首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses the hypothesis that multiple sensory systems, each capable of reflexly altering breathing, jointly influence neurons of the brain stem respiratory network. Carotid chemoreceptors, baroreceptors, and foot pad nociceptors were stimulated sequentially in 33 Dial-urethan-anesthetized or decerebrate vagotomized adult cats. Neuronal impulses were monitored with microelectrode arrays in the rostral and caudal ventral respiratory group (VRG), nucleus tractus solitarius (NTS), and n. raphe obscurus. Efferent phrenic nerve activity was recorded. Spike trains of 889 neurons were analyzed with cycle-triggered histograms and tested for respiratory-modulated firing rates. Responses to stimulus protocols were assessed with peristimulus time and cumulative sum histograms. Cross-correlation analysis was used to test for nonrandom temporal relationships between spike trains. Spike-triggered averages of efferent phrenic activity and antidromic stimulation methods provided evidence for functional associations of bulbar neurons with phrenic motoneurons. Spike train cross-correlograms were calculated for 6,471 pairs of neurons. Significant correlogram features were detected for 425 pairs, including 189 primary central peaks or troughs, 156 offset peaks or troughs, and 80 pairs with multiple peaks and troughs. The results provide evidence that correlational medullary assemblies include neurons with overlapping memberships in groups responsive to different sets of sensory modalities. The data suggest and support several hypotheses concerning cooperative relationships that modulate the respiratory motor pattern. 1) Neurons responsive to a single tested modality promote or limit changes in firing rate of multimodal target neurons. 2) Multimodal neurons contribute to changes in firing rate of neurons responsive to a single tested modality. 3) Multimodal neurons may promote responses during stimulation of one modality and "limit" changes in firing rates during stimulation of another sensory modality. 4) Caudal VRG inspiratory neurons have inhibitory connections that provide negative feedback regulation of inspiratory drive and phase duration.  相似文献   

2.
We examined the role of dorsal respiratory group (DRG) inspiratory neurons as transmitters of respiratory drive to phrenic and intercostal motoneurons and as relays of afferent information to ventral respiratory group (VRG) bulbospinal, inspiratory neurons. Attempts to antidromically activate 76 DRG neurons from the spinal cord at the C7 segment resulted in only 4 (5.3%) successes (3 contralateral, 1 ipsilateral). Cross-correlating DRG neuron discharge with that of the ipsilateral (56) and contralateral (20) phrenic nerve detected common activation peaks in 2 and 3 cases respectively, with no evidence for monosynaptic connections. Cross-correlating DRG neuron discharge with that of bulbospinal, inspiratory VRG neurons found some evidence for interaction. Peaks in 7 of 73 (10%) cross-correlation histograms were attributed to a monosynaptic excitation of DRG neurons by VRG neurons, although a common activation cannot be ruled out; troughs, some with an accompanying peak, in 9 (12.3%) histograms were interpreted as a combined excitation of the DRG neuron and delayed inhibition of the VRG neuron. In addition, 2 cross-correlation histograms showed peaks with latencies and half-amplitude widths consistent with a disynaptic excitation of a DRG neuron by a bulbospinal inspiratory VRG neuron. Cross-correlating the discharge of 57 pairs of DRG inspiratory neurons (6 contralateral) detected common activation peaks in 7 (12.3%) cases (none contralateral) and one case interpreted as evidence for a disynaptic excitation. These findings suggest that the role of the DRG inspiratory neurons in rats differs from that in cats, primarily because they do not act to transmit respiratory rhythmic drive directly to phrenic and intercostal motoneurons. The results offer some support for an excitation of DRG neurons by VRG inspiratory neurons, but no support for a role of DRG inspiratory neurons as mediators of afferent information transfer to VRG bulbospinal inspiratory neurons.  相似文献   

