首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的:探讨低频重复经颅磁刺激(rTMS)对PD患者运动皮质兴奋性影响的持续效应。方法:对38例PD患者,予0.5Hz rTMS刺激其主要受累肢体对侧的M1Hand(20×80,100%RMT),连续7d。于首次干预前及末次干预后20min、1周及1个月分别评价其临床运动功能和运动诱发电位。结果:低频rTMS干预后,PD患者UPDRS Ⅲ、僵直、运动迟缓评分、计时运动试验及CSP均存在显著时间效应(P<0.001)。结论:低频rTMS可改善PD患者运动迟缓症状,其对运动功能的影响可持续到刺激停止后1个月,与运动皮质兴奋性的改变一致。  相似文献   

2.
OBJECTIVE: To assess the effects of focal motor cortex stimulation on motor performance and cortical excitability in patients with Parkinson's disease (PD). METHODS: Repetitive transcranial magnetic stimulation (rTMS) was performed on the left motor cortical area corresponding to the right hand in 12 'off-drug' patients with PD. The effects of subthreshold rTMS applied at 0.5 Hz (600 pulses) or at 10 Hz (2000 pulses) using a 'real' or a 'sham' coil were compared to those obtained by a single dose of l-dopa. The assessment included a clinical evaluation by the Unified Parkinson's Disease Rating Scale and timed motor tasks, and a neurophysiological evaluation of cortical excitability by single- and paired-pulse TMS techniques. RESULTS: 'Real' rTMS at 10 or 0.5 Hz, but not 'sham' stimulation, improved motor performance. High-frequency rTMS decreased rigidity and bradykinesia in the upper limb contralateral to the stimulation, while low-frequency rTMS reduced upper limb rigidity bilaterally and improved walking. Concomitantly, 10 Hz rTMS increased intracortical facilitation, while 0.5 Hz rTMS restored intracortical inhibition. CONCLUSIONS: Low- and high-frequency rTMS of the primary motor cortex lead to significant but differential changes in patients with PD both on clinical and electrophysiological grounds. The effects on cortical excitability were opposite to previous observations made in healthy subjects, suggesting a reversed balance of cortical excitability in patients with PD compared to normals. However, the underlying mechanisms of these changes remain to determine, as well as the relationship with clinical presentation and response to l-dopa therapy. SIGNIFICANCE: The present study gives some clues to appraise the role of the primary motor cortex in PD. Clinical improvement induced by rTMS was too short-lasting to consider therapeutic application, but these results support the perspective of the primary motor cortex as a possible target for neuromodulation in PD.  相似文献   

3.
Cortical excitability of the primary motor cortex is altered in patients with Parkinson's disease (PD). Therefore, modulation of cortical excitability by high frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex might result in beneficial effects on motor functions in PD. The present study aims to evaluate the effect of rTMS of the motor cortex on motor functions in patients with PD. Thirty-six unmedicated PD patients were included consecutively in this study. The patients were assigned in a randomized pattern to one of two groups, one group receiving real-rTMS (suprathreshold 5-Hz, 2000 pulses once a day for 10 consecutive days) and the second group receiving sham-rTMS using closed envelopes. Total motor section of Unified Parkinson's Disease Rating Scale (UPDRS), walking speed, and self-assessment scale were performed for each patient before rTMS and after the first, fifth, 10th sessions, and then after 1 month. Evaluation of these measures was performed blindly without knowing the type of rTMS. anova for repeated measurements revealed a significant time effect for the total motor UPDRS, walking speed and self-assessment scale during the course of the study in the group of patients receiving real-rTMS (P = 0.0001, 0.001, and 0.002), while no significant changes were observed in the group receiving sham-rTMS except in self-assessment scale (P = 0.019). A 10-day course of real-rTMS resulted in statistically significant long-term improvement of the motor functions in comparison with the sham-rTMS. The rTMS could have a therapeutic role of for PD patients.  相似文献   

4.
BACKGROUND: Repeated session of repetitive transcranial magnetic stimulation (rTMS) over motor cortex have been reported to produce significant improvement of motor performance in patients with parkinson's disease (PD). In addition, it is known that a single session of rTMS over motor cortex transiently increases DA in striatum. Here, we test whether repeated sessions of rTMS increase serum dopamine in PD patients and whether this correlates with changes in clinical rating scales. MATERIAL AND METHODS: Twenty untreated PD patients with moderate to severe symptoms (Hoehn & Yahr state III-V 1967) were assessed on the Unified Parkinson's Disease Rating Scale (UPDRS), and with an enzyme immunoassay for quantitative determination of plasma dopamine before and after six daily sessions of 25 Hz rTMS with 3,000 stimuli over the right and left hand and leg motor cortex. RESULTS: There was significant improvement in UPDRS compared with the baseline. Serum dopamine level also was significantly elevated over the same interval. There was a significant correlation between UPDRS and serum dopamine level before and after treatment. CONCLUSION: Improved motor performance in PD after repeated session of rTMS may be related to an elevation of serum dopamine concentration.  相似文献   

