首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics, equilibrium, and statistical aspects of the sulfur removal process from hydrocarbon fuels by AFe2O4–silica nanocomposites (A: Ni, Mg, and Co) have been investigated in the present study. Nanocomposites were prepared via the auto-combustion sol–gel method and then employed in the adsorptive desulfurization (ADS) process. Next, the prepared samples were characterized by different analytical methods including XRD, SEM, TEM, FT-IR, TGA, and BET. The contributions of conventional parameters including adsorbent dosage and contact time were then studied by central composite design (CCD) under response surface methodology (RSM). Based on the statistical investigations, optimum conditions for ADS were an adsorbent dosage of 7.82 g per 50 ml of the model fuel and a contact time of 32 min. The adsorption amounts reached 38.6 mg g−1 for DBT. The quadratic model was applied for the analysis of variance. Based on the experimental data, the pseudo-first-order (PFO) model could explain the adsorption kinetics of the compounds. Furthermore, the Langmuir isotherm demonstrated considerable agreement with the experimental equilibrium data. According to the results, the NiFe2O4–SiO2 nanocomposite showed the best performance compared to other compounds. The sulfur removal efficiency increased from 63 to 94% upon increasing the NiFe2O4–SiO2 dosage from 3 to 9 g per 50 ml of the model fuel.

Among the methods for adsorptive desulfurization (ADS) represents a promising alternative method of removing sulfur by adsorption.  相似文献   

2.
In this study, NiFe2O4–PEG, an effective nanocatalyst was synthesized via a hydrothermal method using different PEG concentrations and synthesis times. The synthesized nanocatalyst was used in the ultrasound assisted oxidative desulfurization (UAOD) of model fuels (e.g. n-hexane and dibenzothiophene (DBT)) for the first time. The nanocatalyst was then characterized by XRD, FTIR, BET, SEM, VSM and TEM analyses. In addition, central composite design was used to evaluate the effective variables on the UAOD process. The optimal values of effective factors such as catalyst dose, oxidant amount, irradiation time and ultrasonic power to maximize of the percentage of sulfur removal were 0.149 g, 15 mL, 11.96 min, and 70 MHz, respectively. Moreover, the kinetic aspects of the oxidation reaction of DBT in the UAOD process were investigated using a pseudo-first-order model. Furthermore, using the Arrhenius equation, an activation energy of 35.86 kJ mol−1 was obtained. Additionally, thermodynamic analysis showed that the oxidation reaction of DBT was endothermic with a positive Gibbs free of energy, indicating the non-spontaneity of oxidation of DBT in the UAOD process. Moreover, the conversion rate of DBT has increased from 57% at 35 °C to 85% at 65 °C.

In this study, NiFe2O4–PEG, an effective nanocatalyst was synthesized via a hydrothermal method using different PEG concentrations and synthesis times.  相似文献   

3.
Herein, we investigated the correlation between the chemical composition, microstructure, and microwave properties of composites based on lightly Tb/Tm-doped Sr-hexaferrites (SrTb0.01Tm0.01Fe11.98O19) and spinel ferrites (AFe2O4, A = Co, Ni, Zn, Cu, or Mn), which were fabricated by a one-pot citrate sol–gel method. Powder XRD patterns of products confirmed the presence of pure hexaferrite and spinel phases. Microstructural analysis was performed based on SEM images. The average grain size for each phase in the prepared composites was calculated. Comprehensive investigations of dielectric properties (real (ε′) and imaginary parts (ε′′) of permittivity, dielectric loss tangent (tan(δ)), and AC conductivity) were performed in the 1–3 × 106 Hz frequency range at 20–120 °C. Frequency dependency of microwave properties were investigated using the coaxial method in frequency range of 2–18 GHz. The non-linear behavior of the main microwave properties with a change in composition may be due to the influence of the soft magnetic phase. It was found that Mn- and Ni-spinel ferrites achieved the strongest electromagnetic absorption. This may be due to differences in the structures of the electron shell and the radii of the A-site ions in the spinel phase. It was discovered that the ionic polarization transformed into the dipole polarization.

