首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ascending projections of the locus coeruleus were studied using an autoradiographic method. The major projection of locus coeruleus neurons ascends in a dorsal pathway traversing the midbrain tegmentum in a position ventrolateral to the periaqueductal gray. At the caudal diencephalon the locus coeruleus axons descend to enter the medial forebrain bundle at a caudal tuberal hypothalamic level. They are jointed in the medial forebrain bundle by a much smaller locus coeruleus projection which takes a ventral course through the midbrain tegmentum and enters the medial forebrain bundle via the mammillary peduncle and ventral tegmental area. Terminal projections are evident in the midbrain to the periaqueductal gray, tegmentum and raphe nuclei. There are widespread projections to the dorsal thalamus. The heaviest of these are to the intralaminar nuclei, the anteroventral and anteromedial nuclei, the dorsal lateral geniculate and the paraventricular nucleus. In the hypothalamus the largest projections are to the lateral hypothalamic area, periventricular nucleus, supraoptic nucleus and paraventricular nucleus. As the locus coeruleus projection ascends in the medial forebrain bundle, fibers leave it to traverse the lateral hypothalamus and zona incerta and enter the internal capsule, the ventral amygdaloid bundle and ansa peduncularis. These appear to terminate in the amygdaloid complex and, via the external capsule, in the lateral and dorsal neocortex. At the level of the septum 4 projections are evident. One group of fibers enters the stria medullaris to terminate in the paraventricular nucleus and habenular nuclei. A second group joins the stria terminalis to terminate in the anygdaloid complex. The third group turns into the diagonal band and medial septum; some fibers terminate in the septal nuclei and others continue into the fornix to termimate in hippocampus. A large component continues around the corpus callosum into the cingulum to terminate in the cingulate and adjacent neocortex, the subiculum and hippocampus. The remaining fibers continue rostrally in the medial forebrain bundle to terminate in olfactory forebrain and frontal neocortex. Commissural projections arise at 4 locations. The first decussation occurs in the dorsal tegmentum just below the central gray rostral to the locus coeruleus. The crossing fibers enter the contralateral dorsal bundle. A second group of fibers leaves the ipsilateral dorsal pathway, crosses in the posterior commissure and enters the contralateral dorsal pathway at the level. The third commissural projection arises more rostrally and crosses in the dorsal supraoptic commissure to enter the contralateral medial forebrain bundle. The fourth commissural projection is through the anterior commissure. The termination of the contralateral projection appears similar to that of the ipsilateral projection.  相似文献   

2.
Serotonin neurons of the midbrain raphe: ascending projections.   总被引:10,自引:0,他引:10  
The ascending projections of serotonin neurons of the midbrain raphe were analyzed in the rat using the autoradiographic tracing method. Axons of raphe serotonin neurons ascend in the ventral tegmental area and enter the medial forebrain bundle. A number of fibers leave the major group to ascend along the fasciculus retroflexus. Some fibers enter the habenula but the majority turn rostrally in the internal medullary lamina of the thalamus to innervate dorsal thalamus. Two additional large projections leave the medial forebrain bundle in the hypothalamus; the ansa peduncularis-ventral amygdaloid bundle system turns laterally through the internal capsule into the striatal complex, amygdala and the external capsule to reach lateral and posterior cortex, and another system of fibers turns medially to innervate medial hypothalamus and median eminence and form a contrelateral projection via the supraoptic commissures. Rostrally the major group in the medial forebrain bundle divides into several components: fibers entering the stria medullaris to terminate in thalamus; fibers entering the stria terminalis to terminate in the amygdala; fibers traversing the fornix to the hippocampus; fibers running through septum to enter the cingulum and terminate in dorsal and medial cortex and in hippocampus; fibers entering the external capsule to innervate rostral and lateral cortex; and fibers continuing forward in the medial olfactory stria to terminate in the anterior olfactory nucleus and olfactory bulb.  相似文献   

