首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of an active synthetic N-terminal fragment of bovine parathyroid hormone (bPTH), bPTH-(1-34), on Ca2+ channels was studied in mouse neuroblastoma cells (N1E-115). With the whole-cell variation of the patch-clamp technique, T (transient) and L (long-lasting) types of Ca2+ currents were identified. Pharmacological characterization showed that the L current was amplified by the Ca2+ channel stimulator BAY K-8644, but the T current was unaffected. The administration of bPTH-(1-34) produced dose-related inhibition of the L current, which could be reversed by BAY K-8644. The peptide had no effect on the T current. In addition, use of the fluorescent indicator fura-2 showed that bPTH-(1-34) inhibited the KCl-stimulated increase in intracellular free Ca2+ in neuroblastoma cells with L channels but not in cells with T channels. An inactivated (oxidized) preparation of bPTH-(1-34) failed to affect the L current. High-affinity binding of labeled PTH analog to these neuroblastoma cells was also demonstrated. In addition, bPTH-(1-34) inhibited the L current in cultured vascular smooth muscle cells from rat tail artery. These data indicate that, in some tissues, PTH can act as an endogenous blocker of Ca2+ entry.  相似文献   

2.
In vascular muscle cells, two distinct types of functionally important calcium (Ca2+) channels, called transient (T) and sustained (L), are differentiated by dihydropyridine calcium antagonists (CaA). We studied the ratio of T/L Ca2+ channels in isolated, spontaneously contracting azygous venous cells of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) by quantitating Ca2+ currents and intracellular Ca2+ release. While total transmembranous Ca2+ current was not different between the two strains, the proportion of Ca2+ currents carried by L-type channels was enhanced in vascular muscle cells from SHR. We have recently compared subcellular distribution of intracellular free Ca2+ concentration in the same cells, at rest and during stimulation, by quantitation with a digital photon-counting camera. Fura-2 fluorescence intensity showed that Ca2+ release was principally from sarcoplasmic reticulum and that cells from SHR had higher levels of Ca2+ upon calcium channel stimulation, especially at the cell periphery. These findings suggest fundamental differences in SHR and WKY vascular muscle cells implicating the importance of changes in calcium channels, modulation of Ca2+ release, and Ca2+ uptake in SHR hypertension.  相似文献   

3.
Transmembrane electrical activity in pituitary tumor cells can be altered by substances that either stimulate or inhibit their secretory activity. Using patch recording techniques, we have measured the resting membrane potentials, action potentials, transmembrane macroscopic ionic currents, and single Ca2+-activated K channel currents of GH3 and GH4/C1 rat pituitary tumor cells in response to thyrotropin-releasing hormone (TRH). TRH, which stimulates prolactin secretion, causes a transient hyperpolarization of the membrane potential followed by a period of elevated action potential frequency. In single cells voltage clamped and internally dialyzed with solutions containing K+, TRH application results in a transient increase in Ca2+-activated K currents and a more protracted decrease in voltage-dependent K currents. However, in cells internally dialyzed with K+-free solutions, TRH produces no changes in inward Ca2+ or Ba2+ currents through voltage-dependent Ca channels. The time courses of the effects on Ca2+-activated and voltage-dependent K currents correlate with the phases of hyperpolarization and hyperexcitability, respectively. During application of TRH to whole cells, single Ca2+-activated K channel activity increases in cell-attached patches not directly exposed to TRH. In contrast, TRH applied directly to excised membrane patches produces no change in single Ca2+-activated K channel behavior. We conclude that TRH (i) triggers intracellular Ca2+ release, which opens Ca2+-activated K channels, (ii) depresses voltage-dependent K channels during the hyperexcitable phase, which further elevated intracellular Ca2+, and (iii) does not directly modulate Ca channel activity.  相似文献   

