首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
Gómez R  Simón C  Remohí J  Pellicer A 《Endocrinology》2002,143(11):4339-4348
The existence of a vasoactive molecule released in response to hCG is believed to be the main feature in the development of ovarian hyperstimulation syndrome (OHSS) in women, and vascular endothelial growth factor (VEGF) is the main candidate as the human chorionic gonadotropin (hCG) mediator. This study was conducted to investigate the role of VEGF in increasing vascular permeability (VP) in vivo, a characteristic of OHSS. We analyzed the source and specific isoforms of VEGF involved and developed strategies to reverse increased VP in hyperstimulated rats targeting the VEGF system. Ovarian hyperstimulation was induced with pregnant mare's serum gonadotropin, or pregnant mare's serum gonadotropin plus hCG. Time-course experiments analyzed VP and the expression of whole VEGF mRNA in the mesentery and the ovaries. VP and ovarian mRNA VEGF expression increased to peak values after 48 h. No significant change in expression was observed in the mesentery. To further prove the ovarian origin of VEGF, we showed that VP was not altered when ovariectomized rats were treated with gonadotropins. The ovary expressed VEGF(120) and VEGF(164) isoforms. Immunohistochemistry showed VEGF in granulosa and zona pellucida of preovulatory and atretic follicles and in granulosa-lutein and endothelial cells of whole corpus luteum. A specific VEGF receptor-2 inhibitor (SU5416) was administered in three different protocols: on a daily basis, every 48 h, or two injections after hCG. Increased VP was reversed when SU5416 was administered every 48 h or two injections after hCG. These results show that the ovary is the main source of VEGF(120) and VEGF(164), which act through the VEGF receptor-2 to increase VP, and provide new insights into the prevention of OHSS.  相似文献   

4.
Ovarian hyperstimulation syndrome (OHSS) incidentally occurs in controlled ovarian stimulation protocols and is associated with human chorionic gonadotropin (hCG) administration. OHSS is caused by increased vascular permeability (VP) and thought to be mediated by hypersecretion of vascular endothelial growth factor (VEGF) by granulosa cells. Low molecular weight (LMW)-LH agonists have a similar mode of action but a shorter half-life compared with hCG, which could potentially lead to a clinical benefit in reducing the risk for OHSS in controlled ovarian stimulation protocols. The objective of this study is to investigate the role of an orally active LMW-LH agonist in OHSS induction compared with recombinant LH (rec-LH) and hCG. Immature rats were hyperstimulated with pregnant mare serum gonadotropin, and ovulation was induced by hCG, rec-LH or a LMW-LH agonist. The degree of VP was determined by Evans Blue in the abdominal cavity. Ovaries were weighed, and VEGF concentration in the ovary was determined. Pregnant mare serum gonadotropin stimulation followed by single-dose hCG or rec-LH resulted in clear enlargement of the ovaries and increased VP and VEGF levels. However, ovulation induction with a single dose of the LMW-LH agonist did not result in increased VP and VEGF levels, and even multiple dosing to mimic a longer exposure did not induce OHSS symptoms. In conclusion, we demonstrated that the oral LMW-LH agonist did not induce VP in rat, indicative for OHSS, possibly due to reduced VEGF production. If this is translatable to human, this could potentially represent a clinical benefit in reducing the risk for OHSS when using these compounds in controlled ovarian stimulation protocols.  相似文献   

5.
Ovarian hyperstimulation syndrome (OHSS), a life-threatening complication occurring in stimulated ovarian cycles, arises from treatment with gonadotropin for induction of follicular maturation in infertile women. Clinical characteristics of OHSS include ascites and pleural effusion induced by increased vascular permeability, where vascular endothelial growth factor (VEGF) was suspected to be the culprit. To test whether the effects of human CG (hCG) on the pathogenesis of OHSS were mediated through the VEGF produced by luteinized granulosa cells, we measured estradiol, VEGF, IGF-II levels in serum, and follicular fluid and analyzed their mRNA expression in luteinized granulosa cells obtained from 101 women (58 with OHSS and 43 controls) who underwent in vitro fertilization and embryo transfer. This study presents the first evidence that hCG up-regulated VEGF expression of granulosa cells in the OHSS, not the control groups, and that follicular VEGF worked through an autocrine mechanism using its kinase insert domain-containing receptor, not the fms-like tyrosine kinase receptor. We calculated total follicular production of VEGF, by multiplying follicular concentrations by follicular volumes, and verified that an increase in total follicular production of VEGF accounted for elevated serum levels of VEGF, which was associated with the development of OHSS. These findings demonstrate that through up-regulation of VEGF, hCG plays a significant role in the pathogenesis of OHSS.  相似文献   