3.
The efferent, afferent and intrinsic connections of the septal region have been analyzed in the rat with the autoradiographic method. The lateral septal nucleus, which can be divided into dorsal, intermediate and ventral parts, receives its major input from the hippocampal formation and projects to the medial septal-diagonal band complex. The ventral part of the nucleus also sends fibers through the medial forebrain bundle to the medial preoptic and anterior hypothalamic areas, to the lateral hypothalamic area and the dorsomedial nucleus, to the mammillary body (including the supramammillary region), and to the ventral tegmental area. The medial septal nucleus/diagonal band complex projects back to the hippocampal formation by way of the dorsal fornix, fimbria, and possibly the cingulum. Both nuclei also project through the medial forebrain bundle to the medial and lateral preoptic areas, to the lateral hypothalamic area, and to the mammillary complex. The medial septal nucleus also sends fibers to the midbrain (the ventral tegmental area and raphe nuclei) and to the parataenial nucleus of the thalamus, while the nucleus of the diagonal band has an additional projection to the anterior limbic area. Ascending inputs to the medial septal nucleus/diagonal band complex arise in several hypothalamic nuclei and in the brainstem aminergic cell groups. The posterior septal nuclei (the septofimbrial and triangular nuclei) receive their major input from the hippocampal formation, and project in a topographically ordered manner upon the habenular nuclei and the interpeduncular nuclear complex. The bed nucleus of the stria terminalis receives its major input from the amygdala (Krettek and Price, '78); but other afferents arise from the ventral subiculum, the ventromedial nucleus, and the brainstem aminergic cell groups. The principal output of the bed nucleus is through the medial forebrain bundle to the substantia innominata, the nucleus accumbens, most parts of the hypothalamus and the preoptic area, the central tegmental fields of the midbrain, the ventral tegmental area, the dorsal and median nuclei of the raphe, and the locus coeruleus. The bed nucleus also projects to the anterior nuclei of the thalamus, the parataenial and paraventricular nuclei, and the medial habenular nucleus, and through the stria terminalis to the medial and central nuclei of the amygdala, and to the amygdalo-hippocampal transition area.  相似文献   

4.
Ascending projections from the midbrain central gray (CG) and from the region lateral to it were traced in the rat using tritiated amino acid autoradiography. Leucine or a cocktail of amino acids (leucine, proline, lysine, histidine, and tyrosine) were used as tracers. In addition to projections within the midbrain, ascending fibers follow three trajectories. The ventral projection passes through the ventral tegmental region of Tsai and the medial forebrain bundle to reach the hypothalamus, preoptic area, caudoputamen, substantia innominata, stria terminalis, and amygdala. There are labeled fibers in the diagonal bands of Broca and medial septum, and terminal labeling in the lateral septum, nucleus accumbens, olfactory tubercle, and frontal cortex. The dorsal periventricular projection terminates in the midline and intralaminar thalamic nuclei. The ventral periventricular projection follows the ventral component of the third ventricle into the hypothalamus, passing primarily through the dorsal hypothalamic area and labeling the rostral hypothalamus and preoptic area. Projections from the region lateral to the CG are similar, but exhibit stronger proximal, and weaker distal, projections. Rostral levels of the CG send heavier projections to the fields of Forel and the zona incerta, but fewer fibers through the supraoptic decussation, than do caudal levels. Ascending projections from the CG are both strong and widespread. Strong projections to the limbic system and the intralaminar thalamic nuclei provide an anatomical substrate for CG involvement in nociception and affective responses.  相似文献   

