首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
GABA(B) receptors inhibit and dopamine D1 receptors stimulate the release of GABA from striatal terminals in the pars reticulata of the substantia nigra. Here we have studied the interaction between both classes of receptors by exploring the effect of GABA(B) receptors upon the stimulation of depolarization-induced [(3)H]GABA release induced by the activation of D1 receptors in slices of the pars reticulata of the rat substantia nigra. The activation of GABA(B) receptors with baclofen (100 microM) inhibited by 48+/-8% the evoked [(3)H]GABA release in normal slices but did not modify the release in slices from reserpine-treated rats, indicating that the inhibition was dependent on endogenous dopamine. The inhibitory effect of baclofen was also abolished by the D1 receptor antagonist SCH 23390 (1 microM), indicating a D1 receptor-dependence of the baclofen inhibition. Baclofen dose-dependently inhibited (IC(50)=3.6 microM) the stimulation of release induced by the D1 agonist SKF 38393 (1 microM). Baclofen also blocked the stimulation of release induced by forskolin but not that induced by 8-Br-cAMP, indicating that the inhibitory effect was exerted before cAMP synthesis. N-ethylmaleimide (NEM), a selective inactivator of PTX-sensitive G-proteins, abolished the baclofen inhibition of the SKF 38393-induced stimulation of the release without affecting the stimulation induced by the D1 agonist, suggesting that the baclofen effect was mediated by Galpha(i/o) proteins. These results might have relevance in the control motor disorders associated with D1 receptor supersensitivity.  相似文献   

2.
The striatum is a brain area implicated in the pharmacological action of drugs of abuse. To test the possible involvement of both cocaine and amphetamine in the modulation of synaptic transmission in this nucleus, we coupled whole-cell patch clamp recordings from striatal spiny neurons to the focal stimulation of glutamatergic or GABAergic nerve terminals. We found that neither cocaine (1-600 microM) nor amphetamine (0.3-300 microM) significantly affected the glutamate-mediated EPSCs recorded from these cells. Conversely, both pharmacological agents depressed GABA-mediated IPSCs in a dose-dependent manner. This effect was mediated by the stimulation of dopamine (DA) D2 receptors since it was prevented by 3 microM L-sulpiride (a DA D2-like receptor antagonist), mimicked by the DA D2-like receptor agonist quinpirole (0.3-30 microM), and absent in mice lacking DA D2 receptors. A presynaptic mechanism was likely involved in this action since both cocaine and amphetamine depress GABAergic transmission by increasing paired-pulse facilitation. Cocaine and amphetamine failed to affect GABAergic IPSCs after 6-OHDA-induced nigral lesion, indicating that both drugs cause their effects through the release of endogenous DA. The modulation of GABAergic synaptic transmission in the striatum might underlie some motor and cognitive effects of psychostimulants in mammalians.  相似文献   

3.
The CB(1) cannabinoid receptor is widely distributed in the central nervous system. The substantia nigra pars reticulata (SNR) belongs to the brain regions with the highest density of CB(1) receptors. According to anatomical studies, most of the CB(1) receptors in the SNR are localized on terminals of striatonigral GABAergic neurons. The aim of the present study was to clarify the function of these receptors.Electrophysiological properties of SNR neurons were studied in brain slices with the patch-clamp technique. Inhibitory postsynaptic currents (IPSCs) were elicited in parasagittal slices by electrical stimulation in the internal capsule. The mixed CB(1)/CB(2) cannabinoid receptor agonist WIN55212-2 (1 microM and 10 microM) concentration dependently decreased the amplitude of IPSCs. CP55940, another mixed CB(1)/CB(2) cannabinoid receptor agonist, also lowered IPSC amplitude. Superfused alone, the CB(1)-selective antagonist SR141716A (1 microM) increased the amplitude of IPSCs. In interaction experiments, SR141716A (1 microM) prevented the inhibition produced by WIN55212-2 (1 microM). WIN55212-2 (1 microM) had no effect on GABAergic currents elicited by ejection of muscimol (1 mM) to the surface of the slices. WIN55212-2 (10 microM) did not influence the frequency and amplitude of spontaneously occurring IPSCs (sIPSCs) and the firing rate of SNR neurons.The results show that activation of CB(1) cannabinoid receptors inhibits GABAergic neurotransmission in the SNR. The likely mechanism is presynaptic inhibition of GABA release, since cannabinoids had no effects on currents evoked by direct stimulation of GABA(A) receptors by muscimol and on the amplitude of sIPSCs. The enhancement of IPSCs by the cannabinoid antagonist probably reflects continuous inhibition of GABAergic neurotransmission by an endogenous cannabinoid. SNR neurons receive GABAergic input from three sources: from the corpus striatum, the globus pallidus and from neighbouring SNR neurons. The observed inhibition of GABAergic neurotransmission was probably due to depression of the transmission between striatonigral axons and SNR neurons. No direct actions of cannabinoids on SNR neurons were observed in addition to this synaptic effect.  相似文献   