Paper presents the correlation between the composition, microstructure, and microwave properties of composites based on Tb/Tm-doped Sr-hexaferrites and spinel ferrites (AFe2O4), which were fabricated by a one-pot citrate sol–gel method.  相似文献   

4.
In order to satisfy the energy demands of the electromobility market, further improvements in cathode materials are receiving much attention, especially high energy density cathode materials for Li-ion batteries (LIBs). In this work, the self-propagating combustion (SPC) method is use to synthesise undoped LiNi0.6Co0.3Ti0.1O2 (LNCT), novel nano-sized Al-doped LiNi0.6Co0.3−xAlxTi0.1O2 (LCA) and LiNi0.6−xCo0.3AlxTi0.1O2 (LNA) (x = 0.01) cathode materials. LNCT, LCA and LNA were annealed at 700 °C for 24 h. Following the synthesis, the phase, chemical structure and purity of the materials were analysed using X-ray diffraction (XRD). Based on the XRD results, all materials exhibit a single-phase structure with rhombohedral layered structure. Based on the HRTEM and EDX results, all samples exhibit polyhedral-like shapes, while the Al-doped samples display smaller crystallite sizes compared to the undoped sample. As for the electrochemical performances, the initially discharged capacity of LCA (238.6 mA h g−1) is higher than that of LNA (214.7 mA h g−1) and LNCT (150.5 mA h g−1). However, LNA has a lower loss of capacity after the 50th cycle compared to the LCA sample, which makes it a more excellent candidate for electrochemical applications. The main reason for the excellent electrochemical behaviour of LNA is due to lower cation mixing. Furthermore, Rietveld refinements reveal that the LNA sample has a longer atomic distance of Li–O and shorter TM–O in the cathode structure, which makes Li+ ion diffusion more efficient, leading to excellent electrochemical performance. These findings further proved the potential of the novel nano cathode material of LiNi0.6−xCo0.3AlxTi0.1O2 (LNA) to replace the existing commercialized cathode materials for rechargeable Li-ion batteries.

Al substitute into Ni site increase Li–O and reduce M–O atomic distance lead to excellent cycleability with high energy density.  相似文献   

5.
The room temperature structural, optical and dielectric properties of Mg0.95Mn0.05O and Mg0.95Mn0.01TM0.04O (TM = Co, Ni, and Cu) nanoparticles are reported. All transition metal nanocrystalline samples were successfully prepared by sol–gel auto combustion method. X-ray powder diffraction patterns at room temperature confirmed the formation of single-phase cubic structure with an Fm3̄m space group for all prepared samples. Slight variation in the lattice parameter of TM doped Mg0.95Mn0.05O has been observed. Using Rietveld refinement of XRD data, the space group and lattice parameters are determined. Scanning electron microscopy (SEM) measurements were performed to understand the morphology and grain size of the Mg0.95Mn0.01TM0.04O (TM = Co, Ni, and Cu) nanocrystals. The estimated band gaps as calculated by using UV-Vis spectroscopy are found to be 3.59, 3.61, 5.63 and 3.55 eV for Mg0.95Mn0.05O and Mg0.95Mn0.01TM0.04O (TM = Co, Ni, and Cu) nanocrystals, respectively. Both dielectric constant and dielectric loss is found to decrease due to TM (transition metal) doping. The ac conductivity is found to increase with increase in frequency. Electric modulus spectra reflect the contributions from grain effects: the large resolved semicircle arc caused by the grain effect. The results obtained in this study were discussed comparatively with those cited in the literature.

The room temperature structural, optical and dielectric properties of Mg0.95Mn0.05O and Mg0.95Mn0.01TM0.04O (TM = Co, Ni, and Cu) nanoparticles are reported.  相似文献   

6.
The fabrication and characterization of graphene oxide (GO) nanosheets and their reaction with Fe3O4 and ZrO2 metal oxides to form two nanocomposites, namely graphene oxide–iron oxide (GO–Fe3O4) and graphene oxide–iron oxide–zirconium oxide (GO–Fe3O4@ZrO2), have been examined. The fabricated nanocomposites were examined using different techniques, e.g.transmission electron microscopy, X-ray diffraction, zeta potential measurement and Fourier transform infrared spectroscopy. Compared to GO, the newly fabricated GO–Fe3O4 and GO–Fe3O4@ZrO2 nanocomposites have the advantage of smaller band gaps, which result in increased adsorption capacity and photocatalytic effects. The results also showed the great effect of the examined GO–metal oxide nanocomposites on the decomposition of cationic rhodamine B dye, as indicated by steady-state absorption and fluorescence, time correlated single photon counting and nanosecond laser photolysis techniques. The antibacterial activity of the fabricated GO and GO–metal oxides has been studied against Gram-positive and Gram-negative bacteria.

