首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
Search for color 'center(s)' in macaque visual cortex   总被引:2,自引:0,他引:2  
It is often stated that color is selectively processed in cortical area V4, in both macaques and humans. However most recent data suggests that color is instead processed in region(s) antero-ventral to V4. Here we tested these two hypotheses in macaque visual cortex, where 'V4' was originally defined, and first described as color selective. Activity produced by equiluminant color-varying (versus luminance-varying) gratings was measured using double-label deoxyglucose in awake fixating macaques, in multiple areas of flattened visual cortex. Much of cortex was activated near-equally by both color- and luminance-varying stimuli. In remaining cortical regions, discrete color-biased columns were found in many cortical visual areas, whereas luminance-biased activity was found in only a few specific regions (V1 layer 4B and area MT). Consistent with a recent hypothesis, V4 was not uniquely specialized for color processing, but areas located antero-ventral to V4 (in/near TEO and anterior TE) showed more color-biased activity.  相似文献   

2.
Cortical synchronization at gamma-frequencies (35-90 Hz) has been proposed to define the connectedness among the local parts of a perceived visual object. This hypothesis is still under debate. We tested it under conditions of binocular rivalry (BR), where a monkey perceived alternations among conflicting gratings presented singly to each eye at orthogonal orientations. We made multi-channel microelectrode recordings of multi-unit activity (MUA) and local field potentials (LFP) from striate cortex (V1) during BR while the monkey indicated his perception by pushing a lever. We analyzed spectral power and coherence of MUA and LFP over 4-90 Hz. As in previous work, coherence of gamma-signals in most pairs of recording locations strongly depended on grating orientation when stimuli were presented congruently in both eyes. With incongruent (rivalrous) stimulation LFP power was often consistently modulated in consonance with the perceptual state. This was not visible in MUA. These perception-related modulations of LFP occurred at low and medium frequencies (< 30 Hz), but not at gamma-frequencies. Perception-related modulations of LFP coherence were also restricted to the low-medium range. In conclusion, our results do not support the expectation that gamma-synchronization in V1 is related to the perceptual state during BR, but instead suggest a perception-related role of synchrony at low and medium frequencies.  相似文献   

3.
We investigated the relation between electrophysiological and hemodynamic measures of brain activity through comparison of intracranially recorded event-related local field potentials (ERPs) and blood-oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI). We manipulated the duration of visual checkerboard stimuli across trials and measured stimulus-duration-related changes in ERP and BOLD activity in three brain regions: peri-calcarine cortex, the fusiform gyrus and lateral temporal-occipital (LTO) cortex. ERPs were recorded from patients who had indwelling subdural electrodes as part of presurgical testing, while BOLD responses were measured in similar brain regions in a second set of subjects. Similar BOLD responses were measured in peri-calcarine and fusiform regions, with both showing monotonic but non-linear increases in hemodynamic amplitude with stimulus duration. In sharp contrast, very different ERP responses were observed in these same regions, such that calcarine electrodes exhibited onset potentials, sustained activity over the course of stimulus duration and prominent offset potentials, while fusiform electrodes only exhibited onset potentials that did not vary with stimulus duration. No duration-related ERP or BOLD changes were observed in LTO. Additional analyses revealed no consistent changes in the EEG spectrum across different brain sites that correlated with duration-related changes in the BOLD response. We conclude that the relation between ERPs and fMRI differs across brain regions.  相似文献   

4.
Control processes are thought to play an important role in working memory (WM), by enabling the coordination, transformation, and integration of stored information. Yet little is known about the neural mechanisms that subserve such control processes. This study examined whether integration operations within WM involve the activation of distinct neural mechanisms within lateral prefrontal cortex (PFC). Event-related functional magnetic resonance imaging was used to monitor brain activity while participants performed a mental arithmetic task. In the integration (IN) condition, a WM preload item had to be mentally inserted into the last step of the math problem. This contrasted with the segregation (SG) condition, which also required maintenance of the WM preload while performing mental arithmetic but had no integration requirement. Two additional control conditions involved either ignoring the preload (math only condition) or ignoring the math problem (recall only condition). Left anterior PFC (Brodmann's Area [BA] 46/10) was selectively engaged by integration demands, with activation increasing prior to, as well as during the integration period. A homologous right anterior PFC region showed selectively increased activity in the SG condition during the period in which the math problem and preload digit were reported. Left middorsolateral PFC regions (BA 9/46) showed increased, but equivalent, activity in both the SG and IN conditions relative to both control conditions. These results provide support for the selective role of lateral PFC in cognitive control over WM and suggest more specific hypotheses regarding dissociable PFC mechanisms involved during the integration and segregation of stored WM items.  相似文献   