5.
This study has examined the ascending projections of the periaqueductal gray in the rat. Injections of Phaseolus vulgaris-leucoagglutinin were placed in the dorsolateral or ventrolateral subregions, at rostral or caudal sites. From either region, fibers ascended via two bundles. The periventricular bundle ascended in the periaqueductal and periventricular gray matter. At the posterior commissure level, this bundle divided into a dorsal component that terminated in the intralaminar and midline thalamic nuclei, and a ventral component that supplied the hypothalamus. The ventral bundle formed in the deep mesencephalic reticular formation and supplied the ventral tegmental area, substantia nigra pars compacta, and the retrorubral field. The remaining fibers were incorporated into the medial forebrain bundle. These supplied the lateral hypothalamus and forebrain structures, including the preoptic area, the nuclei of the diagonal band, and the lateral division of the bed nucleus of the stria terminalis. The dorsolateral subregion preferentially innervated the centrolateral and paraventricular thalamic nuclei and the anterior hypothalamic area. The ventrolateral subregion preferentially innervated the parafascicular and central medial thalamic nuclei, the lateral hypothalamic area, and the lateral division of the bed nucleus of the stria terminalis. Although the dorsolateral and ventrolateral subregions gave rise to differential projections, the projections from both the rostral and caudal parts of either subregion were similar. This suggests that the dorsolateral and ventrolateral subregions are organized into longitudinal columns that extend throughout the length of the periaqueductal gray. These columns may correspond to those demonstrated in recent physiological studies. © 1995 Willy-Liss, Inc.  相似文献   

6.
Using tritiated amino acid autoradiography, the efferent projections of the anterior hypothalamic area (AHA) were studied in albino rats. Axons from AHA neurons were not confined to local projections in the hypothalamus. Ascending AHA axons ran through the preoptic region, joined the diagonal band and distributed in the lateral septum. Descending AHA efferents within the hypothalamus coursed in a bundle ventromedial to the fornix. Projections were observed to the dorsomedial, ventromedial, arcuate and dorsal premammillary nuclei, and to the median eminence. Sweeping dorsomedially in the posterior hypothalamus, some AHA axons distributed in the central grey. AHA axons staying ventral projected to the supramammillary region, ventral tegmental area, raphe nuclei and midbrain reticular formation. Other AHA efferents distributed to the periventricular thalamus, to the medial amygdala via the stria terminalis or supraoptic commissure, and to the lateral habenula through the stria medullaris. For comparison with the AHA, efferent projections from the paraventricular nucleus (PVN) and from the ventromedial nucleus and adjacent basal hypothalamus (VMR) were studied. Projections from PVN neurons were not restricted to the median eminence and neurohypophysis. PVN efferents also distributed to many of the same regions as did those of the AHA but had somewhat different fiber trajectories and longer descending projections. VMR efferents were more widespread than those of the AHA, with projections extending into the lateral zona incerta and pontine reticular formation. Projections from the AHA were distinct from those of the medial preoptic area (mPOA). For example, while AHA axons descended in a bundle ventromedial to the fornix, mPOA axons ran in the medial forebrain bundle. Such anatomical differences may underlie experimentally demonstrated functional differences between the mPOA and AHA, for instance, in mediation of male and female sex behaviors.  相似文献   

7.
Medial anterior hypothalamic connections were studied with H3-proline and autoradiography. Most of the axons projected to other hypothalamic nuclei. The major pathways were found ventral medial to the fornix and in the periventricular tract. Substantial projections were apparent in the ventromedial and dorsomedial nuclei with less label in the arcuate nucleus. The dorsal premammillary nuclei were labeled bilaterally, particularly with more caudal injections of anterior hypothalamus. Efferents were evident in the posterior hypothalamus and continued into the central gray of the midbrain. Labeled fibers reached the ventral tegmental area and in the reticular formation were traced only through pons. Rostral projections were to the medial and lateral preoptic areas and ventral lateral septum. The bed nucleus of stria terminalis was labeled and a very few fibers reached the medial amygdaloid nucleus. The periventricular nucleus of thalamus was labeled.  相似文献   

