首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Glyoxal is an interesting endogenous alpha-oxoaldehyde as it originates from pathways that have been linked to various pathologies, including lipid peroxidation, DNA oxidation and glucose autoxidation. In our previous study we showed that the LD(50) of glyoxal towards isolated rat hepatocytes was 5mM. However, 10microM glyoxal was sufficient to overcome hepatocyte resistance to H(2)O(2)-mediated cytotoxicity. Hepatocyte GSH oxidation, NADPH oxidation, reactive oxygen species formation, DNA oxidation, protein carbonylation and loss of mitochondrial potential were also markedly increased before cytotoxicity ensued. Cytotoxicity was prevented by glyoxal traps, the ferric chelator, desferoxamine, and antioxidants such as quercetin and propyl gallate. These results suggest there is a powerful relationship between H(2)O(2)-induced oxidative stress and glyoxal which involves an inhibition of the NADPH supply by glyoxal resulting in cytotoxicity caused by H(2)O(2)-induced mitochondrial oxidative stress.  相似文献   

2.
The following describes a novel screening method for "new chemical entities" (NCEs), suitable for ADMET studies, that measures ability to form prooxidant radicals on metabolism and their ability to induce oxidative stress in intact cells. The accelerated molecular cytotoxic mechanism screening (ACMS) techniques used with isolated rat hepatocytes showed that cytotoxicity is usually initiated as a result of macromolecular covalent binding or macromolecular oxidative stress. While P450 is likely responsible for drug metabolic activation in the liver, intestine, lung, and in other nonhepatic tissues, where P450 levels are low, peroxidases including prostaglandin synthetase peroxidase can catalyze xenobiotic one-electron oxidation to form prooxidant free radicals that may cause toxicity or carcinogenesis. Inflammation markedly activates H2O2, generating NADPH oxidase and peroxidase of certain immune cells when they infiltrate tissues including the liver. Myeloperoxidase and NADPH oxidase in the Kupffer cells (resident macrophages of the liver) also become activated during inflammation. The addition of noncytotoxic concentrations of peroxidase/H2O2 to the hepatocyte incubate markedly increased drug cytotoxicity and prooxidant radical formation as shown by glutathione or lipid oxidation. Many drugs that have hepato- or gastrointestinal (GI) toxicity problems or were withdrawn from the market for safety problems, e.g., troglitazone, tolcapone, mefenamic acid, diclofenac, and phenylbutazone, were markedly more toxic and prooxidant in this inflammation model system, whereas other drugs, e.g., entacapone, were not toxic in this inflammation model. Some of the idiosyncratic hepatotoxicity responsible for recent drug withdrawals may therefore result from commonplace sporadic inflammatory episodes during drug therapy.  相似文献   

3.
The order of antioxidant effectiveness of low concentrations of vitamin E analogues, in preventing cumene hydroperoxide-induced hepatocyte lipid peroxidation and cytotoxicity, was 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC) > troglitazone > Trolox C > alpha-tocopherol > gamma-tocopherol > delta-tocopherol. However, vitamin E analogues, including troglitazone at higher concentrations, induced microsomal lipid peroxidation when oxidized to phenoxyl radicals by peroxidase/H2O2. Ascorbate or GSH was also cooxidized, and GSH cooxidation by vitamin E analogue phenoxyl radicals was also accompanied by extensive oxygen uptake and oxygen activation. When oxidized by nontoxic concentrations of peroxidase/H2O2, vitamin E analogues except PMC also caused hepatocyte cytotoxicity, lipid peroxidation, and GSH oxidation. The prooxidant order of vitamin E analogues in catalyzing hepatocyte cytotoxicity, lipid peroxidation, and GSH oxidation was troglitazone > Trolox C > delta-tocopherol > gamma-tocopherol > alpha-tocopherol > PMC. A similar order of effectiveness was found for GSH cooxidation or microsomal lipid peroxidation but not for ascorbate cooxidation. Except for troglitazone, the toxic prooxidant activity of vitamin E analogues was therefore inversely proportional to their antioxidant activity. The high troglitazone prooxidant activity could be a contributing factor to its hepatotoxicity. We have also derived equations for three-parameter quantitative structure-activity relationships (QSARs), which described the correlation between antioxidant and prooxidant activity of vitamin E ananlogues and their lipophilicity (log P), ionization potential (E(HOMO)), and dipole moment.  相似文献   