4.
A whole-cell patch-clamp study was performed to investigate the modulatory role of dopamine (DA), its ionic mechanisms and their developmental changes in the GABAergic synaptic transmission onto cholinergic interneurones in the rat striatal slices. Inhibitory postsynaptic currents (IPSCs) were evoked by focal stimulation. Bath application of DA inhibited the IPSCs in a concentration-dependent manner with an IC50 value of 10 microM. Pharmacological studies with DA receptor agonists and antagonists suggest the involvement of D2-like receptors. DA reduced the frequency of miniature inhibitory postsynaptic currents without affecting their amplitude distribution. Analyses using selective blockers for N-, or P/Q type Ca2+ channels could estimate the contribution of each Ca2+ channel subtype to the GABAergic transmission. DA had no longer affected the IPSCs after the effect of an N-type channel blocker, omega-conotoxin (omega-CgTX) had reached its steady state. The inhibitory effects of omega-CgTX and DA or a D2-like receptor agonist decreased in parallel during postnatal 12-60 days. DA's action was occluded by omega-CgTX throughout these developmental stages. These results suggest that activation of presynaptic D2-like receptors selectively blocks N-type Ca2+ channels, thereby inhibiting GABA release, and that contribution of N-type channels and D2-like receptor-mediated presynaptic inhibition decrease in parallel with development.  相似文献   

5.
Tyramine, an endogenous ligand for mammalian trace amine-associated receptors, may act as a neuromodulator that regulates neuronal activity in basal ganglia. Using whole-cell patch recordings of subthalamic nucleus (STN) neurons in rat brain slices, we found that bath application of tyramine evoked an inward current in voltage-clamp in over 60% of all STN neurons. The inward current induced by tyramine was mimicked by the D(2)-like dopamine receptor agonist quinpirole, but was only partially blocked by the D(2)-like receptor antagonist sulpiride. In contrast, the D(1)-like receptor agonist SKF38393 evoked no current in STN neurons. Inward current evoked by tyramine was significantly reduced by the catecholamine uptake inhibitor nomifensine, and by exhausting catecholamines in the brain via pretreatment with reserpine. Tyramine also reduced the amplitude of GABA(A) receptor-mediated IPSCs that were evoked by focal electrical stimulation of the slice. Inhibition of IPSCs by tyramine was mimicked by quinpirole and was blocked by sulpiride but not by SCH23390, a D(1) receptor antagonist. Moreover, tyramine-induced inhibition of IPSCs was reduced in slices pretreated with reserpine, and this inhibition could be restored by briefly superfusing the slice with dopamine. These results suggest that tyramine acts as an indirect dopamine agonist in the STN. Although inhibition of IPSCs is mediated by D(2)-like receptors, the dopamine-dependent inward currents evoked by tyramine do not fit a typical dopamine receptor pharmacological profile.  相似文献   