8.
The efferent projections of the lateral hypothalamic area (LHA) at mid-tuberal levels were examined with the autoradiographic tracing method. Connections were observed to widespread regions of the brain, from the telencephalon to the medulla. Ascending fibers course through LHA and the lateral preoptic area and lie lateral to the diagonal band of Broca. Fibers sweep dorsally into the lateral septal nucleus, cingulum bundle and medial cortex. Although sparse projections are found to the ventromedial hypothalamic nucleus, a prominent pathway courses to the dorsal and medial parvocellular subnuclei of the paraventricular nucleus. Labeled fibers in the stria medullaris project to the lateral habenular nucleus. The central nucleus of the amygdala is encapsulated by fibers from the stria terminalis and the ventral amygdalofugal pathway. The substantia innominate, nucleus paraventricularis of the thalamus, and bed nucleus of the stria terminalis also receive LHA fibers. Three descending pathways course to the brainstem: (1) periventricular system, (2) central tegmental tract (CTT), and (3) medial forebrain bundle (MFB). Periventricular fibers travel to the ventral and lateral parts of the midbrain central gray, dorsal raphe nucleus, and laterodorsal tegmental nucleus of the pens. Dorsally coursing fibers of CTT enter the central tegmental field and the lateral and medial parabrachial nuclei. The intermediate and deep layers of the superior colliculus receive some fibers. Fibers from CTT leave the parabranchial region by descending in the ventrolateral pontine and medullary reticular formation; some of these fibers sweep dorsomedially into the nucleus tractus solitarius, dorsal motor nucleus of the vagus, and nucleus commissuralis. From MFB, fibers descend into the ventral tegmental area and to the border of the median raphe and raphe magnus nuclei.  相似文献   

9.
Afferents to the habenular complex were studied by means of in vitro horseradish peroxidase retrograde labeling and anterograde control experiments in the lizard Gallotia galloti. The medial habenular nucleus was found to receive abundant afferent fibers from the nucleus of the posterior pallial commissure and the nucleus septalis impar. More restricted input comes from the nucleus eminentiae thalami and the nucleus of the stria medullaris. The lateral habenular nucleus is innervated by various fiber groups originating from the bed nucleus of the anterior commissure, the diagonal band nucleus, the lateral preoptic area, the anterior entopeduncular nucleus, the lateral hypothalamic and mammillary areas, the nucleus of the stria medullaris, the area tegmentalis ventralis and a scattered neuronal subpopulation in the large-celled dorsolateral nucleus of the dorsal thalamus. Habenulopetal fibers generally follow the stria medullaris, but hypothalamic, entopeduncular and dorsal thalamic afferents course through the dorsal peduncle of the lateral forebrain bundle in a transthalamic route. Mesencephalic ventral tegmental afferents ascend through the tractus retroflexus.  相似文献   

10.
Efferent projections from the medial and periventricular preoptic area, bed nucleus of the stria terminalis and nuclei of the diagonal band were traced using tritiated amino acid autoradiography in albino rats. Medial and periventricular preoptic area efferents were not restricted to short-axon projections. Ascending projections from the medial preoptic area (mPOA) were traced through the diagonal band into the septum. Descending mPOA axons coursed in the medial parts of the medial forebrain bundle. Projections to most hypothalamic nuclei, including the arcuate nucleus and median eminence, were observed. In the midbrain, mPOA efferents were distributed in the central grey, raphe nuclei, ventral tegmental area and reticular formation. Projections from the mPOA were also observed to the amygdala through the stria terminalis, to the lateral habenula through the stria medullaris, and to the periventricular thalamus. Axons of the most medial and periventricular preoptic area (pvPOA) neurons had a distribution similar to more lateral mPOA neurons but their longest-axoned projections were weaker. The pvPOA did not send axons through the stria medullaris but did project more heavily than the more lateral mPOA to the arcuate nucleus and median eminence. Projections from the bed nucleus of the stria terminalis (nST) were in most respects similar to those from the medial preoptic area, with the major addition of a projection to the accessory olfactory bulb. The nuclei of the diagonal band of Broca (nDBB) gave a different pattern of projections than mPOA or nST, projecting, for instance, to the medial septum and hippocampus. Descending nDBB efferents ran in the ventral portion of the medial forebrain bundle. Among hypothalamic cell groups, only the medial mammillary nuclei received nDBB projections. nDBB efferents also distributed in the medial and lateral habenular nuclei and the mediodorsal thalamic nucleus.  相似文献   