4.
We have previously found that high extracellular calcium (Ca++) concentrations inhibit PTH release in association with a threefold to fourfold rise in cytosolic Ca++ concentration. Recent data have also shown that low extracellular potassium (K+) concentration or ouabain also inhibits PTH release to an extent comparable to that seen with high Ca++ and produce a marked rise in the intracellular sodium (Na+) content. These results suggested that low K+ and ouabain might modulate PTH release through increases in cytosolic Ca++ related to alterations in Na+-Ca++-exchange. In the present studies, we have examined further the mechanism(s) by which inhibition of the Na+-K+-ATPase regulates PTH release. Exposure of cells loaded with the Ca++-sensitive dye QUIN-2 to low K+ produced a 10% to 17% increase in cytosolic Ca++ at 0.5 to 1.0 mmol/L extracellular Ca++, which was statistically significant only at 0.75 mmol/L Ca++. In contrast, low K+ caused a statistically significant decrease in cytosolic Ca++ at 1.5 to 2 mmol/L Ca++, while ouabain lowered cytosolic Ca++ significantly by 23% to 46% at all Ca++ concentrations examined (0.5 to 2 mmol/L). Low K+ or ouabain had no effect on cellular levels of ATP or GTP or intracellular pH measured using the pH-sensitive dye BCECF [2', 7'-bis(carboxyethyl)-5,6-carboxyfluorescein]. The inhibition of secretion by low K+ or ouabain, unlike that due to high extracellular Ca++, was not reversed by TPA (12-O-tetradecanoyl phorbol 13-acetate), an activator of protein kinase C. Low K+ did produce a modest (30% to 40%) lowering of agonist-stimulated but not basal cAMP content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Whole-cell Ca2+ channel currents were recorded from isolated single canine Purkinje and ventricular cells to determine whether there were multiple types of Ca2+ channels in these two cell types, as in many other excitable tissues. The experimental conditions were such that currents other than Ca2+ channel currents were largely suppressed. The charge carrier was either Ca2+ or Ba2+ (5mM). In every canine Purkinje cell studied (n = 36), we saw T and L Ca2+ channel currents that are similar to their counterparts in other tissues. Neither current was affected by tetrodotoxin (30 microM), but both were reduced by Mn2+ (5mM). Ni2+ (50 microM) blocked T more than L current. Nisoldipine (1 microM) apparently abolished the L current but also decreased the T current by 50%. Substitution of Ba2+ for Ca2+ augmented and prolonged L current but did not affect T current significantly. At 36 degrees C and with 5 mM [Ca2+]o, T current inactivated over a voltage range from -70 to -30 mV whereas L current inactivated between -30 and +20 mV. T current was detectable in only some of the ventricular cells studied (8 out of 12). In these cells the ratio of maximal T current to maximal L current (0.2 +/- 0.1, n = 8) was lower than the T/L ratio in Purkinje cells (0.6 +/- 0.2, n = 6). The density of peak L current in ventricular cells (7.5 +/- 1.7 pA/pF, n = 8) was higher than that in Purkinje cells (4.4 +/- 3.4 pA/pF, n = 6). Therefore, in ventricular cells the L current is the main Ca2+ current whereas in Purkinje cells, the T current also contributes significantly to membrane electrical activity. In Purkinje cells, beta-adrenoceptor stimulation by isoproterenol (1 microM) increased L current but did not affect T current. On the other hand, in 70% (7 out of 10) of the Purkinje cells, alpha-adrenoceptor stimulation by 10 microM norepinephrine (in the presence of 2 microM propranolol) increased the T current. Our observations show that the distribution of the two types of Ca2+ channels in canine ventricle is heterogeneous and that the two types of Ca2+ channels are modulated by catecholamines by different receptors.  相似文献   

6.
We proposed earlier that voltage-dependent calcium (Ca2+) current is altered in single azygos venous cells from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). In this study, the effects of different intracellular concentrations of ethylene glycol-bis-N,N,N',N',-tetraacetic acid (EGTA) on Ca2+ currents were investigated. Vascular muscle cells from SHR and WKY rats were equilibrated with pipette solution containing 0.1 mM or 10 mM EGTA. Increasing the EGTA concentration from 0.1 to 10 mM in SHR vascular cells significantly enhanced the peak amplitude of the longer lasting (L) current from 87 +/- 12 pA to 152 +/- 8 pA, while the transient (T) current amplitude was not significantly different (52 +/- 7 pA and 36 +/- 7 pA, respectively). In WKY rat vascular muscle cells, the amplitudes of the T and L currents were not significantly different with the same comparison of intracellular EGTA concentrations. These observations suggest that relatively low intracellular Ca2+ concentrations can more strongly modulate Ca2+ current through the L channel in SHR than WKY rat vascular muscle cells.  相似文献   