3.
The medullary ventral respiratory column (VRC) of neurons is essential for respiratory motor pattern generation; however, the functional connections among these cells are not well understood. A rostral extension of the VRC, including the retrotrapezoid nucleus/parafacial region (RTN-pF), contains neurons responsive to local perturbations of CO(2)/pH. We addressed the hypothesis that both local RTN-pF interactions and functional connections from more caudal VRC compartments--extending from the B?tzinger and pre-B?tzinger complexes to the ventral respiratory group (B?t-VRG)--influence the respiratory modulation of RTN-pF neurons and their responses to central chemoreceptor and baroreflex activation. Spike trains from 294 RTN-pF and 490 B?t-VRG neurons were monitored with multielectrode arrays along with phrenic nerve activity in 14 decerebrate, vagotomized cats. Overall, 214 RTN-pF and 398 B?t-VRG neurons were respiratory modulated; 124 and 95, respectively, were cardiac modulated. Subsets of these neurons were tested with sequential, selective, transient stimulation of central chemoreceptors and arterial baroreceptors; each cell's response was evaluated and categorized according to the change in firing rate (if any) following the stimulus. Cross-correlation analysis was applied to 2,884 RTN-pF?RTN-pF and 8,490 B?t-VRG?RTN-pF neuron pairs. In total, 174 RTN-pF neurons (59.5%) had significant features in short-time scale correlations with other RTN-pF neurons. Of these, 49 neurons triggered cross-correlograms with offset peaks or troughs (n = 99) indicative of paucisynaptic excitation or inhibition of the target. Forty-nine B?t-VRG neurons (10.0%) were triggers in 74 B?t-VRG→RTN-pF correlograms with offset features, suggesting that B?t-VRG trigger neurons influence RTN-pF target neurons. The results support the hypothesis that local RTN-pF neuron interactions and inputs from B?t-VRG neurons jointly contribute to respiratory modulation of RTN-pF neuronal discharge patterns and promotion or limitation of their responses to central chemoreceptor and baroreceptor stimulation.  相似文献   

4.
Summary Axonal projections and synaptic connectivity of expiratory B?tzinger neurons with an augmenting firing pattern (Bot-Aug neurons) to neurons in the ipsilateral ventral respiratory group (VRG) were studied in anaesthetized cats. Antidromic mapping revealed extensive axonal arborizations of Bot-Aug neurons (24 of 45) to the rostral or caudal VRG, with some having arbors in both regions. Of 234 pairs of neurons studied with intracellular recording and spike-triggered averaging, monosynaptic inhibitory postsynaptic potentials (IPSPs) were evoked in 49/221 VRG neurons by 38/98 Bot-Aug neurons. The highest incidence of monosynaptic inhibition was found in inspiratory bulbospinal neurons (10 of 23 tested). Evidence was also found for monosynaptic inhibition, by a separate group of Bot-Aug neurons, of expiratory bulbospinal neurons (12/58), while excitatory postsynaptic potentials (EPSPs) were identified in another two of these neurons. In addition, monosynaptic IPSPs were recorded from 13 of 53 identified laryngeal motoneurons, and from 14 of 100 respiratory propriobulbar neurons. Presumptive disynaptic IPSPs were recorded from 11 of the 221 VRG neurons. We conclude that Bot-Aug neurons exert widespread inhibition on all major neuron categories in the ipsilateral VRG, and should be regarded as an important element in shaping the spatiotemporal output pattern of both respiratory motoneurons and premotor neurons.  相似文献   

5.
Data were obtained from 45 anesthetized (Dial), paralyzed, artificially ventilated, bilaterally vagotomized cats. Arrays of extracellular electrodes were used to monitor simultaneously the activities of lateral medullary respiratory neurons located in the rostral and caudal regions of the ventral respiratory group. The average discharge rate as a function of time in the respiratory cycle was determined for each neuron and concurrent phrenic nerve activity. Most cells were tested for axonal projections to the spinal cord or the ipsilateral vagus nerve using antidromic stimulation techniques. Seven hundred and sixty-one pairs of ipsilateral respiratory neurons that contained at least one neuron whose maximum discharge rate occurred during the inspiratory phase were analyzed by cross-correlation of the simultaneously recorded spike trains. Twenty-three percent of the 410 pairs of inspiratory (I) neurons showed short time scale correlations indicative of functional association due to paucisynaptic connections or shared inputs. Eight per cent of the 351 pairs composed of an I cell and and expiratory (E) neuron were correlated. We found evidence for excitation of both bulbospinal I neurons and I cells that were not antidromically activated by stimulation of the spinal cord and vagus nerve (NAA neurons) by NAA I cells. We also obtained data suggesting inhibitory actions of cells whose maximum discharge rate occurred in the first half of the I phase (I-DEC neurons). These actions included inhibition of other I-DEC neurons, inhibition of cells whose greatest firing rate occurred in the last half of the I phase (I-AUG neurons), inhibition of E-DEC neurons, and inhibition of E-AUG cells. Sixty-two percent (31/50) of the correlations that could be interpreted as evidence for an excitatory or inhibitory paucisynaptic connection were detected in pairs composed of a caudal and a rostral ventral respiratory group neuron. Eighty-eight percent (14/16) of proposed intergroup excitatory connections involved a projection from the rostral neuron of the pair to the caudal cell, whereas 73% (11/15) of proposed inhibitory connections involved a caudal-to-rostral projection. These results support and suggest several hypotheses for mechanisms that may help to control the development of augmenting activity in and the timing of each phase of the respiratory cycle.  相似文献   