5.
Interhemispheric effects of high and low frequency rTMS in healthy humans.   总被引:5,自引:0,他引:5  
OBJECTIVE: We investigated whether repetitive transcranial magnetic stimulation (rTMS) applied to the right motor cortex modified the excitability of the unstimulated left motor cortex. METHODS: Interhemispheric effects of 0.5 and 5 Hz subthreshold rTMS over the right motor cortex were examined by single pulse and paired pulse TMS and by transcranial electrical stimulation (TES) applied to the unstimulated left motor cortex. The effects of (a) 1800 pulses real and sham rTMS with 5 Hz, (b) 180 pulses real and sham rTMS with 0.5 Hz and (c) 1800 pulses real rTMS with 0.5 Hz were studied. RESULTS: Following 5 Hz right motor rTMS motor evoked potential (MEP) amplitudes induced by single pulse TMS over the left motor cortex increased significantly. Intracortical inhibition (ICI) and facilitation (ICF) and MEP amplitudes evoked by TES were unchanged. Sham stimulation had no influence on motor cortex excitability. After 180 pulses right motor cortex rTMS with 0.5 Hz a significant decrease of left motor ICF, but no change in single pulse MEP amplitudes was found. A similar trend was observed with 1800 pulses rTMS with 0.5 Hz. CONCLUSIONS: High frequency right motor rTMS can increase left motor cortex excitability whereas low frequency right motor rTMS can decrease it. These effects outlast the rTMS by several minutes. The underlying mechanisms mediating interhemispheric excitability changes are likely to be frequency dependent.  相似文献   

6.
帕金森病患者运动皮质兴奋性的经颅磁刺激研究   总被引:4,自引:0,他引:4  
目的:本研究拟应用低频重复性经颅磁刺激(rTMS)分别刺激帕金森病(PD)患者M1手代表区(M1Hand)及运动前区(PMC),探讨不同干预手段对运动皮质兴奋性的影响,以及M1与PMC间的联系。方法:对18名确诊PD患者先后进行4种不同干预,即口服美多芭、低频rTMS刺激M1Hand(0.5Hz,100%静息阈值,共1600次脉冲)、低频rTMS刺激PMC(0.5Hz,100%静息阈值,共1600次脉冲)以及假刺激。于每次干预前后各进行临床评价并测定运动诱发电位(MEP)相关指标。结果:①口服美多芭后UPDRSⅢ(P=0.001)以及其中有关僵直(P=0.001)、运动迟缓(P<0.001)的评分均较服药前显著改善。三种不同磁刺激干预产生结果不同,M1Hand组UPDRSⅢ减低(P=0.015),僵直(P=0.010)、运动迟缓(P=0.004)亦有所改善;PMC组UPDRSⅢ较干预前减低(P=0.046),僵直评分亦减低,但无显著性意义(P=0.163);②口服美多芭1h后MEP120减低(P=0.002),CSP延长(P=0.006);M1Hand组MEP120无著变,而CSP延长(P=0.015);PMC组MEP120减低(P=0.004),而CSP无著变;假刺激组则均无显著性改变。结论:低频rTMS对不同脑区产生的效应不同:刺激M1可使CSP延长;而刺激PMC可使MEP波幅减低。  相似文献   

7.
Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex is a relatively non-invasive technique with putative therapeutic effects in major depression. However, the exact neurophysiological basis of these effects needs further clarification. Therefore, we studied the impact of ten daily sessions of left, dorsolateral prefrontal rTMS on motor cortical excitability, as revealed by transcranial magnetic stimulation-elicited motor-evoked potentials in 30 patients. As compared to the non-responders, responders (33%) showed changes in parameters pointing towards a reduced cortical excitability. These results suggest that repetitive transcranial magnetic stimulation of the dorsolateral, prefrontal cortex may have inhibitory effects on motor cortical neuronal excitability in patients with major depressive disorder. Furthermore, measurement of motor cortical excitability may be a useful tool for investigating and monitoring inhibitory brain effects of antidepressant stimulation techniques like rTMS.  相似文献   