4.
Quinolones (Qs) were shown to have cytotoxic effects in various cell lines including human carcinoma cells; however, mechanism of these effects was not fully understood. To investigate the possibility of the involvement of an oxidative stress induction in this mechanism of action, we examined viability of human fibroblast cells exposed to a Q antibiotic, ciprofloxacin (CPFX), and measured lipid peroxidation and total glutathione (GSH) levels, and activities of catalase (Cat), superoxide dismutases (SODs), glutathione peroxidase (GPx). The effects of vitamin E pretreatment on those parameters were also examined. Our results showed that the effect of CPFX on the viability of the cells, as determined by neutral red uptake assay, was time dependent. Cytotoxicity was not observed in the concentration range of 0.0129-0.387 mM CPFX when the cells were incubated for 24 hours. However, significant level of cytotoxicity was observed at concentrations 0.129 and 0.194 mM, and >0.129 mM, following 48 and 72 hours of exposure, respectively. When the cells were exposed to 0.194 mM CPFX for 48 hours, the level of lipid peroxidation increased and the content of total GSH decreased significantly; activities of total SOD, Mn SOD and CuZn SOD did not change; the decrease observed in the activity of Cat was not significant; and the activity of GPx was highly variable. Vitamin E pretreatment of the cells provided significant protection against CPFX-induced cytotoxicity; lowered the level of lipid peroxidation significantly, but increased the total GSH content only moderately; no change was observed in the activities of Cat and total SOD, but a significant increase in Mn SOD and a significant decrease in CuZn SOD were noticed. These results suggested that CPFX-induced cytotoxicity on human fibroblast cell cultures is related to oxidative stress, and vitamin E pretreatment can afford a protection.  相似文献   

5.
Chloroquine is a synthetic quinoline being used as an antimalaria and antirheumatoid agent. Several cases of hepatotoxicity have been reported with the use of chloroquine. However, the mechanism(s) of its hepatotoxic effect is unknown. The purpose of this study was to investigate the cytotoxic mechanism of chloroquine. Cytotoxicity was studied using freshly isolated rat hepatocytes incubated in Krebs-Henseleit buffer under a flow of 95% O(2) and 5% CO(2). Chloroquine was toxic towards hepatocytes and caused cell death with an ED(50) of about 100 mm in 2 h. The events before cell death were rapid GSH depletion and lipid peroxidation. Cytochrome P-450 inhibitors, troleandromycine, cimetidine and quinidine increased the cytotoxicity of chloroquine. Antioxidants significantly prevented the cytotoxicity of chloroquine. Depleting the hepatocyte GSH beforehand increased the chloroquine cytotoxicity. Preventing chloroquine metabolism by specific P-450 inhibitors increased its toxicity, suggesting that a major part of its toxicity is mediated by chloroquine and not by its metabolites. A depletion of the antioxidant defense system is involved in the mechanism of cytotoxicity.  相似文献   