6.
Control of abdominal muscles by brain stem respiratory neurons in the cat   总被引:6,自引:0,他引:6  
Control of abdominal musculature by brain stem respiratory neurons was studied in decerebrate unanesthetized cats by determining 1) which brain stem respiratory neurons could be antidromically activated from the lumbar cord, from which the abdominal muscles receive part of their innervation, and 2) if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons. A total of 462 respiratory neurons, located between caudal C2 and the retrofacial nucleus (B?tzinger complex), were tested for antidromic activation from the upper lumbar cord. Fifty-eight percent of expiratory (E) neurons (70/121) in the caudal ventral respiratory group (VRG) between the obex and rostral C1 were antidromically activated from contralateral L1. Eight of these neurons were activated at low thresholds from lamina VIII and IX in the L1-2 gray matter. One-third (14/41) of the E neurons that projected to L1 could also be activated from L4-5. Almost all antidromic E neurons had an augmenting firing pattern. Ten scattered inspiratory (I) neurons projected to L1 but could not be activated from L4-5. No neurons that fired during both E and I phases (phase-spanning neurons) were antidromically activated from the lumbar cord. In order to test for possible monosynaptic connections between descending E neurons and abdominal motoneurons, cross-correlations were obtained between 27 VRG E neurons, which were antidromically activated from caudal L2 and contralateral L1 and L2 abdominal nerve activity (47 neuron-nerve combinations). Only two neurons showed a correlation with one of the two nerves tested. Although there is a large projection to the lumbar cord from expiratory neurons in the ventral respiratory group caudal to the obex, cross-correlation analyses suggest that strong monosynaptic connections between these neurons and abdominal motoneurons are scarce.  相似文献   

7.
The brain stem neural mechanism for central regulation of breathing is regarded as a complex neuronal mechanism consisting of several functional subsystems subserving different functions. One of its functions is the generation of the respiratory rhythm. Evidence indicates with certainty that the subsystem for respiratory rhythm-generating mechanisms is located in the medullary structure outside the DRG and VRG regions which have been postulated for many years as the hypothetical site generating respiratory rhythm. DRG and VRG are thought to be premotor neuron pools. Rhythmic activity originating in the medulla is dominant in terms of the spontaneity over other rhythmic activity in the pontine mechanisms as well as those in the spinal cord. Evidences for heterogeneity of functional properties of respiratory neurons in the brain stem are demonstrated. Possible functional differentiation among respiratory neurons is suggested. Neuronal mechanisms involving respiratory neurons identified as members of primary respiratory neuron populations or neuronal networks consisting of various types of respiratory neurons located in the lateral region of the bulbar reticular formation may play important roles in generation of respiratory rhythms. Precise neural processes within the neuronal mechanisms for respiratory rhythm generation are rather equivocal and remain to be determined by further investigation.  相似文献   

8.
Functional connectivity in the pontomedullary respiratory network   总被引:1,自引:0,他引:1  
Current models propose that a neuronal network in the ventrolateral medulla generates the basic respiratory rhythm and that this ventrolateral respiratory column (VRC) is profoundly influenced by the neurons of the pontine respiratory group (PRG). However, functional connectivity among PRG and VRC neurons is poorly understood. This study addressed four model-based hypotheses: 1) the respiratory modulation of PRG neuron populations reflects paucisynaptic actions of multiple VRC populations; 2) functional connections among PRG neurons shape and coordinate their respiratory-modulated activities; 3) the PRG acts on multiple VRC populations, contributing to phase-switching; and 4) neurons with no respiratory modulation located in close proximity to the VRC and PRG have widely distributed actions on respiratory-modulated cells. Two arrays of microelectrodes with individual depth adjustment were used to record sets of spike trains from a total of 145 PRG and 282 VRC neurons in 10 decerebrate, vagotomized, neuromuscularly blocked, ventilated cats. Data were evaluated for respiratory modulation with respect to efferent phrenic motoneuron activity and short-timescale correlations indicative of paucisynaptic functional connectivity using cross-correlation analysis and the "gravity" method. Correlogram features were found for 109 (3%) of the 3,218 pairs composed of a PRG and a VRC neuron, 126 (12%) of the 1,043 PRG–PRG pairs, and 319 (7%) of the 4,340 VRC–VRC neuron pairs evaluated. Correlation linkage maps generated for the data support our four motivating hypotheses and suggest network mechanisms for proposed modulatory functions of the PRG.  相似文献   

