首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present study was to examine the effect of K(ATP) channel openers pinacidil and levcromakalim on rat dural and pial arteries as well as their inhibition by glibenclamide. We used an in-vivo genuine closed cranial window model and an in-vitro organ bath. Glibenclamide alone reduced the dural but not the pial artery diameter compared with controls. Intravenous pinacidil and levcromakalim induced dural and pial artery dilation that was significantly attenuated by glibenclamide. In the organ bath pinacidil and levcromakalim induced dural and middle cerebral artery relaxation that was significantly attenuated by glibenclamide. In conclusion, K(ATP) channel openers induce increasing diameter/relaxation of dural and pial arteries after intravenous infusion in vivo and on isolated arteries in vitro. Furthermore, dural arteries were more sensitive to K(ATP) channel openers than pial arteries.  相似文献   

2.
The final common pathway involved in the cardiovascular alterations of septic shock is incompletely defined. The opening of KATP channels is associated with vasorelaxation and alterations in cardiac contractility. This event may be triggered during septic shock by increased nitric oxide (NO) production, by a decreased intracellular content of ATP, or by a change in the transmembrane electrical potential. In the present study, we assessed the effects of glibenclamide, an agent that blocks the opening of KATP channels in vitro, on the contractile response of rat aortic rings to norepinephrine, and in vivo in anesthetized dogs, with or without exposure to Escherichia coli endotoxin. In vitro, glibenclamide decreased the contractile response to norepinephrine in the presence of endotoxin, provided that the endothelium was intact. In vivo, administration of 0.15 mg/kg increased systemic vascular resistance (SVR) in the absence of endotoxin only, and increased myocardial performance. A higher dose of 1 mg/kg increased SVR and decreased myocardial performance, both during endotoxic shock and in control conditions. Renal and mesenteric blood flows decreased, but the respective fractional flows were unchanged. Oxygen delivery decreased in both experimental conditions, but oxygen consumption decreased only in control conditions. The in vitro observations suggest that the opening of KATP channels is involved in the regulation of vascular tone during endotoxemia, via an endothelium-dependent mechanism. As different effects of glibenclamide were observed in vivo, the importance of the opening of KATP channels in endotoxic shock may be limited.  相似文献   

3.
The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic β cell ATP-sensitive K+ (KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic β cell KATP channel and the Kir6.2ΔC36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by intraperitoneal glucose tolerance test and on fasting glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP (IC?? = 10.1 × 10?? M) and Kir6.2ΔC36 (IC?? = 9.6 × 10?? M) channels, which induced depolarization. In contrast, the 2-phenyl analog was a potent opener (drug concentration needed to enhance the current by 50% = 0.04 × 10?? M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl > 2-benzyl > 2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg/kg) and 2-phenyl analogs (2-30 mg/kg) reduced and enhanced the glucose areas under the curves, respectively, after glucose loading in mice. These compounds did not affect the fasting glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which confer the KATP channel blocking action with glucose-lowering effects and the opening action with increased glucose levels, respectively. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel antidiabetic drugs.  相似文献   

4.
Sulphonylureas (SUs) act by inhibition of beta-cell K(ATP) channels after binding to the sulphonylurea receptor SUR1. K(ATP) channels are also expressed in cardiac and vascular myocytes coupled to SUR2A and SUR2B involved into adaptations of vascular tone and myocardial contractility. Different influence of SUs on vascular function is based on different binding to the SUR family. Few data on the effect of different SUs, used in patients in therapeutic doses, on vascular function are currently available. We investigated possible effects of acute and chronic treatment with glibenclamide and gliclazide on forearm postischaemic reactive hyperaemia (RH) in type 2 diabetic patients. To that purpose a double-blind, randomized, cross-over study with gliclazide (80 mg, b.i.d.) and glibenclamide (5 mg, b.i.d.) was performed in 15 type 2 diabetic patients. Forearm vascular reactivity was measured after 5 min of ischaemia by plethysmography before and after 4 weeks treatment. After acute administration of gliclazide (80 mg) or glibenclamide (5 mg) RH was not influenced. After 4 weeks of treatment, no influence of either drug was seen in the steady state before dosing. After dosing glibenclamide induced a significant (P = 0.004) reduction of RH from 26.4 +/- 6.9 to 21.9 +/- 7.6 ml min(-1)/100 ml after 4 h. Gliclazide, conversely, did not induce a reduction of RH (23.9 +/- 6.0 to 23.3 +/- 6.6 ml min(-1)/100 ml). No influence of HbA1c or actual glycaemia on RH was observed. Our results indicate that in chronically treated patients with type 2 diabetes ingestion of glibenclamide but not gliclazide results in sustained reduction of postischaemic RH. This difference is most probably based on different SUR binding.  相似文献   