8.
《Clinical neurophysiology》2010,121(7):1129-1137
ObjectiveLow-frequency (⩽1 Hz) rTMS (LF-rTMS) can reduce excitability in the underlying cortex and/or promote inhibition. In patients with Parkinson’s disease (PD) several TMS elicited features of motor corticospinal physiology suggest presence of impaired inhibitory mechanisms. These include shortened silent period (SP) and slightly steeper input–output (I–O) curve of motor evoked potential (MEP) size than in normal controls. However, studies of LF-rTMS effects on inhibitory mechanisms in PD are scarce.In this companion paper to the clinical paper describing effects of four consecutive days of LF-rTMS on dyskinesia in PD (Filipović et al., 2009), we evaluate the delayed (24 h) effects of the LF-rTMS treatment on physiological measures of excitability of the motor cortex in the same patients. There are very few studies of physiological follow up of daily rTMS treatments.MethodsNine patients with PD in Hoehn and Yahr stages 2 or 3 and prominent medication-induced dyskinesia were studied. This was a placebo-controlled, crossover study, with two treatment arms, “real” rTMS and “sham” rTMS (placebo). In each of the treatment arms, rTMS (1800 pulses; 1 Hz rate; intensity of the real stimuli just-below the active motor threshold) was delivered over the motor cortex for four consecutive days. Motor cortex excitability was evaluated at the beginning of the study and the next day following each of the four-day rTMS series (real and sham) with patients first in the practically defined “off” state, following 12 h withdrawal of medication, and subsequently in a typical “on” state following usual morning medication dose.ResultsThe SP was significantly longer following real rTMS in comparison to both baseline and sham rTMS. The effect was independent from the effects of dopaminergic treatment. There was no difference in MEP size, rest and active motor threshold. The I–O curve, recorded from the relaxed muscle, showed a trend towards diminished slope in comparison to baseline, but the difference was not significant. There was no consistent correlation between prolongation of SP and concomitant reduction in dyskinesia following real rTMS.ConclusionsLow-frequency rTMS delivered over several consecutive days changes the excitability of motor cortex by increasing the excitability of inhibitory circuits. The effects persist for at least a day after rTMS.SignificanceThe results confirm the existence of a residual after-effect of consecutive daily applications of rTMS that might be relevant to the clinical effect that was observed in this group of patients and could be further exploited for potential therapeutic uses.  相似文献   

9.
OBJECTIVE: To study whether trains of subthreshold 1 Hz repetitive transcranial magnetic stimulation (rTMS) over premotor, prefrontal, or parietal cortex can produce changes in excitability of motor cortex that outlast the application of the train. BACKGROUND: Prolonged 1 Hz rTMS over the motor cortex can suppress the amplitude of motor-evoked potentials (MEP) for several minutes after the end of the train. Because TMS can produce effects not only at the site of stimulation but also at distant sites to which it projects, the authors asked whether prolonged stimulation of sites distant but connected to motor cortex can also lead to lasting changes in MEP. METHODS: Eight subjects received 1500 magnetic stimuli given at 1 Hz over the left lateral frontal cortex, the left lateral premotor cortex, the hand area of the left motor cortex, and the left anterior parietal cortex on four separate days. Stimulus intensity was set at 90% active motor threshold. Corticospinal excitability was probed by measuring the amplitude of MEP evoked in the right first dorsal interosseous muscle by single suprathreshold stimuli over the left motor hand area before, during, and after the conditioning trains. RESULTS: rTMS over the left premotor cortex suppressed the amplitude of MEP in the right first dorsal interosseous muscle. The effect was maximized (approximately 50% suppression) after 900 pulses and outlasted the full train of 1500 stimuli for at least 15 minutes. Conditioning rTMS over the other sites did not modify the size of MEP. A control experiment showed that left premotor cortex conditioning had no effect on MEP evoked in the left first dorsal interosseous muscle. CONCLUSIONS: Subthreshold 1 Hz rTMS of the left premotor cortex induces a short-lasting inhibition of corticospinal excitability in the hand area of the ipsilateral motor cortex. This may provide a model for studying the functional interaction between premotor and motor cortex in healthy subjects and patients with movement disorders.  相似文献   