The fabrication and characterization of graphene oxide–iron oxide and graphene oxide–iron oxide–zirconium oxide nanocomposites have been reported. The decomposition of cationic rhodamine B dye by both nanocomposites has been examined.  相似文献   

7.
Correction for ‘Terephthalate and trimesate metal–organic frameworks of Mn, Co, and Ni: exploring photostability by spectroscopy’ by Nishesh Kumar Gupta et al., RSC Adv., 2021, 11, 8951–8962, DOI: 10.1039/D1RA00181G.

The authors regret that an incorrect grant number was given in the Acknowledgements section of the original article.The corrected acknowledgments are as follows:The authors are very grateful for the funds [Project #20210152-001] provided by the “Korea Institute of Civil Engineering and Building Technology” (KICT), Republic of Korea.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

8.
9.
In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption. The MnFe2O4–BC nanocomposite was prepared via a co-precipitation method and analyzed using various techniques. The results confirm the successful decoration of the biochar surface with MnFe2O4 nanoparticles. The maximum Sb(iii) removal efficiency was found to be higher from bi-solute solutions containing Cd(ii) than from single-solute systems, suggesting that the presence of Cd(ii) enhances the removal of Sb(iii). The Langmuir isotherm model describes well Sb(iii) and Cd(ii) removal via adsorption onto the MnFe2O4–BC nanocomposite. The maximum adsorption capacities are 237.53 and 181.49 mg g−1 for Sb(iii) and Cd(ii), respectively, in a bi-solute system. Thus, the prepared MnFe2O4–BC nanocomposite is demonstrated to be a potential adsorbent for simultaneously removing Sb(iii) and Cd(ii) ions from aqueous solutions.

In this study, a jacobsite–biochar nanocomposite (MnFe2O4–BC) was fabricated and used to simultaneously remove Sb(iii) and Cd(ii) from water via adsorption.  相似文献   

10.
This study performs an appraisal of the adsorptive capacity of amidoxime-modified poly(acrylonitrile-co-acrylic acid) or abbreviated as (AO-modified poly(AN-co-AA)) for the p-nitrophenol (PNP) adsorption, from aquatic environments via batch system. The AO-modified poly(AN-co-AA) polymer was developed with redox polymerization, and then altered by using hydroxylamine hydrochloride (HH). Tools used to describe the physicochemical and morphological characteristics of the AO-modified poly(AN-co-AA) were Fourier transform infrared (FTIR) spectroscopy, CHN elemental analysis, X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The adsorption kinetics were examined by pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion kinetic models. Meanwhile, the isotherms were investigated by Langmuir, Freundlich, Temkin and Redlich–Peterson models. It was found that the adsorption was best fitted with pseudo-second order, and agreed with both Langmuir and Freundlich isotherm models. It was described best with the Freundlich isotherm due to highest R2 (0.999). The maximum adsorption capacity was 143.06 mg g−1 at 298 K, and thermodynamic functions showed that the adsorption process was exothermic. Also, following five regeneration cycles, the adsorbent recorded 71.7% regeneration efficiency. The finding in this study indicates that the AO-modified poly(AN-co-AA) is an effective adsorbent to remove PNP from an aqueous solution.

This study performs an appraisal of the adsorptive capacity of amidoxime-modified poly(acrylonitrile-co-acrylic acid) for the p-nitrophenol (PNP) adsorption, from aqueous solutions.  相似文献   

11.
Two novel amorphous metal–organic frameworks (aMOFs) with chemical composition {[Zn2(MTA)]·4H2O·3DMF}n (UPJS-13) and {[Cd2(MTA)]·5H2O·4DMF}n (UPJS-14) built from Zn(ii) and Cd(ii) ions and extended tetrahedral tetraazo-tetracarboxylic acid (H4MTA) as a linker were prepared and characterised. Nitrogen adsorption measurements were performed on as-synthesized (AS), ethanol exchanged (EX) and freeze-dried (FD) materials at different activation temperatures of 60, 80, 100, 120, 150 and 200 °C to obtain the best textural properties. The largest surface areas of 830 m2 g−1 for UPJS-13 (FD) and 1057 m2 g−1 for UPJS-14 (FD) were calculated from the nitrogen adsorption isotherms for freeze-dried materials activated at mild activation temperature (80 °C). Subsequently, the prepared compounds were tested as adsorbents of greenhouse gases, carbon dioxide and methane, measured at high pressures. The maximal adsorption capacities were 30.01 wt% CO2 and 4.84 wt% CH4 for UPJS-13 (FD) and 24.56 wt% CO2 and 6.38 wt% CH4 for UPJS-14 (FD) at 20 bar and 30 °C.