5.
Experimental data suggest that vascular ATP-sensitive potassium (K(ATP)) channels may be an important determinant of functional hyperaemia, but the contribution of K(ATP) channels to exercise-induced hyperaemia in humans is unknown. Forearm blood flow was assessed in 39 healthy subjects (23 males/16 females; age 22+/-4 years) using the technique of venous occlusion plethysmography. Resting forearm blood flow and functional hyperaemic blood flow (FHBF) were measured before and after brachial artery infusion of the K(ATP) channel inhibitors glibenclamide (at two different doses: 15 and 100 microg/min) and gliclazide (at 300 microg/min). FHBF was induced by 2 min of non-ischaemic wrist flexion-extension exercise at 45 cycles/min. Compared with vehicle (isotonic saline), glibenclamide at either 15 microg/min or 100 microg/min did not significantly alter resting forearm blood flow or peak FHBF. The blood volume repaid at 1 and 5 min after exercise was not diminished by glibenclamide. Serum glucose was unchanged after glibenclamide, but plasma insulin rose by 36% (from 7.2+/-0.8 to 9.8+/-1.3 m-units/l; P =0.02) and 150% (from 9.1+/-1.3 to 22.9+/-3.5 m-units/l; P =0.002) after the 15 and 100 microg/min infusions respectively. Gliclazide also did not affect resting forearm blood flow, peak FHBF, or the blood volume repaid at 1 and 5 min after exercise, compared with vehicle (isotonic glucose). Gliclazide induced a 12% fall in serum glucose (P =0.009) and a 38% increase in plasma insulin (P =0.001). Thus inhibition of vascular K(ATP) channels with glibenclamide or gliclazide does not appear to affect resting forearm blood flow or FHBF in healthy humans. These findings suggest that vascular K(ATP) channels may not play an important role in regulating basal vascular tone or skeletal muscle metabolic vasodilation in the forearm of healthy human subjects.  相似文献   

6.
Studies were performed to assess whether ATP-sensitive K+ (KATP) channels on rabbit preglomerular vessels can influence afferent arteriolar (AA) tone. K+ channels with a slope conductance of 258 +/- 13 (n = 7) pS and pronounced voltage dependence were demonstrated in excised patches from vascular smooth muscle cells of microdissected preglomerular segments. Channel activity was markedly reduced by 1 mM ATP and in a dose-dependent fashion by glibenclamide (10(-9) M to 10(-6) M), a specific antagonist of KATP channels. 10(-5) M diazoxide, a K+ channel opener, activated these channels in the presence of ATP, and this effect was also blocked by glibenclamide. To determine the role of these KATP channels in the control of vascular tone, diazoxide was tested on isolated perfused AA. After preconstriction from a control diameter of 13.1 +/- 1.1 to 3.5 +/- 2.1 microns with phenylephrine (PE), addition of 10(-5) M diazoxide dilated vessels to 11.2 +/- 0.7 microns, which was not different from control. Further addition of 10(-5) M glibenclamide reconstricted the vessels to 5.8 +/- 1.5 microns (n = 5; P less than 0.03). In support of its specificity for KATP channels, glibenclamide did not reverse verapamil induced dilation in a separate series of experiments. To determine whether intracellular ATP levels can effect AA tone, studies were conducted to test the effect of the glycolytic inhibitor 2-deoxy-D-glucose. After preconstriction from 13.4 +/- 3.2 to 7.7 +/- 1.3 microns with PE, bath glucose was replaced with 6 mM 2-deoxy-D-glucose. Within 10 min, the arteriole dilated to a mean value of 11.8 +/- 1.4 microns (n = 6; NS compared to control). Subsequent addition of 10(-5) M glibenclamide significantly reconstricted the vessels to a diameter of 8.6 +/- 0.5 micron (P less than 0.04). These data demonstrate that KATP channels are present on the preglomerular vasculature and that changes in intracellular ATP can directly influence afferent arteriolar tone via these channels.  相似文献   

