首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and potent developmental toxicant in various animals, with developing fish being the most sensitive organisms. Although the expression of aryl hydrocarbon receptor (AHR) as well as the partner molecule, AHR nuclear translocator (ARNT) in the brain has been reported, the effect of TCDD on the brain remains to be clarified in detail. Previously, we reported local circulation failure and apoptosis in dorsal midbrain caused by TCDD in developing zebrafish. In the present experiments, we investigated the effects of morpholino antisense oligos against aryl hydrocarbon receptor 2 (zfAHR2) (AHR2-MO) on toxicological endpoints caused by TCDD in developing zebrafish. AHR2-MO but not its negative homologue (4mis-AHR2-MO) improved TCDD-evoked circulation failure in mesencephalic vein and reduced the occurrence of apoptosis in dorsal midbrain, with concomitant inhibition of CYP1A induction in vascular endothelium. Injection of bovine serum albumin (BSA) into the general circulation, followed by immunohistochemistry with anti-BSA, showed that TCDD raised vascular permeability to albumin in dorsal midbrain, which was blocked by AHR2-MO and N-acetlycystein. In the absence of TCDD, development of embryos injected with AHR2-MO appeared normal at least until 60 h after fertilization. It is concluded that AHR2 activation in the vascular endothelium of the zebrafish embryo midbrain is involved in the mesencephalic circulation failure and apoptosis elicited by TCDD. This is the further evidence that vascular endothelium is the target of TCDD in relation to local circulation failure and apoptosis in dorsal midbrain.  相似文献   

2.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related substances are ubiquitous environmental pollutants causing a wide variety of pathological alterations, with the most severe being progressive anorexia and body weight loss. These features suggest a possible involvement of the nervous system and neuroendocrine-related organs including the pituitary gland. However, so far there is little evidence for direct effects of TCDD on these areas. In the present study, male Sprague-Dawley rats were treated with a single oral dose of TCDD (10 microg/kg) and euthanized 1, 3, or 28 days after treatment. The expression of cytochrome P450 1A1 (CYP1A1), the aryl hydrocarbon receptor (AHR), and the aryl hydrocarbon receptor nuclear translocator (ARNT) were analyzed in different brain regions and pituitaries using semiquantitative RT-PCR and Western blotting. Relative levels of CYP1A1 mRNA and protein were dramatically increased in the pituitary. A significant increase in CYP1A1 mRNA was also detected in all the brain regions examined including olfactory bulb, striatum-caudate, hypothalamus, hippocampus, cortex, cerebellum, and substantia nigra. The increase in the expression was time-dependent with the highest level observed 1 day after TCDD treatment. The AHR and ARNT mRNAs were detected in the same areas but in contrast to CYP1A1 the changes in AHR and ARNT mRNA expression were limited to the 28-day time point. The present results provide evidence for the presence of CYP1A1, AHR, and ARNT in the central nervous system and in the pituitary, suggesting that TCDD may exert a direct effect on these regions.  相似文献   

3.
4.
Previous studies have demonstrated that acute exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by injection leads to inhibition of caudal fin regeneration in zebrafish. Since the TCDD exposure in these studies is systemic, it is possible that pathology in organs other than the fin could result in inhibition of fin regeneration. Therefore, histopathology of adult zebrafish (Danio rerio) organs was characterized following abdominal cavity injection of a TCDD dose (70ng/g). The most pronounced histopathologic changes 5 days post-injection included lipidosis and hypertrophy of liver hepatocytes and hypertrophy of gill lamellae. Effects of TCDD exposure on immunolocalization of the zebrafish aryl hydrocarbon receptor nuclear translocator (ARNT2), the heterodimer partner of the aryl hydrocarbon receptor (AHR2), and an AHR regulated gene cytochrome P450 1A (CYP1A) was also determined. ARNT2 was immunolocalized to the gastrointestinal tract, gill lamellae, kidney, ventricle of the heart, caudal fin, brain and liver of zebrafish. TCDD exposure had no measurable effect on ARNT2 abundance or localization. CYP1A was immunolocalized in TCDD exposed fish as a biomarker for cells with an activated AHR pathway. CYP1A was not detected in any tissue from vehicle exposed fish. Significant TCDD-dependent induction of CYP1A was detected in the proximal tubules of the kidney, in liver hepatocytes and in the gastrointestinal tract of TCDD exposed fish. Significant but lower TCDD-dependent CYP1A expression was evident in the gill, caudal fin and ventricle of the heart. Overall, TCDD exposure in adult zebrafish leads to histopathology similar to that reported in other fish species, and it appears unlikely that the histopathology in these organs completely explains the inhibition of fin regeneration.  相似文献   