6.
CONTEXT: Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic complication of treatment with fertility drugs. It is characterized by increased vascular permeability and simultaneous overexpression of vascular endothelial growth factor (VEGF) in ovarian cells. OBJECTIVE: We tested the hypothesis that the endothelium and endothelial cell-to-cell junctions are downstream targets of VEGF during OHSS pathogenesis. We investigated the potential involvement of vascular endothelial (VE)-cadherin, an interendothelial adhesion molecule, in the capillary hyperpermeability in OHSS. DESIGN: Human endothelial cells from umbilical veins (HUVEC) were used as an in vitro model of OHSS. INTERVENTION: Cell cultures were treated with varying doses of estradiol (E2), human chorionic gonadotropin (hCG), VEGF, and antihuman VEGF antibodies, either alone or in combination, and the effect on VE-cadherin release was evaluated at different time points. Permeability assays were performed using fluoresceinisothiocyanate-labeled albumin, and actin filaments rearrangement was evaluated by fluorescent microscopy. RESULTS: Culturing of HUVEC with high doses of E2 produced no significant changes in VE-cadherin concentration, but hCG and VEGF produced a significant increase in VE-cadherin release. Time-course experiments showed that VE-cadherin was secreted 12 h after VEGF addition. Antihuman VEGF antibodies prevented these changes. Permeability assays demonstrated that, although E2 did not alter the arrangement of HUVEC in vitro, hCG and VEGF caused changes in the actin fibers indicative of increased capillary permeability. VEGF also induced an increase in paracellular permeability of HUVEC at the same doses used in the previous experiments. CONCLUSIONS: Adhesion molecules like VE-cadherin may play a role in the development and progression of increased capillary permeability in severe OHSS.  相似文献   

7.
Plasminogen activators (PAs) are believed to be involved in ovulation. Because both tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are secreted by cultured rat granulosa cells, we have examined the activities of these proteins in ovarian homogenates as well as granulosa and theca-interstitial (TI) cells during gonadotropin-induced ovulation. Immature rats were injected with 20 IU pregnant mare serum gonadotropin (PMSG) to initiate follicle development, followed by treatment with 10 IU hCG 48 h later to induce ovulation. Ovarian proteins were separated by SDS-PAGE and PA activity determined by fibrin overlay. The activity of tPA, but not uPA, was stimulated following PMSG treatment in ovarian homogenates. Subsequent hCG injection further increased the tPA activity in a time-dependent manner, reaching a maximum (12 h after hCG treatment) immediately prior to ovulation and declined thereafter. Similar preovulatory increases in tPA activity were detected in isolated granulosa cells. Although both tPA and uPA activities were increased in TI cells after PMSG administration, no further increases were detected after hCG treatment. To estimate enzyme secretion, ovarian cells obtained at various preovulatory periods were incubated for 24 h in vitro. The ability of granulosa cells to secrete tPA, but not uPA, increased following in vivo PMSG and hCG treatment in a time-dependent manner, reaching a maximum immediately prior to ovulation. During the preovulatory period, an abrupt increase in tPA secretion by TI cells was also detected. Using immunohistochemical staining for tPA, it was found that ovarian sections from preovulatory rats at 12 h after hCG injection stained positively in granulosa, theca interna, and interstitial gland cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We conducted a study to determine the morphological appearance and functional responsiveness of ovarian tissues after administration of hCG to 28-day-old rats primed 65 h earlier with PMS gonadotropin (PMSG) and after administration of a second dose of hCG 5 days later, i.e. to 33-day-old rats containing heavily luteinized ovaries. Sixty-five hours after the administration of 50 IU PMSG sc to 25-day-old rats, ovaries already contained an abundance of luteinized follicles and an adenylyl cyclase (AC) system that was responsive to LH, epinephrine, and NaF. The administration of 50 IU hCG sc at this time initially resulted in a loss of LH-responsive ovarian AC. Within 4 days of the hCG injection, the ovaries of the now 32-day-old rats were heavily luteinized, and ovarian AC was highly responsive to LH, epinephrine, and NaF. The administration of a single sc dose of 200 IU hCG to 33-day-old PMSC- and hCG-primed rats with luteinized ovaries resulted in a rapid desensitization of the ovarian AC to LH and a drop in serum progesterone levels, During the subsequent 7 days, serum progesterone levels continued to decline, while total ovarian AC reacquired responsiveness to LH by days 4--5 after the densensitizing dose of hCG. Dissection of ovarian components revealed, however, that the AC system of the corpora lutea originally present at the time of the second hCG injection remained permanently refractory to LH and that the AC in corpora lutea newly formed from freshly ovulated follicles exhibited a significant responsiveness to LH, epinephrine, and NaF. However, these new corpora lutea were not fully active, since serum progesterone never rose. Subcutaneous administration of 50 IU hCG to 33-day-old PMSG- and hCG-primed rats also promoted a rapid loss of AC responsiveness to LH. This lower concentration of hCG was not sufficient to promote follicular development or ovulation, and the ovarian AC remained refractory to LH for at least 7 days. Intravenous administration of 75 IU hCG to 33-day-old PMSG- and hCG-primed rats similarly promoted a rapid and permanent loss of luteal AC responsiveness to LH; again, follicles did not mature to a preovulatory state and, in fact, appeared to undergo atresia rather than ovulation. These results indicate that in heavily luteinized ovaries 1) hCG promotes desensitization of rat luteal AC to LH, 2) Desensitization of AC to LH stimulation in corpora lutea is permanent and irreversible, and 3) only under conditions where follicles mature and ovulate and new corpora lutea are formed does total ovarian AC reacqure responsiveness during the subsequent week.  相似文献   