7.
Han XF  Zhu YL  Hernandez M  Keating DJ  Chen C 《Endocrine》2005,28(2):217-224
Ghrelin is an endogeneous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca2+ concentration ([Ca2+]i), which is determined by Ca2+ influx and release from intracellular Ca2+ storage sites. Ca2+ influx is via voltage-gated Ca2+ channels, which are activated by cell depolarization. Membrane potential is mainly determined by transmembrane K+ channels. The present study investigates the in vitro effect of ghrelin on membrane voltage-gated K+ channels in the GH3 rat somatotrope cell line. Nystatin-perforated patch clamp recording was used to record K+ currents under voltage-clamp conditions. In the presence of Co2+ (1 mM, Ca2+ channel blocker) and tetrodotoxin (1 μM, Na+ channel blocker) in the bath solution, two types of voltage-gated K+ currents were characterized on the basis of their biophysical kinetics and pharmacological properties. We observed that transient K+ current (I A) represented a significant proportion of total K+ currents in some cells, whereas delayed rectifier K+ current (I K) existed in all cells. The application of ghrelin (10 nM) reversibly and significantly decreased the amplitude of both I A and I K currents to 48% and 64% of control, respectively. Application of apamin (1 μM, SK channel blocker) or charybdotoxin (1 μM, BK channel blocker) did not alter the K+ current or the response to ghrelin. The ghrelin-induced reduction in K+ currents was not affected by PKC and PKA inhibitors. KT5823, a specific PKG inhibitor, totally abolished the K+ current response to ghrelin. These results suggest that ghrelininduced reduction of voltage-gated K+ currents in GH3 cells is mediated through a PKG-dependent pathway. A decrease in voltage-gated K+ currents may increase the frequency, duration, and amplitude of action potentials and contribute to GH secretion from somatotropes.  相似文献   

8.
Astrocyte signals can modulate arteriolar tone, contributing to regulation of cerebral blood flow, but specific intercellular communication mechanisms are unclear. Here we used isolated cerebral arteriole myocytes, astrocytes, and brain slices to investigate whether carbon monoxide (CO) generated by the enzyme heme oxygenase (HO) acts as an astrocyte-to-myocyte gasotransmitter in the brain. Glutamate stimulated CO production by astrocytes with intact HO-2, but not those genetically deficient in HO-2. Glutamate activated transient K(Ca) currents and single K(Ca) channels in myocytes that were in contact with astrocytes, but did not affect K(Ca) channel activity in myocytes that were alone. Pretreatment of astrocytes with chromium mesoporphyrin (CrMP), a HO inhibitor, or genetic ablation of HO-2 prevented glutamate-induced activation of myocyte transient K(Ca) currents and K(Ca) channels. Glutamate decreased arteriole myocyte intracellular Ca2+ concentration and dilated brain slice arterioles and this decrease and dilation were blocked by CrMP. Brain slice arteriole dilation to glutamate was also blocked by L-2-alpha aminoadipic acid, a selective astrocyte toxin, and paxilline, a K(Ca) channel blocker. These data indicate that an astrocytic signal, notably HO-2-derived CO, is used by glutamate to stimulate arteriole myocyte K(Ca) channels and dilate cerebral arterioles. Our study explains the astrocyte and HO dependence of glutamatergic functional hyperemia observed in the newborn cerebrovascular circulation in vivo.  相似文献   