6.
The fungicide isoprothiolane (diisopropyl 1,3-dithiolane-2-ylidenemalonate) decomposes to the diisopropyl esters of malonic acid (DM), chloromalonic acid (DCM) and dichloromalonic acid (DDCM) upon aqueous chlorination. In this study, the cytotoxicity of these compounds was examined using rat hepatocytes cultured on Matrigel. DCM and DDCM caused hepatocellular death at concentrations >0.5 mM, while DM had no effect on the cell viability even at the maximum concentration examined (4 mM). Significant lipid peroxidation, measured as 2-thiobarbituric acid reactive substances, was observed in both DCM- and DDCM-treated hepatocyte cultures, and was significantly enhanced by pretreatment with 0.1 mM bis( p-nitrophenyl)phosphate (BNPP), a carboxylesterase inhibitor. When both BNPP and SKF-525A, a cytochrome P450 inhibitor, were present in the medium, DCM-induced cytotoxicity and lipid peroxidation were significantly suppressed compared to cultures with BNPP-treatment alone. By contrast, the DDCM-induced cytotoxicity was not affected by the combined pretreatment of SKF-525A and BNPP. These results indicate that DCM is metabolically activated by cytochrome P450 in an ester form, while DDCM is activated by a mechanism other than one involving cytochrome P450. To further elucidate the cytochrome P450 isozyme involved in the metabolic activation of DCM, microsomal lipid peroxidation was studied in vitro using microsomes from rats treated with β-naphthoflavone, musk xylene, phenobarbital, pyrazole, or dexamethasone. Among these preparations, the microsomes from dexamethasone-treated rats showed the most extensive lipid peroxidation in the presence of DCM, and the lipid peroxidation was enhanced by BNPP as observed in hepatocyte cultures. These findings suggest the possible involvement of cytochrome P450 3A in the metabolic activation of DCM. Received: 12 February 1997 / Accepted: 10 April 1997  相似文献   

7.
Isoniazid is an anti-tuberculosis drug that can cause hepatotoxicity in 20% of patients that is usually associated with an inflammatory response. Hepatocytes when exposed to non-toxic levels of H2O2, to simulate H2O2 formation by inflammatory cells, became twice as sensitive to isoniazid toxicity. Isoniazid cytotoxicity was prevented by 1-aminobenzotriazole, a non-selective P450 inhibitor or by bis-p-nitrophenyl phosphate (BNPP), an esterase inhibitor. Moreover, the cytotoxicity of hydrazine, the metabolite formed by amidase-catalyzed hydrolysis of isoniazid, was increased 16-fold by a non-toxic H2O2-generating system. The acetylhydrazine metabolite was found to be much less cytotoxic than hydrazine in this hepatocyte inflammation model. Hydrazine, therefore, seems to be the isoniazid reactive metabolite in this inflammation model. The molecular mechanism of hydrazine-induced cytotoxicity was attributed to oxidative stress as reactive oxygen species (ROS) and protein carbonyl formation occurred before the onset of hepatocyte toxicity. Hydrazine toxicity also involved significant production of endogenous H2O2 which resulted in lysosomal membrane damage and leads to a collapse in mitochondrial membrane potential. These results implicated H2O2, a cellular mediator of inflammation, as a potential risk factor for the manifestation of adverse drug reactions, particularly those caused by hydrazine containing drugs.  相似文献   