Two novel amorphous metal–organic frameworks UPJS-13 and UPJS-14, constructed of Zn(ii)/Cd(ii) ions and extended tetrahedral linker were prepared, characterised and applied as adsorbents for carbon dioxide and methane.  相似文献   

12.
A micro-impinging stream reactor (MISR) consisting of a commercial T-junction and steel capillaries, which is of intensified micromixing efficiency as compared with traditional stirred reactors (STR), was applied for the preparation of Co and Al co-doped Ni(OH)2 nanocomposites and their modification with reduced graphene oxide (RGO). The co-precipitation preparation process was conducted under precisely controlled proportions and concentrations of reactants in the MISR. Therefore, element analysis showed a higher uniform distribution of metal ions within the nanocomposites obtained through the MISR. The structural characterization and electrochemical measurements also showed that the MISR-prepared metal-doped nanocomposites were of more uniform dispersion and superior electrochemical performance than those prepared with STR. In addition, by modifying with RGO in the MISR, the electrochemical performance of Co and Al co-doped Ni(OH)2 nanocomposites could be further improved. The Co and Al co-doped Ni(OH)2/RGO prepared under optimal conditions achieved an ultrahigh specific capacitance of 2389.5 F g−1 at the current density of 1 A g−1 and displayed an excellent cycling stability with 83.7% retention of the initial capacitance after 1000 charge/discharge cycles in 6 M KOH aqueous solution.

High performance Ni–Co–Al(OH)n nanocomposites as supercapacitors were prepared and modified with reduced graphene oxide within a novel micro-impinging stream reactor.  相似文献   

13.
A solid solution of bismuth cobalt titanate [Bi(Co0.5Ti0.5)O3] and bismuth ferrite (BiFeO3) with a composition Bi(Co0.40Ti0.40Fe0.20)O3 (abbreviated as BCTF80/20) was synthesized via a cost effective solid-state technique. Phase identification and basic structural symmetry of the samples were determined by analyzing powder X-ray diffraction data. Field emission scanning electron micrograph (FE-SEM) and energy dispersive X-ray (EDX) spectra were analyzed to evaluate the micro-structural aspects (shape and size, distribution of grains) as well as a quantitative evaluation of the sample. The average crystallite (particle) and grain size were found to be ∼30 nm and ∼1–2 micron, respectively. The electrical parameters (dielectric constant, tangent loss, impedance, modulus, and conductivity) of as-synthesized material were obtained in a temperature range of 300 to 773 K and frequency range of 1 kHz and 1000 kHz. The strong correlation of microstructure (i.e., grains, grain boundary, etc.) and electrical parameters of this material were observed. The frequency dependence of electrical impedance and modulus exhibited a deviation from an ideal Debye-like relaxation process. The dependence of dielectric relaxation mechanism on frequency and temperature is discussed in detail. The field dependent polarization (PE hysteresis loop) of BCTF80/20 exhibited an enhanced value of remnant polarization as compared to that of BiFeO3 (referred as BFO). At room temperature (300 K), the magnetic hysteresis loop measurements also showed a significant improvement in the magnetization of BCTF80/20. Thus, based on these enhanced values of remnant polarization and magnetic parameters, we can assume that BCTF80/20 may be considered as a promising candidate for some new generations of electronic devices.

A solid solution of bismuth cobalt titanate [Bi(Co0.5Ti0.5)O3] and bismuth ferrite (BiFeO3) with a composition Bi(Co0.40Ti0.40Fe0.20)O3 (abbreviated as BCTF80/20) was synthesized via a cost effective solid-state technique.  相似文献   