9.
Roby KF 《Endocrinology》2001,142(6):2328-2335
Immature female rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) before gonadotropin-induced follicle development and ovulation ovulate significantly fewer ova compared with controls. This study was designed to investigate potential ovarian-specific mechanisms of TCDD-mediated inhibition of ovulation. Immature hypophysectomized rats were treated with TCDD (32 microg/kg) or corn oil vehicle. Follicle development was initiated by injection of 10 IU PMSG 24 h after TCDD, and ovulation was induced 52 h after PMSG by injection of 10 IU hCG. The number of ova flushed from the oviduct was assessed the morning after hCG injection, and ovaries were collected at multiple times throughout the treatment schedule for histological analysis and analysis of FSH and hCG receptor binding and ovarian cAMP levels. In addition, serum levels of estradiol and progesterone were determined. Control rats ovulated 9.3 +/- 1.5 ova, whereas TCDD-treated rats ovulated 0.6 +/- 0.3. Gonadotropin receptor binding was evaluated 52 h after PMSG at the usual time of hCG injection to induce ovulation. Both FSH binding and hCG binding were significantly reduced in animals treated with TCDD. Serum estradiol levels in control animals were increased by 52 h after PMSG administration. In contrast, serum levels of estradiol in TCDD-treated animals remained low. In response to the ovulatory dose of hCG, serum levels of both estradiol and progesterone increased in control animals. Steroid levels also increased in TCDD-treated animals, but did not reach the peak levels observed in controls. TCDD treatment further resulted in lower ovarian cAMP levels at 52 h post-PMSG and at 5 h post-hCG. Together the data indicate that TCDD treatment altered the ability of the ovary to respond to PMSG, resulting in the development of follicles not comparable to controls (lower gonadotropin binding, lower estradiol production, lower levels of cAMP). It appears that critical steps in the development and maturation of follicles are disrupted by TCDD.  相似文献   

10.
The intermediate filament protein nestin was originally found to be expressed in neuronal progenitor cells, but recent studies have shown that other cell types, including endocrine and vascular endothelial cells, express nestin. In the present study, we examined the expression and localization of nestin in the ovaries of developing, peripubertal, and adult rats. RT-PCR and Western blot analyses revealed that nestin mRNA and proteins were expressed in adult rat ovaries. Immunohistochemical analyses using adult rat ovaries showed that nestin was mainly localized to capillary endothelial cells of theca interna in follicles with more than two layers of granulosa cells and that its expression increased with follicle growth. Ontogenetically, ovarian nestin expression started at the peripubertal period when the first gonadotropin surge occurs. To test the possibility that gonadotropins induce nestin expression, prepubertal (postnatal d 21) rats were sc injected with equine chorionic gonadotropin (eCG) and/or human chorionic gonadotropin (hCG). A single injection of hCG, but not eCG, was sufficient to induce nestin expression in follicles, mainly in capillary endothelial cells of theca interna. Furthermore, pretreatment with an inhibitor of vascular endothelial growth factor receptor prevented the induction of the nestin expression by hCG. These findings demonstrate that the endogenous LH surge induces nestin expression in capillary endothelial cells of theca interna via the vascular endothelial growth factor signaling pathway. Nestin may be involved in angiogenesis in growing follicles, which is followed by follicle maturation and subsequent ovulation.  相似文献   