8.
Previously, it was shown that indole-3-acetic acid (IAA) is a nontoxic prodrug that forms a radical, toxic to tumor cells when activated by peroxidase. Because of this, IAA and peroxidase conjugated to an antibody specific to an extracelluar tumor antigen are currently in phase II clinical trials. In the following, the prooxidant activities of the radicals formed were compared when IAA or its derivatives were metabolically oxidized by peroxidase/H(2)O(2). In general, it was found that the effectiveness of IAA analogues for catalyzing the cooxidation of ascorbate, NADH, or GSH increased as the IAA derivatives were more readily oxidized by HRP/H(2)O(2). The order of effectiveness of IAA derivatives at cooxidizing NADH, ascorbate, GSH, and hepatocyte GSH was 5MeO-2Me-IAA > 2Me-IAA > 5MeO-IAA > IAA. The rates of NADH and ascorbate cooxidation were faster at pH 7.4 than at pH 6.0, whereas GSH cooxidation was faster at pH 6.0 than at pH 7.4. Furthermore, NADH, ascorbate, and GSH prevented the oxidation of IAA derivatives, which suggested that the indolyl cation radical was responsible for the prooxidant activity. The effectiveness of IAA derivatives in catalyzing lipid peroxidation at pH 7.4 was similar and also correlated with the rate of oxidation of IAA derivatives by HRP-I and the one-electron potential of these compounds. The IAA derivative-induced lipid peroxidation was faster at pH 6.0 than at pH 7.4. IAA derivative effectiveness at catalyzing microsomal and hepatocyte lipid peroxidation or hepatocyte reactive oxygen species formation at pH 6.0 was IAA > 5MeO-2Me-IAA > 2Me-IAA > 5MeO-IAA, but at pH 7.4, it was 5MeO-2Me-IAA > 2Me-IAA > 5MeO-IAA > IAA. Previously, the rate of radical cation decarboxylation to skatole radicals and (skatole) peroxyl radicals was reported to be faster at an acid pH with IAA being more effective than the derivatives. This suggests that IAA skatole and/or (skatole) peroxyl radicals catalyze lipid peroxidation at pH 6.0. Incubation of isolated rat hepatocytes with IAA analogues/H(2)O(2)/peroxidase also resulted in cytotoxicity with 5MeO-2Me-IAA being the most effective at pH 7.4 and IAA being the most effective at pH 6.0. Cytotoxicity was also prevented by antioxidants.  相似文献   

9.
The antioxidant properties of the dietary dihydroxycinnamic acids [caffeic (CA), dihydrocaffeic (DHCA), and chlorogenic (CGA) acids] have been well studied but little is known about their metabolism. In this article, evidence is presented showing that CA, DHCA, and CGA form quinoids and hydroxylated products when oxidized by peroxidase/H(2)O(2) or tyrosinase/O(2). Mass spectrometry analyses of the metabolites formed with peroxidase/H(2)O(2)/glutathione (GSH) revealed that mono- and bi-glutathione conjugates were formed for all three compounds except CGA, which formed a bi-glutathione conjugate only when GSH was present. In contrast, the metabolism of the dihydroxycinnamic acids by tyrosinase/O(2)/GSH resulted in the formation of only mono-glutathione conjugates. In the absence of GSH, hydroxylated products and p-quinones of CA or CGA were formed by peroxidase/H(2)O(2). DHCA formed a hydroxylated adduct (even though GSH was present), as well as the corresponding p-quinone and dihydroesculetin, an intramolecular cyclization product. NADPH also supported rat liver microsomal-catalyzed CA-, CGA-, and DHCA-glutathione conjugate formation, which was prevented by benzylimidazole, a cytochrome P450 inhibitor. Furthermore, the cytotoxicity of CA, CGA, and DHCA toward isolated rat hepatocytes was markedly enhanced by hydrogen peroxide or cumene hydroperoxide-supported cytochrome P450 and was prevented by benzylimidazole. Cytotoxicity was also markedly enhanced by dicumarol, an NADPH/oxidoreductase inhibitor. These results suggest that dihydroxycinnamic acids were metabolically activated by P450 peroxidase activity to form cytotoxic quinoid metabolites.  相似文献   