14.
Single-component and competitive adsorption of tetracycline (TC) and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar (NH4Cl-BHP-char/Fe3O4) was investigated in batch experiments. NH4Cl-BHP-char/Fe3O4 exhibited a large surface area of 1119.097 m2 g−1 and a total pore volume of 0.139 cm3 g−1 and was easily separated from aqueous solution using a magnet. Also, adsorption was endothermic, spontaneous, and highly pH-dependent. The optimum pH of the single-component adsorption of TC and Zn(ii) was 4.0 and 6.5, respectively, and the optimum pH of co-adsorption was 6.0. The kinetics studies showed the prepared biochar could be rapidly adsorbed within 60 min, and chemical adsorption was dominant. For single-component adsorption, the maximum adsorption capacities of TC and Zn(ii) were 106.38 and 151.52 mg g−1, respectively, and they underwent monolayer adsorption on the biochar surface. Moreover, for competitive adsorption, maximum TC and Zn(ii) adsorption capacities of 126.58 and 357.14 mg g−1 were achieved. Both film diffusion and intra-particle diffusion were found to be significant processes to facilitate adsorption. TC and Zn(ii) promoted the adsorption of each other. The proposed biochar could be used repeatedly for at least four cycles. All these results demonstrated that developed NH4Cl-BHP-char/Fe3O4 was regarded as a low-cost alternative adsorbent to remove the heavy metal ions and antibiotic pollutants from water or wastewater.

Single-component and competitive adsorption of tetracycline (TC) and Zn(ii) on an NH4Cl-induced magnetic ultra-fine buckwheat peel powder biochar (NH4Cl-BHP-char/Fe3O4) was investigated in batch experiments.  相似文献   

15.
Correction for ‘Solution-processed Cu2XSnS4 (X = Fe, Co, Ni) photo-electrochemical and thin film solar cells on vertically grown ZnO nanorod arrays’ by Anima Ghosh et al., RSC Adv., 2016, 6, 115204–115212.

The authors regret that there were two errors in the original article. In the “Experimental details” section on page 115205, “1 M sodium sulfide at 70–80 °C for 24 h” should have read “0.5 M sodium sulfide at 70–80 °C for 24 h”. Additionally, Fig. 3 parts (b)–(d) were mistakenly reproduced from the authors’ previous publication (ref. 33 in the original article). The correct Fig. 3 is presented below.Open in a separate windowFig. 3(a and b) FESEM images of ZnO nanorod arrays, ZnS sensitized ZnO nanorods; (c and d) cross-sectional images of ZnO nanorod arrays and ZnS sensitized ZnO nanorods. The inset in panel (a) shows ZnO nanorod arrays and the inset in panel (b) shows a magnified view.The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.  相似文献   

16.
NOx can be efficiently removed by micro–nano bubbles coupling with Fe3+ and Mn2+, but the catalyst cannot be reused and the adsorption wastewater should be treated. This work developed a new technology that uses micro–nano bubbles and recyclable MFe2O4 to simultaneously remove NOx and SO2 from flue gas, and clarified the effectiveness and reaction mechanism. MFe2O4 (M = Mn, Zn, Cu, Ni and Co) prepared by a hydrothermal method was characterized. The results show that MFe2O4 can be activated to produce ˙OH which can accelerate the oxidation absorption of NOx. Compared with no catalyst, the NOx conversion rate increased from 32.85% to 83.88% in the NOx–SO2–MFe2O4-micro–nano bubble system, while the removal rate of SO2 can reach 100% at room temperature. The catalytic activities of MFe2O4 showed the following trend: CuFe2O4 > ZnFe2O4 > MnFe2O4 > CoFe2O4 > NiFe2O4. The results provide a new idea for the application of advanced oxidation processes in flue gas treatment.

NOx-SO2-MFe2O4-micro–nano bubbles system for NOx removal.  相似文献   

17.
Bionic design is efficient to develop high-performance lightweight refractories with sophisticated structures such as hollow ceramic fibers. Here, we report a four-stage procedure for the preparation of Al2O3–ZrO2(Y2O3) hollow fibers using the template of cogon—a natural grass. Subsequently, to optimize the thermal performance of the fibers, four sets of preparation parameters, namely, x(Al2O3), solute mass ratio of the mixture, dry temperature, and sintering temperature were investigated. Through an orthogonal design, the optimal condition of each parameter was obtained as follows: x(Al2O3) was 0.70, solute mass ratio of the mixture was 15 wt%, dry temperature was 80 °C, and sintering temperature was 1100 °C. Overall, Al2O3–ZrO2(Y2O3) hollow fibers show relatively low thermal conductivity (0.1038 W m−1 K−1 at 1000 °C), high porosity (95.0%), and low density (0.05–0.10 g cm−3). The multiphase compositions and morphology of Al2O3–ZrO2(Y2O3) hollow fibers, which may contribute to their thermal properties, were also discussed.