6.
We examined the mechanisms of kainate (KA) induced modulation of GABA release in rat prefrontal cortex. Pharmacologically isolated IPSCs were recorded from visually identified layer II/III pyramidal cells using whole-cell patch clamp techniques. KA produced an increase in evoked IPSC amplitude at low nanomolar concentrations (100-500 nM). The frequency but not the amplitude of miniature (m) IPSCs was also increased. The GluR5 subunit selective agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) caused an increase in mIPSC frequency whereas (3S,4aR,6S,8aR)-6-(4-carboxyphenyl)methyl-1,2,3,4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid (LY382884), a selective GluR5 subunit antagonist, inhibited this facilitation. Philanthotoxin-433 (PhTx) blocked the effect of KA, indicating involvement of Ca(2+)-permeable GluR5 receptors. No IPSC facilitation was seen when Ca(2+) was omitted from the bathing solution. Facilitation was observed when slices were preincubated in ruthenium red or high concentrations of ryanodine, but was inhibited with application of thapsigargin. The IP3 receptor (IP3R) antagonists diphenylboric acid 2-amino-ethyl ester (2-APB) (15 microM) and Xestospongin C (XeC) blocked IPSC facilitation. These results show that activation of KA receptors (KARs) on GABAergic nerve terminals results is linked to intracellular Ca(2+) release via activation of IP3, but not ryanodine, receptors. This represents a new mechanism of presynaptic modulation whereby Ca(2+) entry through Ca(2+)-permeable GluR5 subunit containing KARs activates IP3Rs receptors leading to an increase in GABA release.  相似文献   

7.
We explored the role of dopamine D4 receptors on [3H]GABA release in the subthalamic nucleus. [3H]GABA release was evoked by high K+ in slices of the nucleus. The selective dopamine D4 receptor agonist PD168,077 (N-[[4-(2-cyanophenyl)-1-piperazynil]methyl]-3-methyl-benzamide) inhibited GABA release with greater potency (EC50=3.2 nM) than quinpirole (EC50=200 nM). SKF 21297 (6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide), a dopamine D1-like receptor agonist, had no effect. L-745,870 (3-[[4-(4-chlorophenyl)piperazin-1-yl]methyl]-1-1H-pyrollo[2,3-b] pyridine), a selective dopamine D4 receptor antagonist, reverted the quinpirole inhibition with greater potency (IC50=8.7 nM) than that of the dopamine D2/D3 receptor antagonist sulpiride and raclopride (IC50=4804 and 788 nM, respectively). Both methylphenidate and methamphetamine, dopamine reuptake blockers, inhibited by 30% high K(+)-evoked GABA release; the inhibition was blocked by L-745,870. These results show that dopamine D4 receptors modulate GABA release in the subthalamic nucleus. The results would explain how agents that increase interstitial dopamine like methylphenidate and amphethamine might control locomotor hyperactivity seen in disorders of dopamine D4 receptors.  相似文献   

8.
The modulation of the electrically evoked release of [3H]dopamine (DA) and [14C]acetylcholine (ACh) by opioid receptor activation was examined in superfused slices from rat nucleus accumbens, olfactory tubercle, and frontal cortex. In all brain areas examined, [3H]DA release was inhibited by the kappa agonist, U 50,488 (1-100 nM), and this inhibition was fully antagonized by the selective kappa antagonist, norbinaltorphimine (nor-BNI). In the frontal cortex, the mu agonist, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO, 0.01-1 microM), also inhibited the evoked release of tritium. However, further experiments (including the use of the D2-receptor agonist, LY 171555, and the alpha 2-adrenoceptor agonist, oxymetazoline) suggest strongly that in the frontal cortex DAGO only inhibits the release of [3H]catecholamine from noradrenergic nerve terminals, despite the use of desimipramine to prevent the uptake of [3H]DA into these terminals. [14C]ACh release from both the nucleus accumbens and olfactory tubercle, but not from the frontal cortex, was inhibited by DAGO (0.01-1 microM) and the delta agonist, [D-Pen2,D-Pen5]enkephalin (DPDPE, 0.01-1 microM). These inhibitory effects were antagonized by 0.1 microM naloxone but not by 3 nM nor-BNI. The irreversible delta ligand, fentanyl isothiocyanate (FIT, 1 microM), only antagonized the inhibition caused by DPDPE. The results indicate that the inhibitory effects of opioids on the in vitro release of DA from dopaminergic nerve fibres arising from the substantia nigra and the ventral tegmental area are mediated by presynaptic kappa receptors only. In those regions where ACh release is modulated by opioids, the type of opioid receptor involved may depend on the type of neuron, i.e. interneuron or afferent neuron.  相似文献   