9.
This study was designed to investigate the role of voltage-independent and voltage-dependent Ca2+ channels in the Ca2+ signaling associated with intracellular alkalinization in A7r5 vascular smooth muscle cells. Extracellular administration of ammonium chloride (20 mmol/L) resulted in elevation of intracellular pH and activation of a sustained Ca2+ entry that was inhibited by 2-amino-ethoxydiphenyl borate (2-APB, 200 micromol/L) but not by verapamil (10 micro;mol/L). Alkalosis-induced Ca2+ entry was mediated by a voltage-independent cation conductance that allowed permeation of Ca2+ (PCa/PNa approximately 6), and was associated with inhibition of L-type Ca2+ currents. Alkalosis-induced inhibition of L-type Ca2+ currents was dependent on the presence of extracellular Ca2+ and was prevented by expression of a dominant-negative mutant of calmodulin. In the absence of extracellular Ca2+, with Ba2+ or Na+ as charge carrier, intracellular alkalosis failed to inhibit but potentiated L-type Ca2+ channel currents. Inhibition of Ca2+ currents through voltage-independent cation channels by 2-APB prevented alkalosis-induced inhibition of L-type Ca2+ currents. Similarly, 2-APB prevented vasopressin-induced activation of nonselective cation channels and inhibition of L-type Ca2+ currents. We suggest the existence of a pH-controlled Ca2+ entry pathway that governs the activity of smooth muscle L-type Ca2+ channels due to control of Ca2+/calmodulin-dependent negative feedback regulation. This Ca2+ entry pathway exhibits striking similarity with the pathway activated by stimulation of phospholipase-C-coupled receptors, and may involve a similar type of cation channel. We demonstrate for the first time the tight functional coupling between these voltage-independent Ca2+ channels and classical voltage-gated L-type Ca2+ channels.  相似文献   

10.
Han X  Zhu Y  Zhao Y  Chen C 《Endocrine》2011,40(2):228-236
Ghrelin is an endogenous growth hormone secretagogue (GHS) causing release of GH from pituitary somatotropes through the GHS receptor. Secretion of GH is linked directly to intracellular free Ca2+ concentration ([Ca2+]i), which is determined by Ca2+ influx and release from intracellular Ca2+ storage sites. Ca2+ influx is via voltage-gated Ca2+ channels, which are activated by cell depolarization. The mechanism underlying the effect of ghrelin on voltage-gated Ca2+ channels is still not clear. In this report, using whole cell patch-clamp recordings, we assessed the acute action of ghrelin on voltage-activated Ca2+ currents in GH3 rat somatotrope cell line. Ca2+ currents were divided into three types (T, N, and L) through two different holding potentials (-80 and -40 mV) and specific L-type channel blocker (nifedipine, NFD). We demonstrated that ghrelin significantly and reversibly decreases all three types of Ca2+ currents in GH3 cells through GHS receptors on the cell membrane and down-stream signaling systems. With different signal pathway inhibitors, we observed that ghrelin-induced reduction in voltage-gated Ca2+ currents in GH3 cells was mediated by a protein kinase G-dependent pathways. As ghrelin also stimulates Ca2+ release and prolongs the membrane depolarization, this reduction in voltage-gated Ca2+ currents may not be translated into a reduction in [Ca2+]i, or a decrease in GH secretion.  相似文献   

11.
Vasodilatory factors produced by the endothelium are critical for the maintenance of normal blood pressure and flow. We hypothesized that endothelial signals are transduced to underlying vascular smooth muscle by vanilloid transient receptor potential (TRPV) channels. TRPV4 message was detected in RNA from cerebral artery smooth muscle cells. In patch-clamp experiments using freshly isolated cerebral myocytes, outwardly rectifying whole-cell currents with properties consistent with those of expressed TRPV4 channels were evoked by the TRPV4 agonist 4alpha-phorbol 12,13-didecanoate (4alpha-PDD) (5 micromol/L) and the endothelium-derived arachidonic acid metabolite 11,12 epoxyeicosatrienoic acid (11,12 EET) (300 nmol/L). Using high-speed laser-scanning confocal microscopy, we found that 11,12 EET increased the frequency of unitary Ca2+ release events (Ca2+ sparks) via ryanodine receptors located on the sarcoplasmic reticulum of cerebral artery smooth muscle cells. EET-induced Ca2+ sparks activated nearby sarcolemmal large-conductance Ca2+-activated K+ (BKCa) channels, measured as an increase in the frequency of transient K+ currents (referred to as "spontaneous transient outward currents" [STOCs]). 11,12 EET-induced increases in Ca2+ spark and STOC frequency were inhibited by lowering external Ca2+ from 2 mmol/L to 10 micromol/L but not by voltage-dependent Ca2+ channel inhibitors, suggesting that these responses require extracellular Ca2+ influx via channels other than voltage-dependent Ca2+ channels. Antisense-mediated suppression of TRPV4 expression in intact cerebral arteries prevented 11,12 EET-induced smooth muscle hyperpolarization and vasodilation. Thus, we conclude that TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels that elicits smooth muscle hyperpolarization and arterial dilation via Ca2+-induced Ca2+ release in response to an endothelial-derived factor.  相似文献   