Lightweight Al2O3–ZrO2(Y2O3) hollow fibers with low thermal conductivity were prepared by a natural template—cogon grass.  相似文献   

18.
Retraction of ‘Magnetic Fe3O4@NiO hierarchical structures: preparation and their excellent As(v) and Cr(vi) removal capabilities’ by Shouwei Zhang et al., RSC Adv., 2013, 3, 2754–2764, DOI: 10.1039/C2RA22495J.

The Royal Society of Chemistry, with the agreement of the named authors, hereby wholly retracts this RSC Advances article due to concerns with the reliability of the data in the published article. The authors requested to retract this article because they admitted that the TEM characterization of the Fe3O4@NiO hierarchical microspheres in Fig. 4c was duplicated from the characterization of Fe3O4@NiAl-LDH microspheres in Fig. S4B from a J. Am. Chem. Soc. paper by Mingfei Shao et al. without permission.1 The authors would like to apologise to the authors of ref. 1, and for any inconvenience to readers.Signed: Shouwei Zhang, Jiaxing Li, Jinzhang Xu and Xiangke WangDate: 11th August 2021Tao Wen was contacted but did not respondRetraction endorsed by Laura Fisher, Executive Editor, RSC Advances  相似文献   

19.
Poly(aniline-co-indole)/copper alumina (PANI-co-PIN/Cu–Al2O3) with excellent AC conductivity, dielectric properties, and ammonia gas detecting capabilities were synthesised via in situ chemical oxidative polymerization. The presence of Cu–O bonding vibrations and shift of some characteristic peaks in the Fourier transform infrared spectroscopy (FT-IR) revealed the successful encapsulation of Cu–Al2O3 nanoparticles in the copolymer. The XRD studies showed the crystalline peaks of Cu–Al2O3 in the PANI-co-PIN nanocomposites. The high-resolution transmission electron microscopy (HR-TEM) images confirmed the reinforcement of the inorganic moiety in the copolymer. The results from thermogravimetric analysis (TGA) showed that the inclusion of Cu–Al2O3 in the copolymer matrix greatly increases the thermal stability of PANI-co-PIN. The alternate current (AC) conductivity and dielectric properties of nanocomposites were higher than pure PANI-co-PIN. The improved electrical properties of nanocomposites were due to strong contact between the copolymer and metal oxide surfaces. The gas sensing properties of synthesized copolymer nanocomposites showed excellent sensitivity and response towards ammonia gas at room temperature. The PANI-co-PIN/5 wt% Cu–Al2O3 nanocomposite has the best gas sensing characteristics. The higher AC conductivity, dielectric properties and gas sensing characteristics of PANI-co-PIN/Cu–Al2O3 might be used to develop electrochemical sensing devices.

PANI-co-PIN/Cu–Al2O3 nanocomposites synthesised via in situ polymerization showed excellent electrical and NH3 gas sensing properties.  相似文献   

20.
The uptake of arsenite [As(iii)] and arsenate [As(v)] by functionalized calcium alginate (Ca-Alg) beads from aqueous solutions was investigated. Ca-Alg beads were protonated with poly-l-lysine (PLL) or polyethyleneimine (PEI) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide (EDC/NHS) or glutaraldehyde (GA) as crosslinking agents. Four types of protonated beads were prepared: Ca-Alg-EDC/NHS (PLL or PEI) and Ca-Alg-GA (PLL or PEI). Fourier transform infrared spectroscopy in total attenuated reflection mode (FTIR-ATR), analysis showed presence and increased intensity of bands corresponding to OH, NH, CH2 and CH3 groups in modifications with both polycations. In addition, thermogravimetric analysis and atomic force microscopy of all modified capsules showed an increase in thermal stability and uniformity of the capsules, respectively. Ca-Alg-EDC/NHS-PLL beads had the maximum adsorption capacity of [As(v)] (312.9 ± 4.7 μg g−1 of the alginate) at pH 7.0 and 15 minute exposure, while Ca-Alg-EDC/NHS-PEI beads had the maximum adsorption capacity of [As(iii)] (1052.1 ± 4.6 μg g−1 of alginate). However, all these EDC containing beads were degraded in the presence of citrate. Ca-Alg-GA-PEI beads removed 252.8 ± 9.7 μg of [As(v)] μg g−1 of alginate and 524.7 ± 5.3 de [As(iii)] μg g−1 of alginate, resulting the most stable capsules and suitable for As removal.

A simple protonation of alginate beads allows the absorption of arsenate and arsenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号