10.
OBJECTIVE: Several studies have shown that repetitive transcranial magnetic stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) is effective in the treatment of depression in patients with Parkinson disease (PD). However, since research into the effect of this type of rTMS regime on motor function is limited, we studied the effect of rTMS over the DLPFC on the motor functions in PD patients. METHODS: Thirteen patients were randomly assigned into 2 groups, one receiving real-rTMS (90% of resting motor threshold, 10 Hz, 450 pulses-day for 10 consecutive days) over the DLPFC contralateral to the more affected side, and the other group receiving sham-rTMS. Assessment included a clinical motor evaluation using part III of the Unified Parkinson's Disease Rating Scale (UPDRS), and several motor tasks. The UPDRS was applied before and after 10 days of rTMS. Finger tapping, reach movement, grip movement and gait were measured in each session before and after the rTMS over the 10 day period. RESULTS: Statistical analysis (ANOVA for repeated measures; group *day *side *rTMS) only showed a significant effect for finger tapping, reach movement and gait for the factor day. No significant change was reported for the UPDRS in any group. CONCLUSIONS: Application of rTMS over the DLPFC as a 10 day course had no significant effect on motor functions and clinical motor status, and the improvement in performance of motor tasks can be attributed to the effects of practice. SIGNIFICANCE: rTMS over the DLPFC did not lead to any motor improvement in PD patients.  相似文献   

11.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used and highly effective treatment for patients with advanced Parkinson's disease (PD). Repetitive TMS (rTMS) applied to motor cortical areas has also been shown to improve symptoms in PD and modulate motor cortical excitability. Here, we compared clinical and neurophysiological effects of STN stimulation with those of 1 Hz rTMS given to the dorsal premotor cortex (PMd) and those following intake of levodopa in a group of PD patients with advanced disease. Ten PD patients were studied on 2 consecutive days before and after surgery. Clinical effects were determined using the UPDRS motor score. Motor thresholds, motor‐evoked potential (MEP) amplitudes during slight voluntary contraction, and the cortical silent periods (SP) were measured using TMS. Before surgery effects of levodopa and 1 Hz PMd rTMS and after surgery those of STN stimulation with or without additional levodopa were determined. Levodopa significantly improved clinical symptoms and increased the SP duration. STN stimulation improved clinical symptoms without changing the SP duration. In contrast, 1 Hz PMd rTMS was not effective clinically but normalized the SP duration. Whereas levodopa had widespread effects at different levels of an abnormally active motor network in PD, STN stimulation and PMd rTMS led to either clinical improvement or SP normalization, i.e., only partially reversed abnormal motor network activity. © 2009 Movement Disorder Society  相似文献   

12.
OBJECTIVE: In this study, we tested the excitability of cortical motor areas in patients with Alzheimer's disease. Because repetitive transcranial magnetic stimulation (rTMS) modulates cortical excitability, possibly by inducing a short-term increase in synaptic efficacy, we used rTMS to investigate motor cortex excitability in patients with Alzheimer's disease. METHODS: We tested the changes in the size and threshold of motor evoked potential (MEP) and cortical silent period (CSP) duration evoked by focal rTMS delivered in 10 trains of 10 stimuli at 5Hz frequency and 120% rMth intensity in a group of patients with Alzheimer's disease, and age-matched controls. In a further session, rTMS was also delivered at 1Hz frequency (trains of 10 stimuli, 120% rMth). RESULTS: Whereas in control subjects, 5Hz-rTMS elicited normal MEPs that progressively increased in size during the train, in patients, it elicited MEPs that decreased in size. The increase in the duration of the CSP was similar in patients and healthy controls. One hertz rTMS left the MEP amplitude unchanged in patients and healthy controls. CONCLUSIONS: The lack of MEP facilitation reflects an altered response to 5Hz-rTMS in patients with Alzheimer's disease. SIGNIFICANCE: Our rTMS findings strongly suggest an altered cortical plasticity in excitatory circuits within motor cortex in patients with Alzheimer's disease.  相似文献   

13.
Previous studies show that cognitive functions are more impaired in patients with Parkinson's disease (PD) and depression than in nondepressed PD patients. We compared the cognitive effects of two types of antidepressant treatments in PD patients: fluoxetine (20 mg/day) versus repetitive transcranial magnetic stimulation (rTMS, 15 Hz, 110% above motor threshold, 10 daily sessions) of the left dorsolateral prefrontal cortex. Twenty-five patients with PD and depression were randomly assigned either to Group 1 (active rTMS and placebo medication) or to Group 2 (sham rTMS and fluoxetine). A neuropsychological battery was assessed by a rater blind to treatment arm at baseline and 2 and 8 weeks after treatment. Patients in both groups had a significant improvement of Stroop (colored words and interference card) and Hooper and Wisconsin (perseverative errors) test performances after both treatments. Furthermore, there were no adverse effects after either rTMS or fluoxetine in any neuropsychological test of the cognitive test battery. The results show that rTMS could improve some aspects of cognition in PD patients similar to that of fluoxetine. The mechanisms for this cognitive improvement are unclear, but it is in the context of mood improvement.  相似文献   