12.
Mitochondria regulate intracellular calcium (Ca2+) signals in smooth muscle cells, but mechanisms mediating these effects, and the functional relevance, are poorly understood. Similarly, antihypertensive ATP-sensitive potassium (KATP) channel openers (KCOs) activate plasma membrane KATP channels and depolarize mitochondria in several cell types, but the contribution of each of these mechanisms to vasodilation is unclear. Here, we show that cerebral artery smooth muscle cell mitochondria are most effectively depolarized by diazoxide (-15%, tetramethylrhodamine [TMRM]), less so by levcromakalim, and not depolarized by pinacidil. KCO-induced mitochondrial depolarization increased the generation of mitochondria-derived reactive oxygen species (ROS) that stimulated Ca2+ sparks and large-conductance Ca2+-activated potassium (KCa) channels, leading to transient KCa current activation. KCO-induced mitochondrial depolarization and transient KCa current activation were attenuated by 5-HD and glibenclamide, KATP channel blockers. MnTMPyP, an antioxidant, and Ca2+ spark and KCa channel blockers reduced diazoxide-induced vasodilations by >60%, but did not alter dilations induced by pinacidil, which did not elevate ROS. Data suggest diazoxide drives ROS generation by inducing a small mitochondrial depolarization, because nanomolar CCCP, a protonophore, similarly depolarized mitochondria, elevated ROS, and activated transient KCa currents. In contrast, micromolar CCCP, or rotenone, an electron transport chain blocker, induced a large mitochondrial depolarization (-84%, TMRM), reduced ROS, and inhibited transient KCa currents. In summary, data demonstrate that mitochondria-derived ROS dilate cerebral arteries by activating Ca2+ sparks, that some antihypertensive KCOs dilate by stimulating this pathway, and that small and large mitochondrial depolarizations lead to differential regulation of ROS and Ca2+ sparks.  相似文献   

13.
The first recordings of neuron-like electrical activity from endocrine cells were made from fish pituitary cells. However, patch-clamping studies have predominantly utilized mammalian preparations. This study used whole-cell patch-clamping to characterize voltage-gated ionic currents of anterior pituitary cells of Oreochromis mossambicus in primary culture. Due to their importance for control of hormone secretion we emphasize analysis of calcium currents (I(Ca)), including using peptide toxins diagnostic for mammalian neuronal Ca(2+) channel types. These appear not to have been previously tested on fish endocrine cells. In balanced salines, inward currents consisted of a rapid TTX-sensitive sodium current and a smaller, slower I(Ca); there followed outward potassium currents dominated by delayed, sustained TEA-sensitive K(+) current. About half of cells tested from a holding potential (V(h)) of -90 mV showed early transient K(+) current; most cells showed a small Ca(2+)-mediated outward current. I-V plots of isolated I(Ca) with 15 mM [Ca(2+)](o) showed peak currents (up to 20 pA/pF from V(h) -90 mV) at approximately +10 mV, with approximately 60% I(Ca) for V(h) -50 mV and approximately 30% remaining at V(h) -30 mV. Plots of normalized conductance vs. voltage at several V(h)s were nearly superimposable. Well-sustained I(Ca) with predominantly Ca(2+)-dependent inactivation and inhibition of approximately 30% of total I(Ca) by nifedipine or nimodipine suggests participation of L-type channels. Each of the peptide toxins (omega-conotoxin GVIA, omega-agatoxin IVA, SNX482) alone blocked 36-54% of I(Ca). Inhibition by any of these toxins was additive to inhibition by nifedipine. Combinations of the toxins failed to produce additive effects. I(Ca) of up to 30% of total remained with any combination of inhibitors, but 0.1mM cadmium blocked all I(Ca) rapidly and reversibly. We did not find differences among cells of differing size and hormone content. Thus, I(Ca) is carried by high voltage-activated Ca(2+) channels of at least three types, but the molecular types may differ from those characterized from mammalian neurons.  相似文献   