9.
Aim: The subthalamic nucleus plays a critical role in the regulation of movement, and abnormal activity of its neurons is associated with some basal ganglia motor symptoms. We examined the presence of functional presynaptic GABAB receptors on pallidosubthalamic terminals and tested whether they were tonically active in the in vitro subthalamic slices. Methods: Whole-cell patch-clamp recordings were applied to acutely prepared rat subthalamic nucleus slices. The effects of specific GABAB agonist and antagonist on action potential-independent inhibitory postsynaptic currents (IPSCs), as well as holding current, were examined. Results: Superfusion of baclofen, a GABAa receptor agonist, significantly reduced the frequency of GABAA receptor-mediated miniature IPSCs (mIPSCs), ina Cd^2 -sensitive manner, with no effect on the amplitude, indicating presynaptic inhibition on GABA release. In addition, baclofen induced a weak outward current only in a minority of subthalamic neurons. Both the pre-and post-synaptic effects of baclofen were prevented by the specific GABAB receptor antagonist, CGP55845. Furthermore, CGP55845 alone increased the frequency of mIPSCs, but had no effect on the holding current. Conclusion: These findings suggest the functional dominance of presynaptic GABAB receptors on the pallidosubthalamic terminals over the postsynaptic GABAB receptors on subthalamic neurons. Furthermore, the presynaptic, but not the postsynaptic, GABAB receptors are tonically active, suggesting that the presynaptic GABAB receptors in the subthalamic nucleus are potential therapeutic target for the treatment of Parkinson disease.  相似文献   

10.
Lamotrigine (LTG) is an antiepileptic drug that is also effective in the treatment of certain psychiatric disorders. Its anticonvulsant action has been attributed to its ability to block voltage-gated Na(+) channels and reduce glutamate release. LTG also affects GABA-mediated synaptic transmission, but there are conflicting reports as to whether inhibitory transmission is enhanced or suppressed by LTG. We examined the effects of LTG on GABA(A) receptor-mediated synaptic transmission in slices from rat amygdala, a brain area that is particularly important in epileptogenesis and affective disorders. In intracellular recordings, LTG (100 microM) reduced GABA(A) receptor-mediated IPSPs evoked by electrical stimulation in neurons of the basolateral nucleus. In whole-cell recordings, LTG (10, 50 and 100 microM) decreased the frequency and amplitude of spontaneous IPSCs, as well as the amplitude of evoked IPSCs, but had no effect on the kinetics of these currents. LTG also had no effects on the frequency, amplitude or kinetics of miniature IPSCs recorded in the presence of TTX. These results suggest that in the basolateral amygdala, LTG suppresses GABA(A) receptor-mediated synaptic transmission by a direct and/or indirect effect on presynaptic Ca(++) influx. The modulation of inhibitory synaptic transmission may be an important mechanism underlying the psychotropic effects of LTG.  相似文献   