9.
The distribution and discharge pattern of respiratory neurons in the ‘pneumotaxic center’ of the rostral pons in the rat has remained unknown. We performed optical recordings and whole-cell patch clamp recordings to clarify respiratory neuron activity in the rostral pons of a brainstem-spinal cord preparation from a newborn rat. Inspiratory nerve activity was recorded in the 4th cervical nerve and used as a trigger signal for optical recordings. Respiratory neuron activity was detected in the limited region of the rostral-lateral pons. The main active region was presumed to be primarily the Kölliker-Fuse nucleus. The location of respiratory neurons was further confirmed by Lucifer Yellow staining after conducting whole-cell recordings. From a membrane potential analysis of the respiratory neurons in the rostral pons, the respiratory neurons were divided into four types: inspiratory neuron (71.9%), pre-inspiratory neuron (5.3%), post-inspiratory neuron (19.3%), and expiratory neuron (3.5%). A noticeable difference between pontine and medullary respiratory neurons was that post-inspiratory neurons were more frequently encountered in the pons. Application of a μ-opioid agonist, [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin, transformed the burst pattern of post-inspiratory neurons into that of pre-inspiratory neurons. The electrical stimulation of the sensory root of the trigeminal nerve induced three types of responses in 85% of pontine respiratory neurons: inhibitory postsynaptic potentials (42.7%), excitatory postsynaptic potentials (37.7%) and no response (15.1%). Our findings provide the first evidence in the rat for the presence of respiratory neurons in the rostral pons, with localization in the lateral region approximately overlapping with the Kölliker-Fuse nucleus.  相似文献   

10.
1. The identification of numerous functional connections among medullary respiratory related neurons led us to postulate specific short time scale correlations among neuronal spike trains consistent with 1) inhibition of rostrolateral medullary augmenting expiratory (E-AUG) neurons by other E-AUG cells, and 2) inhibitory control of the postulated E-AUG neural network by decrementing expiratory (E-DEC) neurons. Recent observations of reduced rostrolateral E-AUG cell activity following stimulation of sensory afferents raised the additional question of whether reflex control mechanisms use the identified functional connections to mediate their effects. 2. Experiments were conducted on 42 anesthetized, paralyzed, bilaterally vagotomized, artificially ventilated cats. Impulse trains of two or more respiratory related neurons of the lateral medulla, including at least one rostrolateral medullary E-AUG neuron, were simultaneously recorded together with phrenic nerve efferent activity. Most neurons were tested for spinal axonal projections with antidromic stimulation methods. In some experiments, the central cut end of the right vagus nerve was electrically stimulated during the expiratory interval. Data were analyzed using cycle-triggered histograms, auto- and cross-correlograms, logical cross-correlograms, snowflake scatter diagrams, and peristimulus time histograms. 3. Seven of 73 pairs (9.6%) of ipsilateral E-AUG neurons exhibited short time scale correlations in firing probability. Two rostral pairs had coincident increases in activity. Five pairs were characterized by a reduction in activity in a rostral neuron following spikes in the other cell; concurrent serial inhibition among one set of three E-AUG neurons was indicated. These five pairs, together with three other similarly correlated pairs described previously, were studied further: spikes recorded during the first and second halves of the expiratory (E) phase were analyzed separately. This phase segmentation unmasked multiple correlations implying reciprocal inhibition between one pair of E-AUG neurons. Short time scale troughs in correlograms generated from late E-phase spike trains had significantly (P less than 0.05) greater detectability indices than troughs in early E-phase correlograms. Multineuron correlations revealed two cases in which the firing probability of the target E-AUG neuron was reduced less when only reference E-AUG cell spikes coincident with spikes in a third, E-DEC, neuron were used as trigger events. 4. Enhanced rostral E-AUG neuron firing probabilities coincident with or following impulses in ipsilateral E-DEC neurons were detected in 6 of 94 (6.4%) rostral pairs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Summary In Nembutal-anesthetized, immobilized, and artificially ventilated cats, we studied the connectivity of medullary collaterals of bulbospinal inspiratory (BS-I) neurons in the ventral respiratory group (VRG). BS-I neurons which projected to the contralateral spinal cord were isolated extracellularly and intracellular recordings were made from the respiratory neurons in the contralateral VRG. The intracellular membrane potentials were averaged using extracellular spikes of the BS-I neurons as triggers (spike-triggered averaging method). Fast-rising and short-lasting depolarizing potentials locked to the triggering spikes were obtained and shown to be unitary EPSPs induced monosynaptically by the medullary collaterals of BS-I neurons. A total of 137 pairs were analyzed and unitary EPSPs were found in 11 pairs. Four BS-I neurons and 7 inspiratory vagal motoneurons received EPSPs from the medullary collaterals of BS-I neurons. These findings suggest that 1) BS-I neurons in the VRG drive medullary motoneurons of accessory respiratory muscles and phrenic or intercostal motoneurons simultaneously, 2) BS-I neurons on both sides synchronize via the excitatory connections, and 3) the augmenting firing pattern of BS-I neurons might partly be produced by this reexcitatory connection within the population of BS-I neurons.  相似文献   