14.
E M Brown  R Butters  C Katz  O Kifor 《Endocrinology》1991,128(6):3047-3054
We examined the effects of the polycationic antibiotic, neomycin, on the function of dispersed bovine parathyroid cells. Neomycin caused a reversible, dose-dependent inhibition of low calcium (Ca++)-stimulated PTH release, with half-maximal inhibition at 30 microM. Maximal inhibition (with 200 microM neomycin) was not additive with the suppressive effects of high (2 mM) Ca++. Neomycin also inhibited dopamine-stimulated cAMP accumulation by 90-98% at 100-200 microM, with a half-maximal effect at 40-50 microM. This action was reversible and was blocked by preincubating the cells overnight with 0.5 microgram/ml pertussis toxin. In addition to its suppressive effects on cAMP metabolism and PTH release, neomycin stimulated the accumulation of inositol phosphates and produced a transient increase in the cytosolic Ca++ concentration (Cai) in fura-2-loaded parathyroid cells. The neomycin-evoked spike in Cai persisted despite removal of extracellular Ca++, indicating that it arises from intracellular Ca++ stores. Exposure of cells to elevated magnesium (Mg++) concentrations elicited a similar spike in Cai but blocked the spike in Cai in response to subsequent addition of neomycin and vice versa. Thus, Mg++ and neomycin mobilize Ca++ from the same intracellular store(s). These results indicate that a polycation, neomycin, closely mimics the effects of polyvalent cations on parathyroid function, suggesting that both agents regulate parathyroid function via similar biochemical pathways.  相似文献   

15.
PTH release from bovine parathyroid cells is inhibited by increasing concentrations of extracellular calcium (Ca2+). We have proposed that this inhibition is mediated by Ca2+ channels via a G-protein. To further test this hypothesis, we evaluated the effect of lanthanum (La3+), a potent Ca2+ channel antagonist that does not cross the cell membrane. PTH release was determined in dispersed bovine parathyroid cells by radioimmunoassay: extracellular Ca2+ concentration was 0.2 mM. PTH release was inhibited by maximal concentrations of La3+ to a greater extent than by Ca2+: 93% inhibition by La3+ vs. 40% by Ca2+. La3+ was more potent (set-point = 0.12 mM) than Ca2+ (set-point = 1.2 mM). Incubation of parathyroid cells with pertussis toxin, which inactivates a G-protein(s) and blocks inhibition by Ca2+, did not block the inhibition of PTH release by La3+ at the concentrations tested. The Ca2+ ionophore A23187, which potentiates the effect of Ca2+, did not enhance the inhibition of PTH release by La3+. Increasing concentrations of calcium enhanced the inhibition of PTH release by the Ca2+ channel agonist, (+)202-791. The Ca2+ channel antagonist, (-)202-791, shifted the Ca2+ inhibition curve to the right. La3+ did not alter the inhibition of PTH release by the Ca2+ channel agonist but blocked the stimulatory effect of the Ca2+ channel antagonist, (-)202-791. In summary: 1) La3+, which blocks Ca2+ channels and does not cross cell membranes, effects a greater inhibition of PTH release than Ca2+; 2) La3+, like Ca2+, overrides the effect of Ca2+ channel antagonist (-)202-791; and 3) La3+, unlike Ca2+, inhibits PTH release by a mechanism that is independent of a pertussis toxin-sensitive G-protein. There may be two cell surface sites that recognize La3+ and Ca2+ independently.  相似文献   