11.
The distribution of neuropeptide Y (NPY)-like immunoreactivity within the hypothalamus of the adult golden hamster was investigated with conventional immunohistochemical techniques. Neuropeptide Y immunoreactive cell bodies were found in greatest numbers in the arcuate nucleus while a few stained perikarya were seen in the internal and subependymal zones of the median eminence. Isolated perikarya were observed in the anterior commissure and supracommissural portion of the interstitial nucleus of the stria terminalis. Immunoreactive axons were located throughout the hypothalamus with the highest concentrations in the subependymal and internal zones of the median eminence, the interstitial nucleus of the stria terminalis, the medial preoptic area, and in the following nuclei: periventricular, suprachiasmatic, paraventricular, perifornical, median preoptic, and arcuate. Moderate to dense plexuses of immunoreactive fibers were observed in the anterior, lateral, and posterior hypothalamic areas and in the infundibular stalk. The supraoptic nucleus and lateral preoptic area displayed a small number of labeled axons whereas the ventromedial nucleus contained only a few fibers. NPY immunoreactive fibers were present in the optic tract and in the dorsomedial aspect of the optic chiasm. Labeled fibers penetrated the ependymal lining of the third ventricle throughout the ventral aspect of the periventricular zone. Additional fibers were observed in the pia lining the ventral aspect of the hypothalamus. This systematic analysis of hypothalamic NPY immunoreactivity in the adult golden hamster suggests that a portion of the labeled fibers display a distribution that is similar to previously described noradrenergic fibers in the hypothalamus.  相似文献   

12.
Horseradish peroxidase, 13% Sigma Type VI, was administered iontophoretically to the mid lateral hypothalamus (LH) of male hooded rats. Animals were perfused intracardially on the following day and brains were removed and sliced in the coronal or sagittal planes into 30–50 μm sections. Sections were processed with DAB and BDH for the brown and blue reaction products and later examined by bright and dark field microscopy for the presence and location of retrogradely labeled neurons. Results indicate that a significant number of afferent connections to the LH originate in the olfactory and accumbens nuclei, pyriform cortex, olfactory tracts, magnocellular and medial preoptic and anterior hypothalamic regions, stria terminalis, stria hypothalamic tract, diagonal tract of Broca, caudate-putamen and globus pallidus, internal capsule, lateral septal nuclei, lateral preoptic area and anterior medial forebrain bundle, the various amygdaloid nuclei, zona incerta, perifornical region, dorsal and ventral medial hypothalamic areas, supraoptic, paraventricular and periventricular nuclei, posterior hypothalamus and medial forebrain bundle, ventral thalamic nuclei, the fields of Forel, arcuate and mammillary nuclei, adjacent to the fasciculus retroflexus, in the ventral tegmental area of Tsai, interpeduncular nucleus, substantia nigra, mesencephalic reticular formation, periaqueductal gray, locus coeruleus and parabrachial region. Results are discussed in terms of previous anatomical and neurophysiological data, probable pathways, and the function of LH neurons.  相似文献   

13.
The connections of the subfornical organ (SFO) wer investigated by using the HRP technique. Injections into the SFO labeled neurons in the medial septum, but not in lateral septum nor in the diagonal band nucleus. Labeled cells were observed in the median preoptic nucleus, below the ependyma of the third ventricle, in the dorsal preoptic region near the anterior commissure, and diffusely throughout the medial preoptic and anterior bypothalamic areas. Fibers were followed from the ventral stalk of the SFO. Precommissural fibers enter the median preoptic nucleus where many of them appear to terminate. Others continue on to the medial septum, the OVLT, the supraoptic nucleus, and the suprachiasmatic nucleus, HRP injections into the median preoptic nucleus labled many neurons in the SFO. Postcommissural fibers reach the hypothalamus by descending along the walls of the ventricle in the subependymal space, by traveling in the columns of the fornix and the medial corticohypothalamic tract, or by passing through the paraventricular nucleus of the thalamus. Some postcommissural fibers turn rostrally and enter the median preoptic nucleus while others join precommissural fibers bound for the supraoptic nucleus. More caudally directed fibers appear to innervate the paraventricular nucleus of the hypothalamus and the medial preoptic and anterior hypothalamic areas. HRP injections into the paraventricular nucleus of the hypothalamus labeled neurons in the SFO. These finding corroborate and extend previous work in describing neural connections between two brain regions that are important for fluid blance.  相似文献   