12.
In 9 Nembutal-anesthetized and vagotomized cats, a total of 42 units, including 2 respiratory units, recorded from the medial parabrachial (NPBM) and K?lliker-Fuse (KF) nuclear complex were found to be antidromically activated by electrical stimulation of the nucleus raphe magnus (NRM). The latencies ranged from 0.4 to 2.5 ms (mean 1.1 ms). In 5 cats, following injection of WGA-HRP (wheat germ agglutinin-conjugated horseradish peroxidase) into the NRM, a number of retrogradely labelled neurons were observed in the rostral pons, mainly in the NPBM, KF and nearby pontine area. These results demonstrate that mainly non-respiratory neurons in the rostral pons, especially in the NPBM and KF nucleus, send monosynaptic axonal projections to the NRM.  相似文献   

13.
In Nembutal-anesthetized and artificially ventilated cats, we studied the connectivity of burst inspiratory (I) neurons in the B?tzinger complex and the ventral respiratory group (VRG) with spike-triggered averaging methods. Burst I neurons exhibited tonic (I-TON) or decrementing (I-DEC) firing patterns. Spikes of I-TON neurons induced monosynaptic EPSPs in intracellularly recorded I neurons of both the VRG and the dorsal respiratory group (DRG). Spikes of I-DEC neurons induced monosynaptic inhibitory postsynaptic potentials (IPSPs) in both VRG and DRG I neurons.  相似文献   

14.
The generation and shaping of the respiratory motor pattern are performed in the lower brainstem and involve neuronal interactions within the medulla and between the medulla and pons. A computational model of the ponto-medullary respiratory network has been developed by incorporating existing experimental data on the medullary neural circuits and possible interactions between the medulla and pons. The model reproduces a number of experimental findings concerning alterations of the respiratory pattern following various perturbations/stimulations applied to the pons and pulmonary afferents. The results of modeling support the concept that eupneic respiratory rhythm generation requires contribution of the pons whereas a gasping-like rhythm (and the rhythm observed in vitro) may be generated within the medulla and involve pacemaker-driven mechanisms localized within the medullary pre-Bötzinger Complex. The model and experimental data described support the concept that during eupnea the respiration-related pontine structures control the medullary network mechanisms for respiratory phase transitions, suppress the intrinsic pacemaker-driven oscillations in the pre-BötC and provide inspiration-inhibitory and expiration-facilitatory reflexes which are independent of the pulmonary Hering–Breuer reflex but operate through the same medullary phase switching circuits.  相似文献   