16.
To isolate inward Ca2+ currents in GH3 rat pituitary cells, an inward Na+ current as well as two outward K+ currents, a transient voltage-dependent current (IKV) and a slowly rising Ca2+-activated current (IKCa), must be suppressed. Blockage of these outward currents, usually achieved by replacement of intracellular K+ with Cs+, reveals sustained inward currents. Selective blockage of either K+ current can be accomplished in the presence of intracellular K+ by use of quaternary ammonium ions. When IKCa and Na+ currents are blocked, the net current elicited by stepping the membrane potential (Vm) from -60 to 0 mV is inward first, becomes outward and peaks in 10-30 msec, and finally becomes inward again. Under this condition, in which both IKV and Ca2+ currents should be present throughout the duration of the voltage step, the Ca2+ current was not detected at the time of peak outward current. That is, plots of peak outward current vs. Vm are monotonic and are not modified by nisoldipine or low external Ca2+ as would be expected if Ca2+ currents were present. However, similar plots at times other than at peak current are not monotonic and are altered by nisoldipine or low Ca2+ (i.e., inward currents decrease and plots become monotonic). When K+ channels are first inactivated by holding Vm at -30 mV, a sustained Ca2+ current is always observed upon stepping Vm to 0 mV. Furthermore, substitution of Ba2+ for Ca2+ causes blockage of IKV and inhibition of this current results in inward Ba2+ currents with square wave kinetics. These data indicate that the Ca2+ current is completely inhibited at peak outward IKV and that Ca2+ conductance is progressively disinhibited as the transient K+ current declines due to channel inactivation. This suggests that in GH3 cells Ca2+ channels are regulated by IKV.  相似文献   

17.
Hypertension is associated with a remodeling of arterial smooth muscle K(+) channels with Ca(2+)-gated K(+) channel (BK(Ca)) activity being enhanced and voltage-gated K(+) channel (K(v)) activity depressed. Because both of these channel types are modulated by intracellular Ca(2+), we tested the hypothesis that Ca(2+) had a larger effect on both BK(Ca) and K(v) channels in arterial myocytes from hypertensive animals. Myocytes were enzymatically dispersed from small mesenteric arteries (SMA) of 12-week-old Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Using whole cell patch clamp methods, BK(Ca) and K(v) current components were determined as iberiotoxin-sensitive and -insensitive currents, respectively. The effects of Ca(2+) on these K(+) current components were determined from measurements made with 0.2 and 2 mmol/L external Ca(2+). Increasing external Ca(2+) from 0.2 to 2 mmol/L Ca(2+) increased BK(Ca) currents recorded using myocytes from both WKY rats and SHR with a larger effect in SHR. Increasing external Ca(2+) decreased K(v) currents recorded using myocytes from both WKY and SHR also with a larger effect in SHR. In other experiments, currents through voltage-gated Ca(2+) channels (Ca(v)) measured at 0.2 mmol/L external Ca(2+) were 12 +/- 2% (n = 12) of those recorded at 2 mmol/L Ca(2+) with no differences in percent effect between WKY and SHR. In isolated SMA segments, isometric force development in response to 140 mmol/L KCl at 0.2 mmol/L external Ca(2+) was about 23 +/- 6% (n = 8) of that measured at 2 mmol/L external Ca(2+). These results suggest that an increase in Ca(2+) influx through Ca(v) or in intracellular Ca(2+) secondary to an increase in external Ca(2+) augments BK(Ca) currents and inhibits K(v) currents in SMA myocytes with a larger effect in SHR compared to WKY. This mechanism may contribute to the functional remodeling of K(+) currents of arterial myocytes in hypertensive animals.  相似文献   