10.
Freshly isolated rat hepatocytes were used to study the mechanism(s) of toxicity of the antimicrobial drug nitrofurantoin. This 5-nitrofuran derivative stimulated hepatocyte oxygen uptake in the presence of the mitochondrial respiration inhibitors KCN or antimycin A. This could indicate the formation of O2- and H2O2, following intracellular nitrofurantoin reduction. Addition of nitrofurantoin to suspensions of isolated rat hepatocytes produced a dose- and time-dependent decrease of cell viability. H2O2 probably plays a significant role in the cytotoxic effects of nitrofurantoin as the catalase inhibitors azide or aminotriazole markedly enhanced cytotoxicity. The loss of cell viability was preceded by glutathione (GSH) depletion and a concomitant and nearly stoichiometric formation of oxidised glutathione (GSSG) that did not occur in hepatocytes lacking glutathione peroxidase activity isolated from rats fed a low-selenium diet. This indicates that H2O2 and the seleno-enzyme glutathione peroxidase are responsible for GSH oxidation. Furthermore, addition of nitrofurantoin to isolated rat hepatocytes produced a reversible inactivation of hepatocyte glutathione reductase activity and explains the maintenance of high GSSG levels. The compromised hepatocytes were also highly susceptible to H2O2. The hepatocyte toxicity of nitrofurantoin may, therefore, be attributed to oxidative stress caused by redox-cycling mediated oxygen activation.  相似文献   

11.
A comparison of hepatocyte cytotoxic mechanisms for chromate and arsenite   总被引:2,自引:0,他引:2  
In the following, we have compared the cytotoxic mechanisms of the chromate CrO(4)(2-) and arsenite AsO(2)(-). Chromate (Cr (VI)) cytotoxicity was associated with reactive oxygen species (ROS) formation, lipid peroxidation and loss of mitochondrial membrane potential, which were prevented by catalase, antioxidants and ROS scavengers. Hepatocyte glutathione was also rapidly oxidized. Chromate reduction was inhibited in glutathione depleted hepatocytes, and glutathione depleted hepatocytes were also much more resistant to chromate induced cytotoxicity, ROS formation and lipid peroxidation. This suggests that chromate is reductively activated by glutathione. Chromate cytotoxicity also involved lysosomal injury and protease activation, which were prevented by lysosomotropic agents, endocytosis inhibitors, protease inhibitors and ROS scavengers. On the other hand, arsenite cytotoxicity was associated with much less oxidative stress, and lysosomal damage did not occur. However, arsenite cytotoxicity was also associated with loss of mitochondrial membrane potential, which in contrast to chromate cytotoxicity was inhibited by the ATP generators fructose, xylitol and glutamine. Arsenite induced cytotoxicity, mitochondrial membrane potential decline and also ROS formation were significantly increased by inactivating hepatocyte methionine synthase or hepatocyte methyl transferase. However, methyl donors such as betaine, methionine or folic acid prevented arsenite but not chromate cytotoxicity, and this suggests that arsenite is detoxified by reductive methylation. In conclusion, chromate induced cytotoxicity could be attributed to oxidative stress and lysosomal damage, whereas arsenite induced cytotoxicity could be attributed to mitochondrial toxicity and ATP depletion.  相似文献   

12.
The cytotoxic mechanism of glyoxal involves oxidative stress   总被引:6,自引:0,他引:6  
Glyoxal is a reactive alpha-oxoaldehyde that is a physiological metabolite formed by lipid peroxidation, ascorbate autoxidation, oxidative degradation of glucose and degradation of glycated proteins. Glyoxal is capable of inducing cellular damage, like methylglyoxal (MG), but may also accelerate the rate of glycation leading to the formation of advanced glycation end-products (AGEs). However, the mechanism of glyoxal cytotoxicity has not been precisely defined. In this study we have focused on the cytotoxic effects of glyoxal and its ability to overcome cellular resistance to oxidative stress. Isolated rat hepatocytes were incubated with different concentrations of glyoxal. Glyoxal by itself was cytotoxic at 5mM, depleted GSH, formed reactive oxygen species (ROS) and collapsed the mitochondrial membrane potential. Glyoxal also induced lipid peroxidation and formaldehyde formation. Glycolytic substrates, e.g. fructose, sorbitol and xylitol inhibited glyoxal-induced cytotoxicity and prevented the decrease in mitochondrial membrane potential suggesting that mitochondrial toxicity contributed to the cytotoxic mechanism. Glyoxal cytotoxicity was prevented by the glyoxal traps d-penicillamine or aminoguanidine or ROS scavengers were also cytoprotective even when added some time after glyoxal suggesting that oxidative stress contributed to the glyoxal cytotoxic mechanism.  相似文献   