15.
A column of parvalbumin immunoreactive neurons is closely associated with the location of respiratory neurons in the ventrolateral medulla of the rat. The majority (66%) of bulbospinal neurons in the medullary ventral respiratory column (VRC) that were retrogradely labeled by tracer injections in the phrenic nucleus were also positive for parvalbumin. In contrast, only 18.8% of VRC neurons retrogradely labeled after a tracer injection in the VRC, also expressed parvalbumin. The average cross-sectional area of VRC neurons retrogradely labeled after VRC injections was 193.8 m2 ± 6.6 SE. These were significantly smaller than VRC parvalbumin neurons (271.9 m2 ± 12.3 SE). Parvalbumin neurons were found in the Bötzinger Complex, the rostral ventral respiratory group (VRG), and the caudal VRG, areas which all contribute to the bulbospinal projection. In contrast, parvalbumin neurons were sparse or absent in the preBötzinger Complex and in the vicinity of the retrotrapezoid nucleus, areas that have few bulbospinal projections. Parvalbumin was rarely colocalized within Neurokinin-1 receptor positive (NK1R) VRC neurons, which are found in the preBötzinger complex and in the anteroventral part of the rostral VRG. Parvalbumin neurons in the Bötzinger Complex and rostral VRG help define the rostrocaudal extent of these regions. The absence of parvalbumin neurons from the intervening preBötzinger complex also helps establish the boundaries of this region. Regional boundaries described in this manner are in good agreement with earlier physiological and anatomical studies. Taken together, the distributions of parvalbumin, NK1R and bulbospinal neurons suggest that the rostral VRG may be subdivided into distinct, anterodorsal, anteroventral, and posterior subdivisions.  相似文献   

16.
The dorsolateral and ventrolateral pons (dl-pons, vl-pons) are critical brainstem structures mediating the plasticity of the Hering-Breuer mechanoreflex (HBR) and carotid chemoreflex (CCR). Review of anatomical evidence indicates that dl-pons and vl-pons are connected reciprocally with one another and with medullary nucleus tractus solitarius (NTS) and ventral respiratory group (VRG). With this structural map, functional models of HBR and CCR are proposed in which the respiratory rhythm is modulated by short-term depression (STD) or potentiation (STP) of corresponding primary NTS-VRG and auxiliary pons-VRG excitatory or inhibitory pathways. Behaviorally, STD and STP of respiratory reflexes are akin to non-associative learning such as habituation, sensitization or desensitization to afferent inputs. Computationally, the STD and STP effects amount to signal differentiation and integration in the time domain, or high-pass and low-pass filtering in the frequency domain, respectively. These functional and structural models of pontomedullary signal processing provide a novel conceptual framework that unifies a wealth of experimental observations regarding mechanoreceptor and chemoreceptor reflex control of breathing.  相似文献   

17.
Historical and contemporary views of the functional organization of the lateral pontine regions influencing breathing are reviewed. In vertebrates, the rhombencephalon generates a breathing rhythm and detailed motor pattern that persist throughout life. Key to this process is an essentially continuous column of neurons extending from the spino-medullary border through the ventrolateral medulla, continuing through the ventral pons and arcing into the dorsolateral medulla. Comparative neuroanatomy and physiology indicate this is a richly interconnected network divided into serial, functionally distinct compartments. Serial compartmentalization of pontomedullary structures related to breathing also reflects the developmental segmentation of the rhombencephalon. However, with migration of cell groups such as the facial nucleus from the pons to the medulla during ontogeny, the boundaries of the adult pons are sometimes difficult to precisely define. Accordingly, a working definition of rostral and caudal pontine boundaries for adult mammals is depicted.  相似文献   

18.
The present studies used anatomical tract-tracing techniques to delineate the organization of pathways linking the medial preoptic area and the ventral medulla, two key regions involved in neuroendocrine, autonomic and sensory regulation. Wheatgerm agglutinin-horseradish peroxidase injections into the ventromedial medulla retrogradely labeled a large number of neurons in the medial preoptic area, including both the median and medial preoptic nuclei. The termination pattern of preoptic projections to the medulla was mapped using the anterograde tracers Phaseolus vulgaris leucoagglutinin and biotinylated dextran amine. Tracer injections into the preoptic area produced a dense plexus of labeled fibers and terminals in the ventromedial and ventrolateral pons and medulla. Within the caudal pons/rostral medulla, medial preoptic projections terminated heavily in the nucleus raphe magnus; strong anterograde labeling was also present in the pontine reticular field. At mid-medullary levels, labeled fibers focally targeted the nucleus paragigantocellularis, in addition to the heavy fiber labeling present in the midline raphe nuclei. By contrast, very little labeling was observed in the caudal third of the medulla. Experiments were also conducted to map the distribution of ventral pontine and medullary neurons that project to the medial preoptic area. Wheatgerm agglutinin-horseradish peroxidase injections in the preoptic area retrogradely labeled a significant population of neurons in the ventromedial and ventrolateral medulla. Ascending projections from the medulla to the preoptic area were organized along rostral-caudal, medial-lateral gradients. In the caudal pons/rostral medulla, retrogradely labeled cells were aggregated along the midline raphe nuclei; no retrograde labeling was present laterally at this level. By contrast, in the caudal half of the medulla, cells retrogradely labeled from the medial preoptic area were concentrated as a discrete zone dorsal to the lateral reticular nucleus; labeled cells were not present in the ventromedial medulla at this level. The present findings suggest that the medial preoptic area and ventral midline raphe nuclei share reciprocal connections that are organized in a highly symmetrical fashion. By contrast, preoptic-lateral medullary pathways are not reciprocal. These preoptic-brainstem circuits may participate in antinociceptive, autonomic and reproductive behaviors.  相似文献   