7.
BACKGROUND: Progressive beta-cell failure is a characteristic feature of type 2 diabetes; consequently, beta-cell secretagogues are useful for achieving sufficient glycaemic control. The European GUIDE study is the first large-scale head-to-head comparison of two sulphonylureas designed for once-daily administration used under conditions of everyday clinical practice. DESIGN: Eight hundred and forty-five type 2 diabetic patients were randomized to either gliclazide modified release (MR) 30-120 mg daily or glimepiride 1-6 mg daily as monotherapy or in combination with their current treatment (metformin or an alpha-glucosidase inhibitor) according to a double-blind, 27-week, parallel-group design. Efficacy was evaluated by HbA1c and safety by hypoglycaemic episodes using the European Agency definition. RESULTS: HbA1c decreased similarly in both groups from 8.4% to 7.2% on gliclazide MR and from 8.2% to 7.2% on glimepiride. Approximately 50% of the patients achieved HbA1c levels less than 7%, and 25% less than 6.5%. The mean difference between groups of the final HbA1c was -0.06% (noninferiority test P < 0.0001). No hypoglycaemia requiring external assistance occurred. Hypoglycaemia with blood glucose level < 3 mmol L(-1) occurred significantly less frequently (P = 0.003) with gliclazide MR (3.7% of patients) compared with glimepiride (8.9% of patients). The distribution of the sulphonylurea doses was similar in both groups. CONCLUSIONS: This study provides new insights into therapeutic strategies using sulphonylureas. It shows that gliclazide MR is at least as effective as glimepiride, either as monotherapy or in combination. The safety of gliclazide MR was significantly better, demonstrating approximately 50% fewer confirmed hypoglycaemic episodes in comparison with glimepiride.  相似文献   

8.
Sympathetic vasoconstriction is sensitive to inhibition by metabolic events in contracting rat and human skeletal muscle, but the underlying cellular mechanisms are unknown. In rats, this inhibition involves mainly alpha2-adrenergic vasoconstriction, which relies heavily on Ca2+ influx through voltage-dependent Ca2+ channels. We therefore hypothesized that contraction-induced inhibition of sympathetic vasoconstriction is mediated by ATP-sensitive potassium (KATP) channels, a hyperpolarizing vasodilator mechanism that could be activated by some metabolic product(s) of skeletal muscle contraction. We tested this hypothesis in anesthetized rats by measuring femoral artery blood flow responses to lumbar sympathetic nerve stimulation or intraarterial hindlimb infusion of the specific alpha2-adrenergic agonist UK 14,304 during KATP channel activation with diazoxide in resting hindlimb and during KATP channel block with glibenclamide in contracting hindlimb. The major new findings are twofold. First, like muscle contraction, pharmacologic activation of KATP channels with diazoxide in resting hindlimb dose dependently attenuated the vasoconstrictor responses to either sympathetic nerve stimulation or intraarterial UK 14,304. Second, the large contraction-induced attenuation in sympathetic vasoconstriction elicited by nerve stimulation or UK 14,304 was partially reversed when the physiologic activation of KATP channels produced by muscle contraction was prevented with glibenclamide. We conclude that contraction-induced activation of KATP channels is a major mechanism underlying metabolic inhibition of sympathetic vasoconstriction in exercising skeletal muscle.  相似文献   

9.
This study was conducted to examine the role of membrane hyperpolarization in mediating vascular hyporeactivity induced by cecal ligation and puncture (CLP) in endothelial-denuded strips of rat thoracic aorta ex vivo. The CLP for 18 h elicited a significant fall of blood pressure and a severe vascular hyporeactivity to norepinephrine as seen in severe sepsis. At the end of the in vivo experiments, thoracic aortas were removed from both CLP-treated and control rats. After removal of the endothelium, aortic segments were mounted in myographs for the recording of isometric tension and smooth muscle membrane potential. The membrane potential recording showed that a hyperpolarization was observed in the CLP-treated rats when compared with the control rats. This hyperpolarization was reversed by iberiotoxin (a large-conductance Ca2+-activated K+ channel blocker), 4-aminopyridine (a voltage-dependent K+ channel blocker), barium (an inward rectifier K+ channels blocker), N-(1-adamantyl)-N'-cyclohexyl-4-morpholinecarboxamidine hydrochloride (a pore-forming blocker of adenosine triphosphate (ATP)-sensitive K+ channels [KATP]), or methylene blue (a nonspecific guanylyl cyclase [GC] inhibitor). However, this hyperpolarization was not significantly affected by apamin (a small-conductance Ca2+-activated K+ channel blocker), glibenclamide (a sulfonylurea blocker of KATP), N(omega)-nitro-L-arginine methyl ester (a NOS inhibitor), or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an NO-sensitive GC inhibitor). In addition, the basal tension of the tissues obtained from CLP rats was increased simultaneously, whereas membrane potential was reversed. In contrast, none of these inhibitors had significant effects on the membrane potential or the basal tension in control tissues. Thus, we provide electrophysiological and functional evidence demonstrating that an abnormal activation of K+ channels in vascular smooth muscle in animals with septic shock induced by CLP. Our observations suggest that the activation of large conductance Ca2+-activated K+ channels, voltage-dependent K+ channels, inward rectifier K+ channels, and KATP channels, but not small conductance Ca2+-activated K+ channels, contributes to CLP-induced vascular hyporeactivity. Furthermore, the hyperpolarization in septic shock induced by CLP is likely via non-NO-sensitive GC pathway.  相似文献   