11.
Pre- and postovulatory states of ovaries were induced by the injection of PMSG and PMSG + hCG treatments, respectively, to immature rats. The concentration of ovarian estradiol measured by radioimmunoassay decreased significantly following hCG treatment to PMSG-pretreated rats. Subcutaneous administration of testosterone in soybean oil-glycerol mixture (9:1, v/v) restored the decreased concentration of the ovarian estradiol markedly in the PMSG + hCG treated rats, but not in the group treated with PMSG alone or in the control group treated with no gonadotropin. On the other hand, 5α-dihydrotestosterone showed no increase in the ovarian estradiol of any group. When an ethanol solution of testosterone was administered s.c. to the PMSG + hCG treated rats, the ovarian estradiol level was maximally enhanced from 0.5 to 1.0 h after the injection. On the other hand, 5α-dihydrotestosterone, dehydroepiandrosterone and 17α-hydroxyprogesterone in ethanol showed no effect l h after the injection. These results indicate that the drastic decrease in ovarian estradiol production due to the hCG administration is caused by an acute decrease in the supply of aromatizable androgens to ovarian aromatase.  相似文献   

12.
13.
《Microvascular research》2010,79(3):413-424
We previously demonstrated that there is a significantly greater transfer of intravenously-injected Evan's blue dye into the forebrain of acyclic (reproductive senescent) females compared to young adult females, indicating that blood brain barrier permeability is compromised in the reproductive senescent forebrain. The present study examined brain IgG expression and microvessel tight junction proteins to assess ovarian age-related changes in microvascular permeability, and further compared young and senescent females with age-matched males to distinguish changes attributable to age and reproductive senescence. Blood brain barrier breakdown are often associated with increased extravasation of plasma proteins and high levels of immunoglobulin G (IgG) in brain. In the present study, IgG expression was dramatically increased in the hippocampus and thalamus, but not the hypothalamus of reproductive senescent females compared to young adult females. In males, IgG expression was increased in all these regions in middle-aged animals (aged-matched to senescent females) as compared to young males (age-matched to the young adult females). Furthermore, the proportion of hippocampal microvessels with perivascular IgG immunoreactivity was significantly greater in reproductive senescent females as compared to young adult females, while middle-aged males and young adult males did not differ. The tight junctions between adjacent microvascular endothelial cells regulated by transmembrane proteins such as claudin-5 and occludin play a critical role in maintaining the blood brain barrier integrity. Increased hippocampal IgG expression in senescent females was paralleled by poor junctional localization of the tight junction protein claudin-5 in hippocampal microvessels. However, there was no difference in hippocampal claudin-5 localization between young adult and middle-aged males, indicating that dysregulation of this junctional protein was associated with ovarian aging. Parallel studies in human brain microvessels also revealed age-dependent disruption in claudin-5 distribution in post-menopausal women compared to pre-menopausal women. Collectively, these data support the hypothesis that constitutive loss of barrier integrity in the forebrain during reproductive senescence may be due, in part, to the selective loss of tight junction proteins in endothelial junctions.  相似文献   