13.
Methyl gallate (MG) has been shown to be an effective antioxidant in a variety of acellular experiments. Accordingly, this study was designed to assess the ability of MG, extracting from Toona sinensis to protect cultured Madin-Darby canine kidney (MDCK) cells against hydrogen peroxide (H2O2)-mediated oxidative stress. Trolox, a cell permeable and water-soluble vitamin E analogue, was included for comparison. First, when MDCK cells were pretreated with MG and trolox for 1 h, followed by exposing to H2O2 (0.8 mM) for an additional hour, we found that the intracellular peroxide productions, as reflected by dichlorofluorescein (DCF) fluorescence, were shown to be decreased in a concentration-dependent manner. Furthermore, using C11-BODIPY581/591 as a lipid peroxidation probe, we also found that MG, in a concentration of 100 microM, could alleviate lipid peroxidation of the cells exposed to a short-term H2O2 treatment. In addition, MG-treated cells could prevent intracellular glutathione (GSH) from being depleted following an exposure of H2O2 (8.0 mM) for a 3 h period. Next, we also examined the effect of MG on H2O2-mediated oxidative damage to DNA. Using 8-oxoguanine as an indicator for oxidative DNA damage, we demonstrated that the percentage of MDCK cells containing 8-oxoguanine was drastically increased by exposing to H2O2 (40 mM) for 3 h. However, 8-oxoguanine contents were shown to be significantly decreased in the presence of MG prior to H2O2 exposure. Comparatively, MG was shown to be a better protective agent against oxidative damage to DNA as compared to trolox. Taken together, our data suggest that MG is effective in preventing H2O2-induced oxidative stress and DNA damage in MDCK cells. The underlying mechanisms involved scavenging of intracellular reactive oxygen species (ROS), inhibition of lipid peroxidation and prevention of intracellular GSH depletion.  相似文献   

14.
Erythrocytes are a convenient model to understand the membrane oxidative damage induced by various xenobiotic-prooxidants. This study was designed to investigate (1) the possibility of lambda-cyhalothrin (LC), a type II pyrethroid, to induce oxidative stress response in rabbit erythrocytes in vitro and its effect on selected antioxidant enzymes and (2) the role of vitamin C (VC; 20mM) and vitamin E (VE; 2mM) in alleviating the cytotoxic effects of LC. Erythrocytes were divided into three groups. The first group, previously prepared erythrocytes was incubated for 4h at 37 degrees C with different concentrations (0, 0.1, 0.5, 1, 2.5, 5mM) of LC. The second and third groups were preincubated with VC or VE, respectively for 20 min and followed by LC incubation for 4h. Following in vitro exposure, LC caused a significant induction of oxidative damage in erythrocytes at different concentrations as evidenced by increased thiobarbituric acid reactive substances (TBARS) levels. However, a significant decrease in the content of sulfhydryl groups (SH-groups), and the activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) were observed. The response was concentration dependent. VC or VE pretreated erythrocytes showed a significant protection against the cytotoxic effects induced by LC on the studied parameters. In conclusion, antioxidant vitamins especially VE could be able to ameliorate LC-induced oxidative stress by decreasing lipid peroxidation and altering antioxidant defense system in erythrocytes.  相似文献   