10.
Effects of two K+ channel openers, cromakalim and pinacidil, on mechanical activity and on 86Rb efflux were compared in strips of dog coronary arteries. Cromakalim and pinacidil produced the relaxation in 20.9 mM K(+)-contracted strips with a pD2 of 6.53 and 5.95, respectively. In 65.9 mM K(+)-contracted strips, high concentrations of pinacidil, but not cromakalim, produced relaxation. Ca+(+)-induced contractions in 80 mM K(+)-depolarized strips were also inhibited by pinacidil but not by cromakalim. Glibenclamide, a blocker of ATP-regulated K+ (KATP) channels, competitively antagonized the relaxant responses to cromakalim with a pA2 value of 7.62. However, the antagonism by glibenclamide of the relaxant responses to pinacidil was not a typical competitive type, suggesting the contribution of other effects than the KATP channel opening activity to the relaxant effects of pinacidil. In resting strips preloaded with 86Rb, cromakalim and pinacidil increased the basal 86Rb efflux in a dose-dependent manner. The increase in the 86Rb efflux induced by cromakalim was greater than that by pinacidil. When the effects of cromakalim and pinacidil on the 86Rb efflux were determined in the 20.9 or 65.9 mM K(+)-contracted strips, both drugs increased the 86Rb efflux. Under the same conditions nifedipine, a Ca(+)+ channel blocker, produced the relaxation that is accompanied by the decrease in 86Rb efflux. The increase in the 86Rb efflux induced by cromakalim was much greater than that by pinacidil.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In normo- and hypoglycemic ferret lungs, the pulmonary vascular response to severe hypoxia (PiO2 less than or equal to 10 mmHg) is characterized by an initial intense vasoconstriction followed by marked vasodilation, whereas in hyperglycemic lungs, vasodilation is minimal, causing vasoconstriction to be sustained. In contrast, the response to moderate hypoxia is characterized by a slowly developing sustained vasoconstriction which is unaffected by glucose concentration. To determine the role of ATP-dependent K+ (KATP) channels in these responses, we examined the effects of cromakalim, which opens KATP channels, and glibenclamide, which closes them. During steady-state vasoconstriction induced in isolated ferret lungs by moderate hypoxia, cromakalim caused dose-dependent vasodilation (EC50 = 7 x 10(-7) M) which was reversed by glibenclamide (IC50 = 8 x 10(-7) M), indicating that KATP channels were present and capable of modulating vascular tone. During severe hypoxia in hypoglycemic lungs [( glucose] less than 1 mM), glibenclamide markedly inhibited the secondary vasodilation. Raising perfusate glucose concentration to 14 +/- 0.4 mM had the same effect. As a result, initial vasoconstrictor responses were well sustained. However, neither glibenclamide nor hyperglycemia affected vasoconstrictor responses to moderate hypoxia or KCl, indicating that effects during severe hypoxia were not due to nonspecific potentiation of vasoconstriction. These findings suggest that in the ferret lung (a) severe hypoxia decreased ATP concentration and thereby opened KATP channels, resulting in increased K+ efflux, hyperpolarization, vasodilation, and reversal of the initial vasoconstrictor response; and (b) hyperglycemia prevented this sequence of events.  相似文献   