14.
Medial preoptic axons were traced into the diagonal band of Broca and septum, particularly lateral septum. Other labeled fibers could be followed dorsally from medial preoptic area injections adjacent to the stria medullaris, and in the periventricular fiber system and the stria terminalis and its bed nucleus. The anterior and medial amygdaloid nuclei were labeled by fibers via the stria terminalis and others arching over the optic tract and through the substantia innominata. The lateral habenula was labeled. Labeled periventricular fibers reached the periventricular nucleus of the thalamus. Descending efferents were traced principally below the fornix and in the adjacent lateral hypothalamus to label the anterior hypothalamus, the tuberal nuclei, and median eminence. Axons of the medial preoptic area joined the medial part of the medial forebrain bundle and distributed to the reticular formation and the central gray of the midbrain and pons. A small amount of contralateral connections were described.  相似文献   

15.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain cental gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

16.
The cells of origin and terminal fields of the amygdalo-hypothalamic projections in the lizard Podarcis hispanica were determined by using the anterograde and retrograde transport of the tracers, biotinylated dextran amine and horseradish peroxidase. The resulting labeling indicated that there was a small projection to the preoptic hypothalamus, that arose from the vomeronasal amygdaloid nuclei (nucleus sphericus and nucleus of the accessory olfactory tract), and an important projection to the rest of the hypothalamus, that was formed by three components: medial, lateral, and ventral. The medial projection originated mainly in the dorsal amygdaloid division (posterior dorsal ventricular ridge and lateral amygdala) and also in the centromedial amygdaloid division (medial amygdala and bed nucleus of the stria terminalis). It coursed through the stria terminalis and reached mainly the retrochiasmatic area and the ventromedial hypothalamic nucleus. The lateral projection originated in the cortical amygdaloid division (ventral anterior and ventral posterior amygdala). It coursed via the lateral amygdalofugal tract and terminated in the lateral hypothalamic area and the lateral tuberomammillary area. The ventral projection originated in the centromedial amygdaloid division (in the striato-amygdaloid transition area), coursed through the ventral peduncle of the lateral forebrain bundle, and reached the lateral posterior hypothalamic nucleus, continuing caudally to the hindbrain. Such a pattern of the amygdalo-hypothalamic projections has not been described before, and its functional implications in the transfer of multisensory information to the hypothalamus are discussed. The possible homologies with the amygdalo-hypothalamic projections in mammals and other vertebrates are also considered. J. Comp. Neurol. 384:537–555, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Autoradiography was employed to investigate the efferent projections from the lateral hypothalamus in the guinea pig. Lateral hypothalamic axons were traced along the medial forebrain bundle in both ascending and descending directions. Anteriorly, the label was traced along the medial forebrain bundle in both ascending and descending directions. Anteriorly, the label was traced to the lateral preoptic area, diagonal band of Broca, and septal nuclei. Posterior projections included the ventral tegmental area of Tsai, central gray matter and the reticular formation throughout the brain stem. Laterally, the lateral hypothalamic efferents were found in the stria terminalis, amygdala and globus pallidus. Dorsally, the lateral hypothalamic axons projected to the midline nuclei of the thalamus and bilaterally to the lateral habenular nuclei. Projections to the medial hypothalamus included a labeled fiber bundle to the internal layer of the median eminence and to the posterior lobe of the pituitary gland. Labeled fibers and diffuse label were also found in some areas contralateral to the injection site.  相似文献   