11.
1. A study was made of the regulation of [(3)H]-gamma-aminobutyric acid ([(3)H]-GABA) release from slices of rat striatum by endogenous dopamine and exogenous histamine and a histamine H(3)-agonist. Depolarization-induced release of [(3)H]-GABA was Ca(2+)-dependent and was increased in the presence of the dopamine D(2) receptor family antagonist, sulpiride (10 microM). The sulpiride-potentiated release of [(3)H]-GABA was strongly inhibited by the dopamine D(1) receptor family antagonist, SCH 23390 (1 microM). Neither antagonist altered basal release. 2. The 15 mM K(+)-induced release of [(3)H]-GABA in the presence of sulpiride was inhibited by 100 microM histamine (mean inhibition 78+/-3%) and by the histamine H(3) receptor-selective agonist, immepip, 1 microM (mean inhibition 81+/-5%). The IC(50) values for histamine and immepip were 1.3+/-0.2 microM and 16+/-2 nM, respectively. The inhibitory effects of histamine and immepip were reversed by the H(3) receptor antagonist, thioperamide, 1 microM. 3. The inhibition of 15 mM K(+)-induced [(3)H]-GABA release by immepip was reversed by the H(3) receptor antagonist, clobenpropit, K(d) 0.11+/-0.04 nM. Clobenpropit alone had no effect on basal or stimulated release of [(3)H]-GABA. 4. Elevated K(+) caused little release of [(3)H]-GABA from striatal slices from reserpinized rats, unless the D(1) partial agonist, R(+)-SKF 38393, 1 microM, was also present. The stimulated release in the presence of SKF 38393 was reduced by 1 microM immepip to the level obtained in the absence of SKF 38393. 5. These observations demonstrate that histamine H(3) receptor activation strongly inhibits the dopamine D(1) receptor-dependent release of [(3)H]-GABA from rat striatum; primarily through an interaction at the terminals of GABA neurones.  相似文献   

12.
目的研究突触周边γ-氨基丁酸(ambient GABA)通过GABAB受体调控骶髓后联合核(SDCN)神经元谷氨酸能突触的机制。方法在急性切取的骶段脊髓薄片上,利用全细胞膜片钳法记录骶髓后联合核神经元谷氨酸能兴奋性突触后电流(EPSCs),将GABAB受体用其特异性受体拮抗剂CGP52432阻断,观察谷氨酸突触终末上的GABAB受体被周边GABA作用的影响。结果在突触后GABAB受体被从胞内阻断的条件下,再灌流CGP52432阻断谷氨酸能突触前GABAB受体,可增加刺激引发的EPSCs(eEPSCs)幅度;改变配对刺激的两个EPSC比率(paired-pulse ratio,PPR),并激发沉默突触(silent synapse)。但CGP52432对微小兴奋性突触后电流(mEPSCs)无影响。结论位于SDCN神经元谷氨酸能突触前的GABAB受体受周边GABA调控。这种影响参与调节谷氨酸释放并可能参与痛觉信息在脊髓水平的传递。  相似文献   

13.
Nicotinic acetylcholine receptors (nAChRs) can modulate transmitter release. Striatal [(3)H]dopamine ([(3)H]DA) release is regulated by presynaptic nAChR on dopaminergic terminals and alpha7 nAChR on neighboring glutamatergic afferents. Here, we explored the role of alpha7 nAChR in the modulation of [(3)H]noradrenaline ([(3)H]NA) release from rat hippocampal slices. The nicotinic agonist anatoxin-a (AnTx) evoked monophasic [(3)H]NA release (EC(50) = 1.2 microM) that was unaffected by alpha-conotoxin-MII or dihydro-beta-erythroidine, antagonists of alpha3/alpha6beta2* and beta2* nAChR, respectively. In contrast AnTx-evoked striatal [(3)H]DA release was biphasic (EC(50) = 138.9 nM; 7.1 microM) and blocked by these antagonists. At a high AnTx concentration (25 microM), alpha7 nAChR antagonists (methyllycaconitine, alpha-conotoxin-ImI) and glutamate receptor (GluR) antagonists [kynurenic acid, 6,7-dinitroquinoxaline-2,3-dione (DNQX)] partially inhibited [(3)H]NA release. The alpha7 nAChR-selective agonist choline evoked [(3)H]NA release (E(max) = 33% of that of AnTx) that was blocked by GluR antagonists, supporting a model in which alpha7 nAChRs trigger glutamate release that subsequently stimulates [(3)H]NA release. A GABAergic component was also revealed: choline-evoked [(3)H]NA release was partially blocked by the GABA(A) receptor antagonist bicuculline, and coapplication of bicuculline and DNQX fully abolished this response. These findings support alpha7 nAChR on GABAergic neurons that can promote GABA release which, in turn, leads to [(3)H]NA release, probably by disinhibition. To investigate the impact of long-term nicotine exposure on this model, rats were exposed for 14 days to nicotine (4 mg/kg/day) with or without 3 or 7 days of withdrawal. alpha7 nAChR responses were selectively and transiently up-regulated after 3 days of withdrawal. This functional up-regulation could contribute to the withdrawal effects of nicotine.  相似文献   