12.
The objective of the present study was to determine the effect of a novel K+ channel opener, Aprikalim (RP 52891; [trans-(-)-N-methyl-2-(3-pyridyl)-2-tetrahydrothio-pyran carbothiamide-1-oxide]), on myocardial infarct size in barbital-anesthetized dogs subjected to 90 min of left circumflex coronary artery occlusion followed by 5 hr of reperfusion. To determine if RP 52891 is mediating its effects by opening adenosine triphosphate regulated potassium channels (KATP), glibenclamide, a KATP channel antagonist was used. Dogs were pretreated with vehicle, a nonhypotensive dose of RP 52891 (10 micrograms/kg + 0.1 microgram/kg/min i.v.), glibenclamide (1 mg/kg; i.v. bolus) or RP 52891 (10 micrograms/kg and 0.1 microgram/kg/min i.v.) after pretreatment with glibenclamide (1 mg/kg i.v. bolus). At the end of reperfusion, myocardial infarct size was determined by triphenyltetrazolium staining. There were no significant differences in systemic hemodynamics, myocardial oxygen demand, collateral blood flow or ischemic bed size among groups with the exception of an increase in coronary blood flow to the ischemic area at 3 and 5 hr of reperfusion in both RP-treated groups. However, myocardial infarct size, expressed as a percentage of the area at risk, was significantly (P less than .05) reduced (38%) by RP 52891 and significantly increased (38%) by glibenclamide (vehicle, 39 +/- 4%; RP 52891, 24 +/- 2%; and glibenclamide, 54 +/- 5%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Aims: Glimepiride, a third generation sulfonylurea (SU), is known to have extrapancreatic effects, but its vascular effect is unclear. We investigated the efficacy of glimepiride in improving arterial stiffness assessed by cardio‐ankle vascular index (CAVI) in type 2 diabetic patients, compared with glibenclamide, a conventional SU. Methods: Forty type 2 diabetic patients were randomly assigned to two groups. One group was administered glimepiride 1.5 mg/day, and the other group was administered glibenclamide 1.25 mg/day for 6 months. Results: No significant difference in hypoglycaemic effect was observed between two groups. CAVI significantly decreased only in glimepiride group (9.4 ± 1.4→8.9 ± 0.8, p < 0.05). Decrease in CAVI was greater in glimepiride group than in glibenclamide group (?0.50 ± 0.98 vs. ?0.04 ± 0.57, p = 0.048). Urinary 8‐hydroxy‐2′‐deoxyguanosine (8‐OHdG) decreased in glimepiride group and increased in glibenclamide group, and the changes were significantly different between groups (?1.5 ± 3.5 vs. + 1.8 ± 3.6, p = 0.009); whereas serum lipoprotein lipase mass increased in glibenclamide group and decreased in glibenclamide group, and the changes tended to be different between groups (+ 2.1 ± 19.1 vs. ?7.4 ± 19.2, p = 0.096). Change in urinary 8‐OHdG was a significant independent predictor for change in CAVI in all subjects. Conclusions: These results suggest that glimepiride improves CAVI compared with glibenclamide. Reduced oxidative stress and improved insulin resistance may contribute to the improvement of CAVI by glimerpiride.  相似文献   

14.
In clinical practice, prolonged occlusion of main arteries causes accumulation of metabolic waste and lactate. Reperfusion of blood flow is usually accompanied by circulatory shock. This study investigates the molecular mechanisms responsible for acidosis-induced hypotension and proposes therapeutic strategies for improving hemodynamic stability following ischemia-reperfusion acidosis. Vasomotor function of aortic rings was studied after cumulative addition of HCl in organ chambers (pH 7.4-7.0). Cultured vascular smooth muscle cells (VSMCs) were exposed to acidic buffer, and intracellular Ca levels were determined with Fluo3-AM. In an in vivo experiment, rat aorta was cross-clamped for 45 min and followed by declamping. Hemodynamic changes were measured in the presence and absence of an ATP-sensitive K channel (KATP channel) antagonist PNU37883A (3 mg/kg). Acidosis induced vasorelaxation in a dose-dependent manner, which was significantly attenuated by a KATP antagonist glibenclamide. Inhibition of KATP channel increased intracellular Ca load in the cultured VSMCs. Pretreatment with PNU37883A significantly attenuated systemic hypotension following reperfusion. However, systemic antagonism of KATP channel significantly increased the overall mortality. Recording of electrocardiogram showed progressive development of bradyarrhythmia with ST-segment elevation in animals pretreated with PNU37883A before reperfusion. We demonstrate that acidosis-induced vasodilation is, in part, mediated by the activation of KATP channels through reduction of intracellular Ca in VSMCs. However, systemic antagonism of KATP channel significantly increases the overall mortality secondary to the development of cardiac dysrhythmia in animals with profound experimental metabolic acidosis, suggesting that activation of KATP channel is a protective response during reperfusion acidosis.  相似文献   