18.
An attempt was made to characterize the nature of the functional organization of the hypothalamus by observing the patterns of uptake of 14C-2-deoxyglucose (2DG) following electrical stimulation of different regions within the preoptico-hypothalamus in the rat. The experimental paradigm consisted of electrical brain stimulation delivered continuously for periods of 30 sec on and 30 sec off for 45 minutes following injection of 2DG. Brains were removed and processed for autoradiography. Activation of the medial forebrain bundle was noted following stimulation of the nucleus accumbens and lateral preoptico-hypothalamus. Activated fibers could be followed only in a caudal direction through the medial forebrain bundle and into the ventral tegmental area as a result of nucleus accumbens stimulation. Stimulation of the lateral preoptic region or of the anterior half of lateral hypothalamus produced activation of the lateral septal nucleus, lateral habenular nucleus, perifornical region, midline thalamus and ventral tegmental area. Since stimulation of the perifornical hypothalamus significantly activated the rostro-caudal extent of the midbrain central gray, it is suggested that impulses from the lateral hypothalamus reach the lower brainstem via its connections with the perifornical hypothalamus. Ventromedial hypothalamic stimulation activated only the lateral septal nucleus, cortico-medial amygdala and medial preoptico-hypothalamus, while medial preoptico-hypothalamic stimulation resulted in increased 2DG uptake in the midbrain central gray, thus suggesting that medial hypothalamic impulses reach the brainstem by first ascending to the level of the preoptico-hypothalamus. Mammillary body stimulation orthodromically activated fibers in the mammillothalamic and mammillotegmental tracts and antidromically fibers in the fornix for a short distance.  相似文献   

19.
The ventrolateral hypothalamus (VLH) in female guinea pigs includes a subset of neurons which contain estrogen and progestin receptors, and which are implicated in the regulation of female sexual behavior by steroid hormones. However, little is known about where these neurons project, and consequently which other brain areas are involved in sexual behavior in female guinea pigs. The anterograde tracer Phaseolus vulgaris -Leucoagglutinin was used to label efferents from the ovarian steroid receptor-containing part of the VLH. To identify the correct placement of the tracer specifically within the group of neurons containing estrogen receptors, medial hypothalamic sections were also immunostained for estrogen receptors. Forebrain areas receiving dense projections from the ventrolateral hypothalamus included the bed nucleus of the stria terminalis, medial preoptic area, anterior hypothalamic area, anterior ventromedial hypothalamus, and caudal ventrolateral hypothalamus. The midbrain central gray was also heavily labeled. Moderate innervation was observed in the forebrain in the basolateral amygdala, medial preoptic nucleus, lateroanterior hypothalamic nucleus, dorsal hypothalamic areas, posterior hypothalamus, zona incerta, and in the midbrain interspersed among the central and lateral tegmental tracts. The major efferent pathways from the VLH appeared to travel rostrally through the mediobasal hypothalamus and preoptic area, and caudally via the medial thalamic nuclei and periventricular fiber system. These findings are similar to those of previous studies tracing the efferents from the ventromedial nucleus in rats and from the lateral hypothalamus in guinea pigs. Many of these areas that receive input from the steroid receptor rich area within the VLH are likely to be involved in the regulation of female sexual behavior.  相似文献   

20.
Possible inputs to the DMH were studied first using the fluorescent retrograde tracer Fluorogold, and identified cell groups were then injected with the anterograde tracer PHAL to examine the distribution of labeled axons in and around the DMH. From this work, we conclude that the majority of inputs to the DMH arise in the hypothalamus, although there are a few significant projections from the telencephalon and brainstem. With few exceptions, each major nucleus and area of the hypothalamus provides inputs to the DMH. Telencephalic inputs arise mainly in the ventral subiculum, infralimbic area of the prefrontal cortex, lateral septal nucleus, and bed nuclei of the stria terminalis. The majority of brainstem inputs arise in the periaqueductal gray, parabrachial nucleus, and ventrolateral medulla. In addition, it now seems clear that inputs to the DMH use only a few discrete pathways. Descending inputs course through a periventricular pathway through the hypothalamic periventricular zone, a medial pathway that follows the medial corticohypothalamic tract, and a lateral pathway traveling through medial parts of the medial forebrain bundle. Ascending inputs arrive through a midbrain periventricular pathway that travels adjacent to the cerebral aqueduct in the periaqueductal gray, and through a brainstem lateral pathway that travels through central and ventral midbrain tegmental fields and enters the hypothalamus, and then the DMH from more lateral parts of the medial forebrain bundle. The results are discussed in relation to evidence for involvement of the DMH in ingestive behavior, and diurnal and stress-induced corticosterone secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号