14.
Intravenous GABAergic anesthetics are potent hypnotics but are rather ineffective in depressing movements. Immobility is mediated, in part, by the ventral horn of the spinal cord. We hypothesized that the efficacy of these anesthetics in producing immobility is compromised by the activation of GABA(A) receptors located presynaptically, which modulate GABA release onto neurons in the ventral horn. Because anesthetics acting by modulation of GABA(A) receptor function require GABA to be present at its binding site, a decrease in GABA release would abate their efficacy in reducing neuronal excitability. Here we report that in organotypic spinal cord slices, the efficacy of the intravenous anesthetic etomidate to depress network activity of ventral horn neurons is limited to approximately 60% at concentrations greater than 1 microM that produce immobility. Depression of spinal network activity was almost abolished in spinal slices from beta3(N265M) knock-in mice. In the wild type, etomidate prolonged decay times of GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) and concomitantly reduced the frequency of action potential-dependent IPSCs. Etomidate prolonged the decay time of GABA(A) receptors at all tested concentrations. At concentrations greater than 1.0 microM, anesthetic-induced decrease of GABA release via modulation of presynaptic GABA(A) receptors and enhancement of postsynaptic GABA(A) receptor-function compensated for each other. The results suggest that the limited immobilizing efficacy of these agents is probably due to a presynaptic mechanism and that GABAergic agents with a specificity for post-versus presynaptic receptors would probably have much stronger immobilizing actions, pointing out novel avenues for drug development.  相似文献   

15.
We investigated the effects of [D-Ala2,D-Leu5]enkephalin (DADLE). [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO), [D-Pen2,D-Pen5]enkephalin (DPDPE) (0.01-1 microM) and bremazocine (0.001-0.3 microM) on the electrically evoked release of radiolabelled neurotransmitters and on the dopamine (DA)-stimulated cyclic AMP efflux from superfused rat brain slices. The differential inhibitory effects of these agonists on the evoked neurotransmitter release indicate that the opioid receptors mediating presynaptic inhibition of [3H]noradrenaline (NA, cortex), [14C]acetylcholine (ACh, striatum) and [3H]DA (striatum) release represent mu, delta and kappa receptors, respectively. In agreement with this classification, preincubation (60 min) of the slices with the delta-opioid receptor-selective irreversible ligand, fentanyl isothiocyanate (FIT, 0.01-1 microM), antagonized the inhibitory effects of DADLE and DPDPE on striatal [14C]ACh release only. On the other hand, the D-1 DA receptor-stimulated cyclic AMP efflux from striatal slices appeared to be inhibited by activation of mu as well as of delta receptors. In this case, the reversible mu antagonist, naloxone (0.1 microM), fully antagonized the inhibitory effect of the mu agonist, DAGO, without changing the effect of the delta agonist DPDPE but was ineffective as an antagonist in slices pretreated with FIT (1 microM). The inhibitory effect of DAGO on the electrically evoked [3H]NA release was antagonized by naloxone whether the receptors were irreversibly blocked by FIT or not. These data not only further support the existence of independent presynaptic mu-, delta- and kappa-opioid receptors in rat brain but also evidence strongly that mu and delta receptors mediating the inhibition of DA-sensitive adenylate cyclase could share a common binding site (for naloxone and FIT) and, therefore, may represent constituents of a functional opioid receptor complex.  相似文献   