15.
Torsades de pointes (TdP) arrhythmia is a potentially fatal form of ventricular arrhythmia that occurs under conditions where cardiac repolarization is delayed (as indicated by prolonged QT intervals from electrocardiographic recordings). A likely mechanism for QT interval prolongation and TdP arrhythmias is blockade of the rapid component of the cardiac delayed rectifier K+ current (IKr), which is encoded by human ether-a-go-go-related gene (HERG). Over 100 non-cardiovascular drugs have the potential to induce QT interval prolongations in the electrocardiogram (ECG) or TdP arrhythmias. The binding site of most HERG channel blockers is located inside the central cavity of the channel. An evaluation of possible effects on HERG channels during the development of novel drugs is recommended by international guidelines. During cardiac ischaemia activation of ATP-sensitive K+ (KATP) channels contributes to action potential (AP) shortening which is either cardiotoxic by inducing re-entrant ventricular arrhythmias or cardioprotective by inducing energy-sparing effects or ischaemic preconditioning (IPC). KATP channels are formed by an inward-rectifier K+ channel (Kir6.0) and a sulfonylurea receptor (SUR) subunit: Kir6.2 and SUR2A in cardiac myocytes, Kir6.2 and SUR1 in pancreatic beta-cells. Sulfonylureas and glinides stimulate insulin secretion via blockade of the pancreatic beta-cell KATP channel. Clinical studies about cardiotoxic effects of sulfonylureas are contradictory. Sulfonylureas and glinides differ in their selectivity for pancreatic over cardiovascular KATP channels, being either selective (tolbutamide, glibenclamide) or non-selective (repaglinide). The possibility exists that non-selective KATP channel inhibitors might have cardiovascular side effects. Blockers of the pore-forming Kir6.2 subunit are insulin secretagogues and might have cardioprotective or cardiotoxic effects during cardiac ischaemia.  相似文献   

16.
OBJECTIVE: Sulfonylureas block the activation of vascular potassium-dependent ATP channels and impair the vasodilating response to ischcmia in nondiabetic individuals, but it is not know whether this occurs in type 2 diabetic patients under chronic treatment with these drugs. Glimepiride, a new sulfonylurea, apparently has no cardiovascular interactions. The aim of our study was to compare the effect of the widely used compound glibenclamide, the pancreas-specific glimepiride, and diet treatment alone on brachial artery response to acute forearm ischemia. RESEARCH DESIGN AND METHODS: Brachial artery examination was performed by a high-resolution ultrasound technique on 20 type 2 diabetic patients aged mean +/- SD) 67 +/- 2 years and on 18 nondiabetic patients matched for age, hypertension, and dislipidemia. Diabetic subjects underwent three separate evaluations at the end of each 8-week treatment period, during which they received glibenclamide, glimepiride, or diet alone according to crossover design. Scans were obtained before and after 4.5 min of forearm ischemia. Postischemic vasodilation and hyperemia were expressed as percent variations in vessel diameter and blood flow. RESULTS: Postischemic vasodilation and hyperemia were, respectively, 5.42 +/- 0.90 and 331 +/- 38% during glibenclamide, 5.46 +/- 0.69 and 326 +/- 28% during glimepiride, and 5.17 +/- 0.64 and 357 +/- 35% during diet treatment (NS). These results were similar to those found in the nondiabetic patients (6.44 +/- 0.68 and 406 +/- 42%, NS). CONCLUSIONS: In type 2 diabetic patients, the vasodilating response to forearm ischemia was the same whether patients were treated with diet treatment alone or with glibenclamide or glimepiride at blood glucose-lowering equipotent closes.  相似文献   