19.
Ventrolateral respiratory column (VRC) circuits that modulate breathing in response to changes in central chemoreceptor drive are incompletely understood. We employed multielectrode arrays and spike train correlation methods to test predictions of the hypothesis that pre-B?tzinger complex (pre-B?tC) and retrotrapezoid nucleus/parafacial (RTN-pF) circuits cooperate in chemoreceptor-evoked tuning of ventral respiratory group (VRG) inspiratory neurons. Central chemoreceptors were selectively stimulated by injections of CO(2)-saturated saline into the vertebral artery in seven decerebrate, vagotomized, neuromuscularly blocked, and artificially ventilated cats. Among sampled neurons in the B?tzinger complex (B?tC)-to-VRG region, 70% (161 of 231) had a significant change in firing rate after chemoreceptor stimulation, as did 70% (101 of 144) of the RTN-pF neurons. Other responsive neurons (24 B?tC-VRG; 11 RTN-pF) had a change in the depth of respiratory modulation without a significant change in average firing rate. Seventy B?tC-VRG chemoresponsive neurons triggered 189 offset-feature correlograms (96 peaks; 93 troughs) with at least one responsive B?tC-VRG cell. Functional input from at least one RTN-pF cell could be inferred for 45 B?tC-VRG neurons (19%). Eleven RTN-pF cells were correlated with more than one B?tC-VRG target neuron, providing evidence for divergent connectivity. Thirty-seven RTN-pF neurons, 24 of which were chemoresponsive, were correlated with at least one chemoresponsive B?tC-VRG neuron. Correlation linkage maps and spike-triggered averages of phrenic nerve signals suggest transmission of chemoreceptor drive via a multipath network architecture: RTN-pF modulation of pre-B?tC-VRG rostral-to-caudal excitatory inspiratory neuron chains is tuned by feedforward and recurrent inhibition from other inspiratory neurons and from "tonic" expiratory neurons.  相似文献   

20.
Expiratory neurones, with a decrementing firing pattern during the first phase of expiration (E-DEC) and located in the rostral ventrolateral medulla, are thought to be involved in the network generating respiratory rhythm, which also includes expiratory neurones with augmenting firing patterns (E-AUG). We used cross-correlation to detect their synaptic interconnections and connections to phrenic motoneurones in 32 vagotomised, decerebrate, paralysed and ventilated male rats. Pairs of neurones were recorded extracellularly with glass-insulated tungsten microelectrodes and the whole phrenic nerve with bipolar silver wire electrodes. Of the 79 cross-correlograms computed between pairs of E-DEC neurones, 8 (approximately 10%) showed evidence for inhibitory connections. Of the 67 cross-correlograms computed between E-DEC and E-AUG neurones, 5 (7.5%) showed evidence for a monosynaptic inhibition of the E-AUG neurone by the E-DEC neurone, while 3 (4.5%) showed evidence for a monosynaptic inhibition of the E-DEC neurone by the E-AUG neurone. An inhibitory connection from E-DEC neurones to phrenic motoneurones was detected in 5 (approximately 2%) of the cross-correlograms, and from E-AUG neurones to phrenic motoneurones in 4 (approximately 3.7%). These results are the first demonstration that network models of rhythm generation in the rat involving reciprocal inhibition between E-DEC and E-AUG neurones could have a neurophysiological basis, and the first to demonstrate that phrenic motoneurones are inhibited during the early phase of expiration by E-DEC neurones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号