5.
6.
7.
The zebrafish (Danio rerio) has become an attractive vertebrate model for studying developmental processes, and is emerging as a model system for studying the mechanisms by which xenobiotic compounds perturb normal development. Embryos treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) shortly after fertilization exhibit a range of adverse effects on the heart: an early reduction in cardiac myocyte number, followed by a change in heart looping and morphology, with an apparent compaction of the ventricle and overall decrease in heart size. These changes are accompanied by impaired cardiac function including a decrease in cardiac output and eventually irreversible ventricular standstill. The mechanisms involved in mediating effects of TCDD on the heart remain unknown. However, it is widely accepted that aryl hydrocarbon receptor (AHR) activation mediates endpoints of TCDD toxicity in vertebrates. In zebrafish, there are multiple forms of AHR and AHR nuclear translocator protein (ARNT) raising the question about whether different endpoints of TCDD toxicity are mediated by different components of the AHR/ARNT pathway. To address this question we used morpholino oligonucleotide technology to specifically block the expression of zfAHR2, zfARNT1, zfARNT2, and zfCYP1A, and assessed the previously described effects of TCDD on heart morphology, size, and function in the developing morphants. We report that blocking zfAHR2 and zfARNT1 expression provided protection against the TCDD-mediated alteration in heart morphology, reduced cardiac myocyte number, decreased cardiac output and ventricular standstill in zebrafish larvae, while the zfarnt2 and zfcyp1a morpholinos did not block the TCDD-induced cardiac toxicity.  相似文献   

8.
In mammals, the toxicity of halogenated aromatic hydrocarbons (HAH) correlates with their ability to activate the aryl hydrocarbon receptor (AHR). To test this correlation in an avian model, we selected six HAHs based on their affinity for the mammalian AHR, including: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PCDD); 2,3,7,8-tetrachlorodibenzofuran (TCDF); 2,3,4,7,8-pentachlorodibenzofuran (PCDF); 3,3',4,4'-tetrachlorobiphenyl (PCB 77); and 2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153). We determined the ability of these compounds to induce cardiotoxicity, as measured by an increase in heart wet weight on incubation day 10 in the chick embryo (Gallus gallus) and formation of the avian AHR/ARNT/DNA binding complex in chicken hepatoma cells. Relative potency values (RPs) were calculated by dividing the TCDD EC(50) (AHR/ARNT/DNA binding) or ED(50) (15% increase in day-10 heart wet weight) by the HAH congeners EC(50) or ED(50), respectively. The rank order of potencies for inducing cardiotoxicity were TCDD > PCDD = PCDF = TCDF > PCDF > PCB77, PCB 153, no effect. The RP values for inducing AHR/ARNT DNA binding were then correlated with those for inducing cardiotoxicity (the RP values of PCDD were determined to be statistical outliers). This correlation was found to be highly significant (r = 0.94, p = 0.017). The ability of PCDD to act as an AHR agonist was verified using luciferase reporter assays and analysis of cytochrome P4501A1 protein levels. These results indicate that the ability of HAHs to activate the avian AHR signaling pathway, in general, correlates with their ability to mediate cardiotoxicity in the chick embryo.  相似文献   