5.
Cognitive psychological studies of humans and monkeys solving visual mazes have provided evidence that a covert analysis of the maze takes place during periods of eye fixation interspersed between saccades, or when mazes are solved without eye movements. We investigated the neural basis of this process in posterior parietal cortex by recording the activity of single neurons in area 7a during maze solution. Monkeys were required to determine from a single point of fixation whether a critical path through the maze reached an exit or a blind ending. We found that during this process the activity of approximately one in four neurons in area 7a was spatially tuned to maze path direction. We obtained evidence that path tuning did not reflect a covert saccade plan insofar as the majority of neurons active during maze solution were not active on a delayed-saccade control task, and the minority that were active on both tasks did not exhibit congruent spatial tuning in the two conditions. We also obtained evidence that path tuning during maze solution was not due to the locations of visual receptive fields mapped outside the behavioral context of maze solution, in that receptive field centers and preferred path directions were not spatially aligned. Finally, neurons tuned to path direction were not present in area 7a when a na?ve animal viewed the same visual maze stimuli but did not solve them. These data support the hypothesis that path tuning in parietal cortex is not due to the lower level visual features of the maze stimulus, but rather is associated with maze solution, and as such, reflects a cognitive process applied to a complex visual stimulus.  相似文献   

6.
Detecting changes in an ever-changing environment is highly advantageous, and this ability may be critical for survival. In the present study, we investigated the neural substrates of change detection in the context of a visual working memory task. Subjects maintained a sample visual stimulus in short-term memory for 6 s, and were asked to indicate whether a subsequent, test stimulus matched or did not match the original sample. To study change detection largely uncontaminated by attentional state, we compared correct change and correct no-change trials at test. Our results revealed that correctly detecting a change was associated with activation of a network comprising parietal and frontal brain regions, as well as activation of the pulvinar, cerebellum, and inferior temporal gyrus. Moreover, incorrectly reporting a change when none occurred led to a very similar pattern of activations. Finally, few regions were differentially activated by trials in which a change occurred but subjects failed to detect it (change blindness). Thus, brain activation was correlated with a subject's report of a change, instead of correlated with the physical change per se. We propose that frontal and parietal regions, possibly assisted by the cerebellum and the pulvinar, might be involved in controlling the deployment of attention to the location of a change, thereby allowing further processing of the visual stimulus. Visual processing areas, such as the inferior temporal gyrus, may be the recipients of top-down feedback from fronto-parietal regions that control the reactive deployment of attention, and thus exhibit increased activation when a change is reported (irrespective of whether it occurred or not). Whereas reporting that a change occurred, be it correctly or incorrectly, was associated with strong activation in fronto-parietal sites, change blindness appears to involve very limited territories.  相似文献   

7.
Previous work suggested a differential contribution of prefrontal cortex (PFC) to successful encoding depending on the stimulus material. Here, we tested the hypothesis that encoding of words preferentially involves the left PFC, while encoding of nonverbal items (abstract shapes) relies on the right PFC. We used an experimental design that evaluated encoding of both words and abstract shapes in the same healthy volunteers. A transient virtual lesion of the left or the right PFC was elicited with transcranial magnetic stimulation (TMS) while subjects memorized verbal and nonverbal items. We found that encoding of verbal material was disrupted by left PFC stimulation, whereas encoding of nonverbal material was disrupted by right PFC stimulation. These results demonstrate a functionally relevant lateralization of prefrontal contribution for verbal and nonverbal memory encoding.  相似文献   

8.
Cortical specialization for processing first- and second-order motion   总被引:3,自引:2,他引:1  
Distinct mechanisms underlying the visual perception of luminance-(first-order) and contrast-defined (second-order) motion havebeen proposed from electrophysiological, human psychophysicaland neurological studies; however a cortical specializationfor these mechanisms has proven elusive. Here human brain imaging combined with psychophysical methods was used to assess corticalspecializations for processing these two kinds of motion. Acommon stimulus construction was employed, controlling for differencesin spatial and temporal properties, psychophysical performanceand attention. Distinct cortical regions have been found preferentiallyprocessing either first- or second-order motion, both in occipitaland parietal lobes, producing the first physiological evidencein humans to support evidence from psychophysical studies, brainlesion sites and computational models. These results provideevidence for the idea that first-order motion is computed inV1 and second-order motion in later occipital visual areas,and additionally suggest a functional dissociation between thesetwo kinds of motion beyond the occipital lobe.  相似文献   