15.
Oxidative stress has been causally linked to a variety of neurodegenerative diseases. To clarify the role of the antioxidant enzyme (AOE) system in oxidative brain damage primary cultures of rat astroglial cells were exposed to hydrogen peroxide (H2O2). Expression of AOEs and several parameters for cell viability and functionality were measured. In our experiments astrocytes responded to low concentrations of H2O2 exposure with a pronounced generation of ROS which ran parallel with induction of lipid peroxidation. This distinct oxidative stress was not reflected in cell viability or functionality parameters measured. Cytotoxicity, a decrease in glutathione content of astrocytes, and impairment of mitochondrial functions became obvious only for higher concentrations of H2O2. After H2O2 exposure catalase, manganese superoxide dismutase, and glutathione peroxidase expression levels were found to be increased, whereas copper/zinc superoxide dismutase mRNA expression was not affected. These data indicate that the AOE system of astrocytes can be directly regulated by oxidative stress and may thus contribute to protection of cells against oxidative insults.  相似文献   

16.
Our work in this study was made in the microsomal fraction to evaluate the lipid peroxidation by measuring superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) and to elucidate the preventive role of CS in the CCl4-induced oxidative stress. The excessive lipid peroxidation by free radicals derived from CCl4 leads to the condition of oxidative stress which results in the accumulation of MDA. MDA is one of the end-products in the lipid peroxidation process and oxidative stress. MDA, lipid peroxide, produced in this oxidative stress causes various diseases related to aging and hepatotoxicity, etc. Normal cells have a number of enzymatic and nonenzymatic endogenous defense systems to protect themselves from reactive species. The enzymes in the defense systems, for example, are SOD, CAT, and GPx. They quickly eliminate reactive oxygen species (ROS) such as superoxide anion free radical *O2(-), hydrogen peroxide H2O2 and hydroxyl free radical *OH. CS inhibited the accumulation of MDA and the deactivation of SOD, CAT and GPx in the dose-dependent and preventive manner. Our study suggests that CS might be a potential scavenger of free radicals in the oxidative stress originated from the lipid peroxidation of the liver cells of CCl4-treated rats.  相似文献   

17.
Addition of U(VI) (uranyl acetate) to isolated rat hepatocytes results in rapid glutathione oxidation, reactive oxygen species (ROS) formation, lipid peroxidation, decreased mitochondrial membrane potential, and lysosomal membrane rupture before hepatocyte lysis occurred. Cytotoxicity was prevented by ROS scavengers, antioxidants, and glutamine (ATP generator). Hepatocyte dichlorofluorescein oxidation was inhibited by mannitol (a hydroxyl radical scavenger) or butylated hydroxyanisole and butylated hydroxytoluene (antioxidants). Glutathione depleted hepatocytes were resistant to U(VI) toxicity and much less dichlorofluorescein oxidation occurred. Reduction of U(VI) by glutathione or cysteine in vitro was also accompanied by oxygen uptake and was inhibited by Ca(II) (a U(IV) or U(VI) reduction inhibitor). U(VI)-induced cytotoxicity and ROS formation was also inhibited by Ca(II), which suggests that U(IV) and U(IV) GSH mediate ROS formation in isolated hepatocytes. The U(VI) reductive mechanism required for toxicity has not been investigated. Cytotoxicity was also prevented by cytochrome P450 inhibitors, particularly CYP 2E1 inhibitors, but not inhibitors of DT diaphorase or glutathione reductase. This suggests that P450 reductase and reduced cytochrome P450 contributes to U(VI) reduction to U(IV). In conclusion, U(VI) cytotoxicity is associated with mitochondrial/lysosomal toxicity by the reduced biological metabolites and ROS.  相似文献   