14.
Ovarian hyperstimulation syndrome (OHSS) is a complication of ovarian stimulation with gonadotropins followed by the administration of human chorionic gonadotropin (hCG) to trigger the final steps of oocyte maturation. Gonadotropin-releasing hormone (GnRH) analogs are thought to be effective in preventing this complication and a clinical trial has found a lower incidence of OHSS in patients treated with these molecules. Our aim was to analyze the in vivo effect of a GnRH-I agonist on corpus luteum development and regression, ANGPT-1, ANGPT-2 and Tie-2 protein expression and luteal blood vessel stabilization, the expression of the steroidogenic acute regulatory protein (StAR) and the cytochrome P450 side-chain cleavage enzyme (P450scc) and cell proliferation, in ovaries from an OHSS rat model. To this end immature female Sprague-Dawley rats were hyperstimulated and treated with a GnRH-I agonist from the start of pregnant mare serum gonadotropin (PMSG) administration until the day of hCG injection for 5 consecutive days. Blood and tissue samples were collected 48h after hCG injection. Vascular endothelial growth factor VEGF levels were evaluated in the peritoneal fluid by ELISA. Serum progesterone and estradiol were measured by RIA. Histological features of sectioned ovaries were assessed in hematoxylin and eosin (H&E) stained slides. Luteal blood vessel stability, cell proliferation and apoptosis were assessed by immunohistochemistry for SMCA, PCNA, and TUNEL, respectively. P450scc, StAR, FLK-1, ANGPT-1, ANGPT-2, Tie-2 and PCNA protein levels were evaluated by Western blot from dissected corpora lutea (CL). The treatment with the GnRH-I agonist significantly decreased serum progesterone and estradiol levels as well as P450scc and StAR protein expression in the untreated OHSS group. In addition, the agonist significantly decreased the number of CL in the OHSS group, as compared with the untreated OHSS group. In the OHSS group, the area of periendothelial cells in the CL was larger than that of the control group. However, the treatment with the GnRH-I agonist significantly reduced the area of periendothelial cells in the CL in the OHSS group. The luteal levels of ANGPT-1 and its receptor Tie-2 significantly increased in the OHSS group when compared with the control group. Conversely, the administration of the GnRH-I agonist significantly decreased the levels of these factors in the CL from the OHSS group, as compared with the untreated OHSS group. In addition, the treatment with the GnRH-I agonist reduced the diameter of CL and decreased CL cell proliferation as compared with that observed in the untreated OHSS group. Finally, the GnRH-I agonist increased apoptosis in the CL from the OHSS group. In conclusion, these results show that GnRH-I agonist exerts diverse actions on the CL from a rat OHSS model. The decrease in P450scc, StAR, ANGPT-1 and Tie-2 expression, blood vessel stability and luteal proliferation leads to CL regression in the ovaries from OHSS rats. Moreover, our results suggest that the downregulation of ANGPT-1 and its receptor is a possible mechanism whereby GnRH-I agonists could prevent early OHSS.  相似文献   

15.
16.
17.
18.
19.
GnRH and its agonists are known to induce ovulation in hypophysectomized rats by acting directly at the ovary. Because tissue-type plasminogen activator (tPA) has been implicated in the gonadotropin induction of ovulation, we examined the effect of an ovulatory dose of GnRH on ovarian tPA activity, mRNA content, and cellular localization. Hypophysectomized immature rats were injected sc with 20 IU PMSG and a single dose of a GnRH agonist (GnRHa; des-Gly10,DLeu6(N alpha Me)Leu7,Pro9NHEt-GnRH) 58 h later. At different times after treatment, ovaries were prepared for morphological analysis. Using a fibrin overlay method, tPA activities were measured in ovarian homogenates and cumulus-oocyte complexes, whereas granulosa cells were cultured for 24 h to estimate tPA secretion. Total ovarian RNA was prepared for hybridization analysis of tPA message levels, and tPA localization was studied by immunohistochemistry of ovarian sections. GnRHa induced ovulation in PMSG-primed hypophysectomized rats 14-16 h after injection in a dose-dependent manner, and the GnRHa action was blocked by concomitant treatment with a GnRH antagonist. GnRHa stimulated the induction of tPA, but not urokinase-type PA, activity in ovarian homogenates and granulosa cell-conditioned medium in a time-dependent manner, reaching a maximum before ovulation. tPA activity in cumulus-oocyte complexes was also increased before ovulation, but this increase was sustained. Hybridization analysis of steady state tPA mRNA levels was performed using a rat cRNA probe. Northern blot analysis of total ovarian RNA demonstrated that GnRHa stimulated tPA mRNA levels 12 h after treatment, with a subsequent decrease 24 h after treatment. Immunohistochemistry indicated substantial increases in tPA staining in granulosa cells and oocytes of preovulatory follicles before ovulation. Thus, GnRHa acts through specific receptors to increase ovarian tPA enzyme activity, mRNA content, as well as immunostaining in granulosa cells and oocytes. Like gonadotropins, GnRH may induce ovulation by directly stimulating tPA levels in the ovary.  相似文献   

20.
A procedure for the purification of ovarian plasma membranes (PM) is described and applied to ovaries from immature (25-day-old) rats stimulated with pregnant mare serum gonadotropin (PMSG). Luteinizing hormone (LH)-sensitive adenylate cyclase, 5′-nucleotidase and the binding of 125I-labeled human chorionic gonadotropin (hCG) served as PM markers. Judged by these three criteria, 8–15-fold purification of PM was achieved, with a yield of 30–40% of the activity present in the crude homogenate. Optimal conditions for the response of rat ovarian adenylate cyclase to LH and hCG were defined with respect to time, pH and the concentrations of Mg2+, ATP, GTP and β,γ-imidoguanosine-5′-triphosphate [Gpp(NH)p].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号