9.
The neural correlates of true memory formation (TMF) and false memory formation (FMF) were investigated using functional magnetic resonance imaging (fMRI). Using a parametric subsequent memory paradigm, encoding activity was analyzed as a function of whether it predicted subsequent hits to targets (TMF activity) or subsequent false alarms to critical lures (FMF activity). The fMRI analyses yielded 3 main findings. First, the left prefrontal cortex (PFC) was involved in both TMF and FMF activities. This finding is consistent with the evidence that semantic elaboration, which has been associated with left PFC, tends to enhance both true and false remembering. Second, the left posterior medial temporal lobes (MTLs) contributed to TMF but not to FMF activity. This finding is consistent with the notion that MTL is involved in the storage of a consciously, but not unconsciously, processed event. Third, late visual regions were engaged in both TMF and FMF activities, whereas early visual areas were involved primarily in TMF activity. This dissociation indicates that elaborative perceptual processing, but not basic sensory processing, contributes to false remembering. Taken together, the results suggest that FMF is an unintended consequence, or by-product, of elaborative semantic and visual encoding processes.  相似文献   

10.
Prediction error--a mismatch between expected and actual outcome--is critical to associative accounts of inferential learning. However, it has proven difficult to explore the effects of prediction error using functional magnetic resonance imaging (fMRI) while excluding the confounding effects of stimulus novelty and incorrect responses. In this event-related fMRI study we used a three-stage experiment generating preventative- and super-learning conditions. In both cases, it was possible to generate prediction error within a causal associative learning experiment while subtracting the effects of novelty and error. We show that right lateral prefrontal cortex (PFC) activation is sensitive to the magnitude of prediction error. Furthermore, super-learning activation in this region of PFC correlates, across subjects, with the amount learned. We thus provide direct evidence for a brain correlate of the surprise-dependent mechanisms proposed by associative accounts of causal learning. We show that activity in right lateral PFC is sensitive to the magnitude, though not the direction, of the prediction error. Furthermore, its activity is not directly explicable in terms of novelty or response errors and appears directly related to the learning that arises out of prediction error.  相似文献   

11.
Age-related declines in source memory have been observed for various stimuli and associated details. These impairments may be related to alterations in brain regions contributing to source memory via material-independent processes and/or regions specialized for processing specific materials. Using event-related functional magnetic resonance imaging, we investigate the effects of aging on source memory and associated neural activity for words and objects. Source accuracy was equally impaired in older adults for both materials. Imaging data revealed both groups recruited similar networks of regions to support source memory accuracy irrespective of material, including parietal and prefrontal cortices (PFC) and the hippocampus. Age-related decreases in material-independent activity linked to postretrieval monitoring were observed in right lateral PFC. Additionally, age-related increases in source accuracy effects were shown in perirhinal cortex, which were positively correlated with performance in older adults, potentially reflecting functional compensation. In addition to group differences in material-independent regions, age-related crossover interactions for material-dependent source memory effects were observed in regions selectively engaged by objects. These results suggest that older adults' source memory impairments reflect alterations in regions making material-independent contributions to source memory retrieval, primarily the lateral PFC, but may be further impacted by changes in regions sensitive to particular materials.  相似文献   

12.
The neural system involved in cognitive control includes the anterior cingulate cortex (ACC) and the lateral prefrontal cortex (PFC). Neural activity within these structures is sensitive to aging. We investigated the hypothesis that decline in performance with age results in increased cognitive control, as indexed by greater activity within the ACC and lateral PFC. Using positron emission tomography we measured neural activity during a range of verbal decision-making tasks in 16 subjects aged 37-83 years. Conditions were separated behaviorally on the basis of their sensitivity to aging. This allowed the comparison of age-dependent and age-independent conditions, revealing the neural correlates of age-dependent decline in performance. We then modeled the relationship between age, decision type, performance, and frontal lobe activity. ACC activity was independently predicted by age and decision-making accuracy, indicating that in older individuals ACC response is more sensitive to declining performance. We also found strong functional connectivity between the ACC and lateral PFC and observed that activation of the lateral PFC was qualitatively different over time in different age groups. Thus, the ACC and lateral PFC show distinct responses to age-related decline in decision-making performance. This suggests that greater cognitive control is employed as individuals age and their performance declines.  相似文献   