16.
gamma-Aminobutyrate, alpha-carboxy-2-nitrobenzyl ester (cGABA) is a stable photoactivatable probe used to study gamma-aminobutyrate (GABA) receptors. GABA is released from this compound when it is exposed to ultraviolet light, but little is known about the electrophysiological effects of the compound itself. Whole cell patch clamp recordings on rat hippocampal slices demonstrated that cGABA blocked polysynaptic inhibitory postsynaptic currents (IPSCs) evoked in dentate granule cells by antidromic stimulation of the mossy fibers. It also reduced monosynaptically evoked IPSCs with an IC(50) of 28 microM. In contrast, cGABA had no effect on excitatory postsynaptic currents (EPSCs) evoked by perforant path stimulation. The effect of cGABA was not mediated by depression of GABA release through activation of presynaptic GABA(B) receptors. cGABA inhibited muscimol-evoked currents by only 15% at a concentration of 40 microM. At this same concentration, it reduced the mean frequency of miniature inhibitory postsynaptic potentials by 71%, their mean peak amplitude by 44%, their mean decay time constant by 26% and the mean charge transfer per event by 52%. These effects may be explained by a phenothiazine-like modification of GABA(A) receptor kinetics and/or a selective block of somatic GABA synapses.  相似文献   

17.
Nicotinic agonists elicit the release of dopamine from striatal synaptosomes by acting on presynaptic nicotinic acetylcholine receptors (nAChRs) on dopamine nerve terminals. Both alpha3beta2* and alpha4beta2 nAChR subtypes (but not alpha7* nAChRs) have been implicated. Here, we compared nAChR-evoked [(3)H]dopamine release from rat striatal synaptosome and slice preparations by using the nicotinic agonist anatoxin-a. In the more integral slice preparation, the concentration-response curve for anatoxin-a-evoked [(3)H]dopamine release was best fitted to a two-site model, giving EC(50) values of 241 nM and 5.1 microM, whereas only the higher-affinity component was observed in synaptosome preparations (EC(50) = 134 nM). Responses to a high concentration of anatoxin-a (25 microM) in slices (but not in synaptosomes) were partially blocked by ionotropic glutamate receptor antagonists (kynurenic acid, 6,7-dinitroquinoxaline-2,3-dione) and by alpha7*-selective nAChR antagonists (alpha-bungarotoxin, alpha-conotoxin-ImI, methyllycaconitine) in a nonadditive manner. In contrast, the alpha3beta2-selective nAChR antagonist alpha-conotoxin-MII partially inhibited [(3)H]dopamine release from both slice and synaptosome preparations, stimulated with both low (1 microM) and high (25 microM) concentrations of anatoxin-a. Antagonism by alpha-conotoxin-MII was additive with that of alpha7*-selective antagonists. These data support a model in which alpha7* nAChRs on striatal glutamate terminals elicit glutamate release, which in turn acts at ionotropic glutamate receptors on dopamine terminals to stimulate dopamine release. In addition, non-alpha7* nAChRs on dopamine terminals also stimulate dopamine release. These observations have implications for the complex cholinergic modulation of inputs onto the major efferent neurons of the striatum.  相似文献   

