IGF-I, but did not affect tyrosine phosphorylation of the IGF-IR, IRS-1, IRS-2, or Shc. Each PD98059 and LY294002 inhibited IGF-I-dependent cell proliferation in a concentration-dependent manner. In contrast, each of these inhibitors only partially depressed NPY gene expression induced by IGF-I and slightly inhibited IGF-I-mediated neurite outgrowth; however, when both PD98059 and LY294002 were present, IGF-I-dependent NPY gene expression and neurite outgrowth were abolished completely. These results suggest that in these nerve cells, 1) the IGF-I signals through the MAP kinase pathway and PI-3 kinase pathway are independently essential to induce IGF-I-dependent growth, and 2) alternate activation of the MAP kinase pathway and PI 3-kinase pathway is sufficient for the cells to undergo IGF-I-dependent differentiation.  相似文献   

17.
We report here that antiinsulin receptor (anti-IR) autoantibodies (AIRs) from a newly diagnosed patient with type B syndrome of insulin resistance induced cellular resistance not only to insulin but also to insulin-like growth factor I (IGF-I) for the stimulation of phosphatidylinositol 3-kinase and mitogen-activated protein kinase activities and of glycogen and DNA syntheses. The molecular mechanisms of this dual resistance were investigated. Patient AIRs bound the IR at the insulin-binding site and caused insulin resistance at the IR level by inducing a 50% decrease in cell surface IRs and a severe defect in the tyrosine kinase activity of the residual IRs, manifested by a loss of insulin-stimulated IR autophosphorylation and IR substrate-1 (IRS-1)/IRS-2 phosphorylation. In contrast, cell resistance to IGF-I occurred at a step distal to IGF-I receptors (IGF-IRs), as AIRs altered neither IGF-I binding nor IGF-I-induced IGF-IR autophosphorylation, but inhibited the ability of IGF-IRs to mediate tyrosine phosphorylation of IRS-1 and IRS-2 in response to IGF-I. Coimmunoprecipitation assays showed that in AIR-treated cells, IRs, but not IGF-IRs, were constitutively associated with IRS-1 and IRS-2, strongly suggesting that AIR-desensitized IRs impeded IGF-I action by sequestering IRS-1 and IRS-2. Accordingly, AIRs had no effect on the stimulation of mitogen-activated protein kinase activity or DNA synthesis by vanadyl sulfate, FCS, epidermal growth factor, or platelet-derived growth factor, all of which activate signaling pathways independent of IRS-1/IRS-2. Thus, AIRs induced cell resistance to both insulin and IGF-I through a novel mechanism involving a constitutive and stable association of IRS-1 and IRS-2 with the IR.  相似文献   

18.
Nck, an oncogenic protein composed of one SH2 and three SH3 domains, is a common target for various cell surface receptors. Nck is thought to function as an adaptor protein to couple cell surface receptors to downstream effector molecules that regulate cellular responses induced by receptor activation. In this report, we show that Nck forms a stable complex in vivo with IRS-1 in insulin-stimulated cells. The interaction between IRS-1 and Nck is mediated by the binding of the SH2 domain of Nck to tyrosine-phosphorylated IRS-1. Although Nck associates with IRS-1, Nck phosphorylation is not affected by insulin stimulation. Furthermore, in vitro and in vivo studies show that the SH2 domains of Nck, GRB2, and p85 bind distinct phosphotyrosine residues in IRS-1. After insulin stimulation all three signaling molecules can be found complexed to a single IRS-1 molecule. These findings provide further evidence that, in response to insulin stimulation, IRS-1 acts as an SH2 docking protein that coordinates the regulation of various different signaling pathways activated by the insulin receptor.  相似文献   

19.
Development of acquired resistance to antiestrogens is a major clinical problem in endocrine treatment of breast cancer patients. The IGF system plays a profound role in many cancer types, including breast cancer. Thus, overexpression and/or constitutive activation of the IGF-I receptor (IGF-IR) or different components of the IGF-IR signaling pathway have been reported to render breast cancer cells less estrogen dependent and capable of sustaining cell proliferation in the presence of antiestrogens. In this study, growth of the antiestrogen-sensitive human breast cancer cell line MCF-7 was inhibited by treatment with IGF-IR-neutralizing antibodies. In contrast, IGF-IR-neutralizing antibodies had no effect on growth of two different antiestrogen-resistant MCF-7 sublines. A panel of antiestrogen-resistant cell lines was investigated for expression of IGF-IR and either undetectable or severely reduced IGF-IR levels were observed. No increase in insulin receptor substrate 1 (IRS-1) or total PKB/Akt (Akt) was detected in the resistant cell lines. However, a significant increase in phosphorylated Akt (pAkt) was found in four of six antiestrogen-resistant cell lines. Overexpression of pAkt was associated with increased Akt kinase activity in both a tamoxifen- and an ICI 182,780-resistant cell line. Inhibition of Akt phosphorylation by the phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin or the Akt inhibitor SH-6 (structurally modified phosphatidyl inositol ether liquid analog PIA 6) resulted in a more pronounced growth inhibitory effect on the antiestrogen-resistant cells compared with the parental cells, suggesting that signaling via Akt is required for antiestrogen-resistant cell growth in at least a subset of our antiestrogen-resistant cell lines. PTEN expression and activity was not decreased in cell lines overexpressing pAkt. Our data demonstrate that Akt is a target for treatment of antiestrogen-resistant breast cancer cell lines and we suggest that antiestrogen-resistant breast cancer patients may benefit from treatment targeted to inhibit Akt signaling.  相似文献   

20.
Interleukin 4 signals through two related pathways.   总被引:6,自引:0,他引:6       下载免费PDF全文
The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号