13.
Event-related potentials (ERPs) provide a critical link betweenthe hemodynamic response, as measured by functional magneticresonance imaging, and the dynamics of the underlying neuronalactivity. Single-trial ERP recordings capture the oscillatoryactivity that are hypothesized to underlie both communicationbetween brain regions and amplified processing of behaviorallyrelevant stimuli. However, precise interpretations of ERPs areprecluded by uncertainty about their neural mechanisms. Oneinfluential theory holds that averaged sensory ERPs are generatedby partial phase resetting of ongoing electroencephalographicoscillations, while another states that ERPs result from stimulus-evokedneural responses. We formulated critical predictions of eachtheory and tested these using direct, intracortical analysesof neural activity in monkeys. Our findings support a predominantrole for stimulus-evoked activity in sensory ERP generation,and they outline both logic and methodology necessary for differentiatingevoked and phase resetting contributions to cognitive and motorERPs in future studies.  相似文献   

14.
We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging (fMRI). Participants pressed a button when a memory was accessed, maintained and elaborated the memory, and then gave subjective ratings of emotion and reliving. A novel fMRI approach based on timing differences capitalized on the protracted reconstructive process of autobiographical memory to segregate brain areas contributing to initial access and later elaboration and maintenance of episodic memories. The initial period engaged hippocampal, retrosplenial, and medial and right prefrontal activity, whereas the later period recruited visual, precuneus, and left prefrontal activity. Emotional intensity ratings were correlated with activity in several regions, including the amygdala and the hippocampus during the initial period. Reliving ratings were correlated with activity in visual cortex and ventromedial and inferior prefrontal regions during the later period. Frontopolar cortex was the only brain region sensitive to emotional intensity across both periods. Results were confirmed by time-locked averages of the fMRI signal. The findings indicate dynamic recruitment of emotion-, memory-, and sensory-related brain regions during remembering and their dissociable contributions to phenomenological features of the memories.  相似文献   

15.
The mediodorsal nuclei of thalamus (MD), prefrontal cortex (PFC), and nucleus accumbens core (NAc) form an interconnected network that may work together to subserve certain forms of behavioral flexibility. The present study investigated the functional interactions between these regions during performance of a cross-maze-based strategy set-shifting task. In Experiment 1, reversible bilateral inactivation of the MD via infusions of bupivacaine did not impair simple discrimination learning, but did disrupt shifting from response to visual cue discrimination strategy, and vice versa. This impairment was due to an increase in perseverative errors. In Experiment 2, asymmetrical disconnection inactivations of the MD on one side of the brain and PFC on the other also caused a perseverative deficit when rats were required to shift from a response to a visual cue discrimination strategy, as did disconnections between the PFC and the NAc. However, inactivation of the MD on one side of the brain and the NAc contralaterally resulted in a selective increase in never-reinforced errors, suggesting this pathway is important for eliminating inappropriate strategies during set shifting. These data indicate that set shifting is mediated by a distributed neural circuit, with separate neural pathways contributing dissociable components to this type of behavioral flexibility.  相似文献   

16.
Single cell recordings in monkeys support the notion that the lateral prefrontal cortex (PFC) controls reactivation of visual working memory representations when rehearsal is disrupted. In contrast, recent fMRI findings yielded a double dissociation for PFC and the medial temporal lobe (MTL) in a letter working memory task. PFC was engaged in interference protection during reactivation while MTL was prominently involved in the retrieval of the letter representations. We present event-related potential data (ERP) that support PFC involvement in the top-down control of reactivation during a visual working memory task with endogenously triggered recovery after visual interference. A differentiating view is proposed for the role of PFC in working memory with respect to endogenous/exogenous control and to stimulus type. General implications for binding and retention mechanisms are discussed.  相似文献   