18.
The glutathione-glutathione peroxidase system is an important defense against oxidative stress. The ability of this system to protect against iron-catalyzed microsomal production of hydroxyl radicals [oxidation of 4-methylmercapto-2-oxo-butyrate (KMBA)] and lipid peroxidation was evaluated. When rat liver cytosol was added to microsomes, strong inhibition against KMBA oxidation was observed. No protection was found when the cytosol was boiled or dialyzed. In the latter case, the addition of 0.5 mM glutathione restored almost complete protection, whereas in the former case protection could be restored by the addition of both glutathione and glutathione peroxidase. Cysteine could not replace glutathione, nor could glutathione S-transferase replace glutathione peroxidase. The glutathione-glutathione peroxidase system was also very effective in decreasing production of hydroxyl radicals stimulated by the addition of menadione or paraquat to microsomes. In the absence of cytosol, the addition of glutathione plus glutathione peroxidase was also effective; however, 5 mM glutathione was necessary to protect against KMBA oxidation. The effective concentration of glutathione required for protection was lowered when glutathione reductase was added to the system, to regenerate reduced glutathione. These results indicate that low concentrations of glutathione in conjunction with glutathione peroxidase plus reductase can be very effective in preventing microsomal formation of hydroxyl radicals catalyzed by iron and other toxic compounds. Microsomal lipid peroxidation was decreased 40% by glutathione alone, and this decrease was potentiated in the presence of glutathione reductase. In contrast to KMBA oxidation, the combination of glutathione plus glutathione peroxidase was not any more effective than glutathione alone in preventing lipid peroxidation. The differences in sensitivities of microsomal lipid peroxidation and KMBA oxidation to glutathione peroxidase suggest that these two processes can be distinguished from each other, and that free H2O2 and hydroxyl radicals are involved in KMBA oxidation, but not lipid peroxidation.  相似文献   

19.
Flavonoids are widely recognized as naturally occurring antioxidants. Naringin (NG) is one of the flavonoid components in citrus fruits such as grapefruit. Hydrogen peroxide (H2O2) causes cytotoxicity through oxidative stress and apoptosis. In this paper, we examined the effects of NG on H2O2-induced cytotoxicity and apoptosis in mouse leukemia P388 cells. Cytotoxicity was determined by mitochondrial activity (MTT assay). Apoptosis and DNA damage were analyzed by measuring chromatin condensation and Comet assay (alkaline single cell gel electrophoresis), respectively. H2O2-induced cytotoxicity was significantly attenuated by NG or the reduced form of glutathione (GSH), a typical intracellular antioxidant. NG suppressed chromatin condensation and DNA damage induced by H2O2. These results indicate that NG from natural products is a useful drug having antioxidant and anti-apoptopic properties.  相似文献   

20.
Nitronyl nitroxides (NN) effectively decompose free radicals (. As brain endothelium, forming the blood-brain barrier (BBB), is both the main source and the target of reactive species during cerebral oxidative stress, we studied the effect of NN on brain endothelial cells injured by the mediator of oxidative stress H(2)O(2) (. H(2)O(2) caused hydroxyl radical generation, lipid peroxidation, membrane dysfunction, membrane leak and cell death, concentration dependently. Due to 0.5 mM H(2)O(2), oxy-radical-induced membrane phospholipid peroxidation (malondialdehyde) increased to 0.61+/-0.04 nmol/mg protein vs control (0.32+/-0.03, p<0.05), cells lost cytosolic proteins into the medium and viability decreased to 28+/-2% of control (p<0.05). Permeability through the endothelial monolayer (measure for the tightness of the BBB) rose to 250+/-40% after 0.15 mM H(2)O(2) (p<0.001). Addition of 10 microM of the NN 5,5-dimethyl-2,4-diphenyl-4-methoxy-2-imidazoline-3-oxide-1-oxyl (NN-2), 1 mM phenylbutyl nitrone (PBN), or 10 microM of the lazaroid U83836E improved cell viability during incubation with 0.5 mM H(2)O(2) to 57+/-1%, 49+/-2%, and 42+/-3% (p<0.05, vs drug-free H(2)O(2) group). The permeability enhancement by 0.15 mM H(2)O(2) was reduced to 171+/-21%, 170+/-25%, and 118+/-32% (p<0.05 vs drug-free H(2)O(2) group). Generally, the assumption is supported that during cerebral oxidative stress the protection should also be directed to the cells of the BBB, which can be provided by antioxidative approaches. NN represent a new group of antioxdatively acting cytoprotectiva improving the survival and function of the endothelium against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号