9.
10.
There is considerable literature supporting the conclusion that inappropriate activation of the aryl hydrocarbon receptor (AHR) alters cellular signaling. We have established previously that fin regeneration is specifically inhibited by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in adult zebrafish and have used this in vivo endpoint to evaluate interactions between AHR and growth-controlling pathways. Because there are experimental limitations in studying regeneration in adult animals, we have developed a larval model to evaluate the effect of AHR activation on tissue regeneration. Two-day-old zebrafish regenerate their amputated caudal fins within 3 days. Here, we demonstrate that TCDD specifically blocks regenerative growth in larvae. The AHR pathway in zebrafish is considerably more complex than in mammals, with at least three zebrafish AHR genes (zfAHR1a, zfAHR1b, and zfAHR2) and two ARNT genes (zfARNT1 and zfARNT2). Although it was presumed that the block in regeneration was mediated by AHR activation, it had not been experimentally demonstrated. Using antisense morpholinos and mutant fish lines, we report that zfAHR2 and zfARNT1 are the in vivo dimerization partners that are required for inhibition of regeneration by TCDD. Several pathways including fibroblast growth factor (FGF) signaling are essential for fin regeneration. Even though impaired FGF signaling and TCDD exposure both inhibit fin regeneration, their morphometric response is distinct, suggesting that the mechanisms of impairment are different. With the plethora of molecular and genetic techniques that can be applied to larval-stage embryos, this in vivo regeneration system can be further exploited to understand cross-talk between AHR and other signaling pathways.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
The aryl hydrocarbon receptor (AHR) mediates toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and regulates expression of several genes such as CYP1A1. Little is known about what regulates expression of the AHR itself. We tested the ability of TCDD to alter in vivo expression of its own receptor in rat strains that are susceptible to TCDD lethality [Long-Evans (Turku AB) (L-E) and Sprague Dawley (SD)] and in a rat strain that is remarkably resistant to TCDD lethality [Han/Wistar (Kuopio) (H/W)]. Rats were administered a single, intragastric dose of 5 or 50 microg/kg of TCDD. Hepatic cytosol, nuclear extract, and RNA were prepared at 1, 4, and 10 days after TCDD exposure. AHR expression was assessed at three levels: ligand binding function, immunoreactive protein and mRNA. TCDD at 5 microg/kg produced a 2- to 3-fold increase in cytosolic AHR in all strains; 50 microg/kg produced depletion at day 1 followed by recovery in SD and H/W but not L-E rats. Both the increase in AHR above basal levels and the recovery from initial depletion were accompanied by elevations in steady-state AHR mRNA, suggesting a pre-translational mechanism for AHR regulation by its own ligand. This up-regulation in vivo is in contrast to the sustained depletion of AHR caused by TCDD in cell culture. There was no clear relationship between AHR regulation and strain sensitivity; thus, the large inherent strain differences in susceptibility to TCDD lethality probably are not explained by differential regulation of AHR by TCDD.  相似文献   

19.
20.
Changes in the expression of the aryl hydrocarbon receptor (AHR) have been documented in several systems and in response to a variety of treatments. The significance of these findings is unclear, because the effects of such changes on subsequent responses to AHR ligands seldom have been measured. We tested the ability of changes in serum used in cell culture medium to alter expression of the AHR and induction of cytochrome P4501A (CYP1A) in PLHC-1 teleost hepatoma cells. Culture of early-passage cells in serum-free medium for 2 days led to a loss of CYP1A inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In contrast, culture in 10% delipidated calf serum increased the TCDD-induced levels of both CYP1A protein and enzymatic activity relative to levels in cells cultured in 10% complete calf serum. These effects were consistent between 8 and 24hr post-treatment, indicating that the kinetics of induction were unaffected. In cells cultured in serum-free medium for 1 and 2 days there was a progressive loss of CYP1A inducibility. This loss of response paralleled a time-dependent decline in AHR protein, as measured by specific binding of [3H]TCDD. Using an operational model for AHR action in PLHC-1 cells, the measured reduction in AHR could be shown to predict the loss of CYP1A induction. Expression of AHR protein was unaffected by culture in 10% delipidated serum. The effects of serum-free medium and delipidated serum were found only in early-passage cells; inducibility of CYP1A and expression of AHR protein in late-passage cells were unaffected by serum withdrawal. Comparison of early- and late-passage cells revealed a 2-fold greater rate of proliferation in the latter, suggesting that a growth advantage is coincident with loss of the serum-dependency of AHR expression. These results provide a quantitative link between changes in receptor expression and a downstream response, establishing a foundation for future studies of receptor expression and sensitivity to toxic responses in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号