17.
To define the cortical areas that subserve spatial working memory in a nonhuman primate, we measured regional cerebral blood flow (rCBF) with [(15)O]H(2)O and positron emission tomography while monkeys performed a visually guided saccade (VGS) task and an oculomotor delayed-response (ODR) task. Both Statistical Parametric Mapping and regions of interest-based analyses revealed an increase of rCBF in the area surrounding the principal sulcus (PS), the superior convexity, the anterior bank of the arcuate sulcus (AS), the lateral orbitofrontal cortex (lOFC), the frontal pole (FP), the anterior cingulate cortex (ACC), the lateral bank of the intraparietal sulcus (lIPS) and the prestriate cortex. In the prefrontal cortex (PS, superior convexity, AS, lOFC and FP), rCBF values correlated positively with ODR task performance scores. From the hippocampus, rCBF values correlated negatively with ODR task performance. From the AS, superior convexity, lOFC, FP, ACC and lIPS, rCBF values of the PS correlated positively with rCBF values and negatively with hippocampus rCBF values. These results suggest that neural circuitry in the prefrontal cortex directly contributes the spatial working memory processes and that, in spatial working memory processes, the posterior parietal cortex and hippocampus have a different role to the prefrontal cortex.  相似文献   

18.
The current study addressed when in the course of stimulus processing, and in what brain areas, activity occurs that supports the interpretation of cues that signal the appropriateness of different and competing behaviors. Twelve subjects completed interleaved no-go-, pro-, and antitrials, whereas 64-channel electroencephalography was recorded. Principle component and distributed source analyses were used to evaluate the spatial distribution and time course of cortical activity supporting cue evaluation and response selection. By 158 ms poststimulus, visual cortex activity was lower for no-go trials than it was for both pro- and antitrials, consistent with an early sensory filter on the no-go cue. Prefrontal cortex (PFC) activity at 158 ms was highest during antitrials, consistent with this brain region's putative involvement in executive control. At 204 ms poststimulus, however, PFC activity was the same for pro- and antitrials, consistent with an ostensible role in response selection. PFC activity at 204 ms also was robustly inversely correlated (r = -0.75) with visual cortex activity on antitrials, perhaps indicating top-down modulation of early sensory processing that would decrease the probability of an error response. These data highlight how a distributed neural architecture supports the evaluation of stimuli and response choices.  相似文献   

19.
To what extent does neural activation in human visual cortex follow the temporal dynamics of the optical retinal stimulus? Specifically, to what extent does stimulus evoked neural activation persist after stimulus termination? In the present study, we used functional magnetic resonance imaging (fMRI) to explore the resulting temporal non-linearities across the entire constellation of human visual areas. Gray-scale images of animals, houses and faces were presented at two different presentation rates - 1 and 4 Hz - and the fMRI signal was analyzed in retinotopic and in high order occipito-temporal visual areas. In early visual areas and the motion sensitive area MT/V5, a fourfold increase in stimulus presentation rate evoked a twofold increase in signal amplitude. However, in high order visual areas, signal amplitude increased only by 25%. A control experiment ruled out the possibility that this difference was due to signal saturation ('ceiling') effects. A likely explanation for the stronger non-linearities in occipito-temporal cortex is a persistent neuronal activation that continues well after stimulus termination in the 1 Hz condition. These persistent activations might serve as a short term (iconic) memory mechanism for preserving a trace of the stimulus even in its absence and for future integration with temporally correlated stimuli. Two alternative models of persistence (inhibitory and excitatory) are proposed to explain the data.  相似文献   

20.
Learning of procedural skills develops gradually, with performance improving significantly with practice. But improvement on some tasks, including a visual texture discrimination task, continues in the absence of further practice, expressly during periods of sleep and not across equivalent waking episodes. Here we report that the brain activation revealed significantly different patterns of performance-related functional activity following a night of sleep relative to 1 h post-training without intervening sleep. When task activation patterns after a night of sleep were compared with activation patterns without intervening sleep (1 h post-training), significant regions of increased signal intensity were observed in the primary visual cortex, the occipital temporal junction, the medial temporal lobe and the inferior parietal lobe. In contrast, a region of decreased signal intensity was found in the right temporal pole. Corroborating these condition differences, correlations between behavioural performance and brain activation revealed significantly different patterns of performance-related functional activity following a night of sleep relative to those without intervening sleep. Together, these data provide evidence of overnight bi-directional changes in functional anatomy, differences that may form the neural basis of sleep-dependent learning expressed on this task.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号