18.
BACKGROUND & AIMS: This study has investigated stimulus-secretion coupling of enterochromaffin cells by studying the cellular location and function of voltage-gated Ca(2+) channels within small intestinal crypts. METHODS: Digital fluorescence imaging and electrochemical detection were used to measure intracellular Ca(2+) responses and serotonin (5-hydroxytryptamine [5-HT]) secretion in intact crypts isolated from guinea pig and human duodenum. RESULTS: In fluo-3-loaded crypts, electrical depolarization with high K(+) solution increased cytosolic free [Ca(2+)] only in single cells subsequently identified by immunocytochemistry as enterochromaffin cells. In guinea pig enterochromaffin cells, the L-type Ca(2+) channel agonist FPL 64176 (3 micromol/L) did not change resting intracellular [Ca(2+)] but potentiated the depolarization-evoked increase in [Ca(2+)] (298 +/- 72 nmol/L) by 19 +/- 3-fold. In the majority of human enterochromaffin cells, FPL 64176 alone increased resting [Ca(2+)] by 423 +/- 171 nmol/L. Secretion studies in guinea pig crypts showed that high K(+) and FPL 64176 caused a 12-fold increase in 5-HT release. Noradrenaline caused increases in both enterochromaffin cell [Ca(2+)] and 5-HT release. CONCLUSIONS: Using this approach, we have found that in duodenal crypts, enterochromaffin cells, but not other epithelial cells, contain L-type voltage-gated Ca(2+) channels involved in regulating 5-HT secretion. These data have implications for the pharmacological control of intestinal disorders involving enterochromaffin cell dysfunction.  相似文献   

19.
Perforated patch clamp recording was used to study the control of membrane potential (V(m)) and spontaneous electrical activity in the rat pinealocyte by norepinephrine. Norepinephrine did not alter spiking frequency. However, it was found to act through α(1B)-adrenoreceptors in a concentration-dependent manner (0.1-10 μM) to produce a biphasic change in V(m). The initial response was a hyperpolarization (~13 mV from a resting potential of -46 mV) due to a transient (~5 sec) outward K(+) current (~50 pA). This current appears to be triggered by Ca(2+) released from intracellular stores, based on the observation that it was also seen in cells bathed in Ca(2+)-deficient medium. In addition, pharmacological studies indicate that this current was dependent on phospholipase C (PLC) activation and was in part mediated by bicuculline methiodide and apamin-sensitive Ca(2+)-controlled K(+) channels. The initial transient hyperpolarization was followed by a sustained depolarization (~4 mV) due to an inward current (~10 pA). This response was dependent on PLC-dependent activation of Na(+)/Ca(2+) influx but did not involve nifedipine-sensitive voltage-gated Ca(2+) channels. Together, these results indicate for the first time that activation of α(1B)-adrenoreceptors initiates a PLC-dependent biphasic change in pinealocyte V(m) characterized by an initial transient hyperpolarization mediated by a mixture of Ca(2+)-activated K(+) channels followed by a sustained depolarization mediated by a Ca(2+)-conducting nonselective cation channel. These observations indicate that both continuous elevation of intracellular Ca(2+) and sustained depolarization at approximately -40 mV are associated with and are likely to be required for activation of the pinealocyte.  相似文献   

20.
Measurements of electrical activity and intracellular Ca(2+) levels were performed in perforated-patch clamped GH(3) cells to determine the contribution of large-conductance calcium-activated K(+) (BK) channels to action potential repolarization and size of the associated Ca(2+) oscillations. By examining the dependence of action potential (AP) duration on extracellular Ca(2+) levels in the presence and the absence of the specific BK channel blocker paxilline, it is observed that plateau-like action potentials are associated to low densities of paxilline-sensitive currents. Extracellular Ca(2+) increases or paxilline additions are not able to largely modify action potential duration in cells showing a reduced expression of BK currents. Furthermore, specific blockade of these currents with paxilline systematically elongates AP duration, but only under conditions in which short APs and/or prominent BK currents recorded under voltage-clamp mode are present in the same cells. Our data indicate that in GH(3) cells, BK channels act primarily ending the action potential and suggest that by contributing to fine-tuning cellular electrical properties and hence intracellular Ca(2+) variations, BK channels may play an important role on time- and cell-dependent modulation of physiological outputs in adenohypophyseal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号