17.
RP 49356 is a novel compound which relaxes airway smooth muscle in vitro. Like cromakalim, RP 49356 reduced contractility in guinea pig isolated trachealis under basal conditions or when challenged with low (less than 20 mM) but not high K+. These effects were antagonized by the sulphonylureas glibenclamide and glipizide. This spectrum of action is typical of the class of compounds known as potassium channel openers (KCOs). Unlike RP 49356 and cromakalim, nifedipine had no effect on basal tone, relaxed tissues contracted with low or high K+ and was not antagonized by the sulphonylureas. These data suggest that the KCOs are not acting directly at the voltage-gated Ca++ channel in this tissue. RP 49356 and cromakalim were similar to nifedipine by being more potent at relaxing tissues precontracted with carbachol or histamine (spasmolytic effects) than they were at preventing initiation of the response to these spasmogens (antispasmogenic effects). Because the maintained phase of contraction in airway smooth muscle may be associated with some Ca++ influx, the data presented here suggests that, like nifedipine, the KCOs are more active smooth muscle relaxants under conditions of Ca++ influx. In summary, RP 49356, like cromakalim, is a compound which relaxes airway smooth muscle in vitro by opening a sulphonylurea-sensitive K+ channel which may be similar to the ATP-sensitive K+ channel found in other tissues.  相似文献   

18.
The adenosine triphosphate (ATP)-sensitive K+ (KATP) channel is the most abundant K+ channel active in the skeletal muscle fibers of humans and animals. In the present work, we demonstrate the involvement of the muscular KATP channel in a skeletal muscle disorder known as hypokalemic periodic paralysis (HOPP), which is caused by mutations of the dihydropyridine receptor of the Ca2+ channel. Muscle biopsies excised from three patients with HOPP carrying the R528H mutation of the dihydropyridine receptor showed a reduced sarcolemma KATP current that was not stimulated by magnesium adenosine diphosphate (MgADP; 50-100 microM) and was partially restored by cromakalim. In contrast, large KATP currents stimulated by MgADP were recorded in the healthy subjects. At channel level, an abnormal KATP channel showing several subconductance states was detected in the patients with HOPP. None of these were surveyed in the healthy subjects. Transitions of the KATP channel between subconductance states were also observed after in vitro incubation of the rat muscle with low-K+ solution. The lack of the sarcolemma KATP current observed in these patients explains the symptoms of the disease, i.e., hypokalemia, depolarization of the fibers, and possibly the paralysis following insulin administration.  相似文献   

19.
目的研究钾离子通道开放剂尼可地尔对低温保存后大鼠供体肺缺血/再灌注损伤的作用。方法24只健康雄性SD大鼠随机分为3组,A组为常规保存组,B组为尼可地尔(NCR)组,C组为尼可地尔+格列本脲(NCR+GLY)组。再灌注过程中每15min测定动脉血氧分压,以评定移植体功能。实验结束时取肺组织测定丙二醛(MDA)的含量,测湿干比(W/D值)及观察超微结构改变。结果B组肺PvO2,W/D及超微结构改变显著优于A组和C组(P〈0.05),同时,B组再灌注前、后肺组织MDA含量较A组和c组显著降低(P〈0.05)。A组和C组各项指标无显著性差异,GLY阻断了NCR的有益作用。结论钾离子通道开放剂可减轻低温保存后的大鼠肺缺血/再灌注损伤。  相似文献   

20.
The incidence of diabetes mellitus has been increased year by year and now 5-6 millions are diabetic patients in Japan. Studies of DCCT and UKPDS concluded that tight control of diabetes was benefit for prevention of diabetic complications in type 1 and type 2 diabetes, respectively. New type of sulfonylurea (glimepiride) has been developed by Hoechst Marion Roussel company which continues clinical trials in Japan. Grimepiride is an insulin sparing sulfonylurea drug for the treatment of type 2 diabetes patients whose high blood glucose cannot be controlled by diet and exercise alone. In Europe and United State glimepiride has been used as a monotherapy or in combination with insulin. Glucose control was effectively observed in type 2 diabetics including obese and hypertensive patients by the drug. Mechanism of sulfonylurea which stimulates insulin release is supposed by binding to a regulatory subunit of plasma membrane ATP-sensitive K+ (KATP) channel. The consequent closure of KATP channel leads to depolarization, opening of voltage-dependent Ca2+ channels, Ca2+ influx, and a rise in intracellular [Ca2+], resulting in insulin secretion. However, it has been suggested that sulfonylurea may have an additional action on secretion, independent of changes in intracellular [Ca2+] but dependent on the activity of protein kinase C (PKC). It is controversial whether or not sulfonylurea is a risky drug to the process of diabetic macroangiopathy, by suppressing KATP channels in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号