18.
1. The rostral ventromedial medulla (RVM) is thought to play a crucial role in the antinociceptive actions of cannabinoids. This study examined the actions of the cannabinoid receptor agonist, WIN55,212-2, on membrane properties and GABAergic synaptic transmission in RVM neurons using whole cell patch clamp recordings in brain slices. 2. WIN55,212-2 (3 microM) had no effect on membrane K+ conductance of primary or secondary RVM neurons. Primary neurons responded to the kappa-opioid receptor agonist U69,593 (300 nM - 1 microM). Secondary neurons responded to the mu,delta-opioid receptor agonist met-enkephalin (10 microM). 3. WIN55,212-2 reduced the amplitude of electrically evoked (GABAergic) inhibitory postsynaptic currents (IPSCs) in all neurons (58%, pEC50=6.2+/-0.1). The inhibition was reversed by the CB1 receptor selective antagonist, SR141716 (3 microM). WIN55,212-2 also produced relative facilitation of the second IPSC to paired evoked IPSCs. 4. WIN55,212-2 and met-enkephalin reduced the rate of spontaneous miniature IPSCs in all cells (44 and 53%), but had no effect on their amplitude distributions or kinetics. 5. These results suggest that the antinociceptive actions of cannabinoids within RVM are primarily due to presynaptic inhibition of GABAergic neurotransmission. The neuronal substrates of cannabinoid actions in RVM therefore differ from those of opioids, which have both pre- and postsynaptic inhibitory actions.  相似文献   

19.
The modulation of striatal dopamine release by presynaptic nicotinic acetylcholine receptors is well documented for both synaptosomes and slices. Because the latter retain local anatomical integrity, we have compared [3H]dopamine release evoked by the nicotinic receptor agonists (-)-nicotine and (+/-)-anatoxin-a from striatal synaptosome and slice preparations in parallel. At higher agonist concentrations, mecamylamine-sensitive [3H]dopamine release was greater from slices, indicative of an additional component, and this increase was abolished by glutamate receptor antagonists. To begin to examine the localisation of specific nicotinic acetylcholine receptor subtypes in the striatum, immunogold electron microscopy was undertaken with the beta2-specific monoclonal antibody 270. In striatal sections, gold particles were associated with symmetric synapses (dopaminergic) but were absent from asymmetric synapses (glutamatergic). Surface labelling of striatal synaptosomes with gold particles was also demonstrated. Taken together, these results are consistent with dopamine release mediated by beta2-containing nicotinic acetylcholine receptors on dopamine terminals, while non-beta2-containing nicotinic acetylcholine receptors may enhance dopamine release indirectly by releasing glutamate from neighbouring terminals.  相似文献   

20.
Functional studies indicate that the midbrain periaqueductal grey (PAG) is involved in the analgesic actions of somatostatin; however, the cellular actions of somatostatin in this brain region are unknown. In the present study, whole-cell patch clamp recordings were made from rat PAG neurons in vitro. In 93% of acutely isolated neurons, somatostatin inhibited Ca(2+)-channel currents. This effect was mimicked by the sst-2 selective agonist BIM-23027, but not by the sst-1 and sst-5 selective agonists CH-275 and L-362855. In brain slices, 81% of neurons responded to somatostatin (300 nm) with an increase in K(+) conductance that reversed polarity at -114 mV. A greater proportion of somatostatin-sensitive neurons (93%) than somatostatin-insensitive neurons (53%) responded to the opioid agonist met-enkephalin (10 microm). Somatostatin also reduced the amplitude of evoked GABA(A)-mediated inhibitory postsynaptic currents (IPSCs). The actions of somatostatin in brain slices were mimicked by BIM-23027, but not by CH-275. Somatostatin had a variable effect on the rate of spontaneous miniature IPSCs in normal external potassium solutions. In high external potassium solutions, somatostatin reduced the rate of miniature IPSCs in all neurons, and this inhibition was abolished by addition of Cd(2+) (30 microm). Somatostatin had no effect on the amplitude of miniature IPSCs. These results indicate that somatostatin acts via sst-2 receptors to directly inhibit a subpopulation of PAG neurons by activating a potassium conductance and inhibits GABA release within PAG via a presynaptic Ca(2+)-dependent mechanism. Thus, like opioids, somatostatin has the potential to exert pre- and postsynaptic disinhibitory effects within the PAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号