14.
OBJECTIVE: TMS techniques have provided controversial information on motor cortical function in Huntington's disease (HD). We investigated the excitability of motor cortex in patients with HD using repetitive transcranial magnetic stimulation (rTMS). METHODS: Eleven patients with HD, and 11 age-matched healthy subjects participated in the study. The clinical features of patients with HD were evaluated with the United Huntington's Disease Rating Scale (UHDRS). rTMS was delivered with a Magstim Repetitive Magnetic Stimulator through a figure-of-8 coil placed over the motor area of the first dorsal interosseus (FDI) muscle. Trains of 10 stimuli were delivered at 5 Hz frequency and suprathreshold intensity (120% resting motor threshold) with the subjects at rest and during voluntary contraction of the target muscle. RESULTS: In healthy subjects at rest, rTMS produced motor evoked potentials (MEPs) that increased in amplitude over the course of the trains. Conversely in patients, rTMS left the MEP size almost unchanged. In both groups, during voluntary contraction rTMS increased the silent period (SP) duration. CONCLUSIONS: Because rTMS modulates motor cortical excitability by activating cortical excitatory and inhibitory interneurons these findings suggest that in patients with HD the excitability of facilitatory intracortical interneurones is decreased. SIGNIFICANCE: We suggest that depressed excitability of the motor cortex in patients with HD reflects a disease-related weakening of cortical facilitatory mechanisms.  相似文献   

15.
Hypokinetic gait is a common and very disabling symptom of Parkinson’s disease (PD). Repetitive transcranial magnetic stimulation (rTMS) over the motor cortex has been used with variable effectiveness to treat hypokinesia in PD. Preconditioning rTMS by transcranial direct current stimulation (tDCS) may enhance its effectiveness to treat hypokinetic gait in PD. Three-dimensional kinematic gait analysis was performed (1) prior to, (2) immediately after and (3) 30 min after low-frequency rTMS (1 Hz, 900 pulses, 80 % of resting motor threshold) over M1 contralateral to the more affected body side preconditioned by (1) cathodal, (2) anodal or (3) sham tDCS (amperage: 1 mA, duration: 10 min) in ten subjects with PD (7 females, mean age 63 ± 9 years) and ten healthy subjects (four females, mean age 50 ± 11 years). The effects of tDCS-preconditioned rTMS on gait kinematics were assessed by the following parameters: number of steps, step length, stride length, double support time, cadence, swing and stance phases. Our data suggest a bilateral improvement of hypokinetic gait in PD after 1 Hz rTMS over M1 of the more affected body side preceded by anodal tDCS. In contrast, 1 Hz rTMS alone (preceded by sham tDCS) and 1 Hz rTMS preceded by cathodal tDCS were ineffective to improve gait kinematics in PD. In healthy subjects, gait kinematics was unaffected by either intervention. Preconditioning motor cortex rTMS by tDCS is a promising approach to treat hypokinetic gait in PD.  相似文献   

16.
We treated a patient with levodopa-resistant akinesia with motor cortex stimulation (MCS), and she showed dramatic improvement more than 1 year. On admission, the patient presented severe akinesia and gait disturbance without tremor and rigidity, and did not respond to levodopa test. The patient was suspected pure akinesia and progressive supranuclear palsy. First, high-frequency rTMS of primary motor cortex was examined, and showed the dramatic improvement. Next, chronic subdural electrodes were implanted over the motor cortex bilaterally. One year after surgery, the Unified Parkinson's Disease Rating Scale had improved remarkably, and she could walk four times faster than before. The H2 15O PET study showed a significant increase of rCBF in the left SMA and right dorsolateral prefrontal cortex after bilateral MCS. MCS may be an alternative treatment for patients with akinesia, including those with PD, and particularly for levodopa-resistant patients, who respond well to rTMS.  相似文献   

17.
Parkinson’s disease is a movement disorder whose principal symptoms are tremor, rigidity, bradykinesia and postural instability. Initially, drugs like l-dopa or dopaminergic agonists are able to control these symptoms, but with the progress of the disease these drugs become less effective. Previous studies have reported that repetitive transcranial magnetic stimulation (rTMS) can improve these motor symptoms. The objective of this study was to investigate the neural mechanisms through which 25 Hz rTMS may improve motor symptoms in Parkinson’s disease. In a double-blind placebo-controlled study, we evaluated the effects of 25 Hz. rTMS in 10 Parkinson’s disease patients. Fifteen rTMS sessions were performed over the primary cortex on both hemispheres (one after the other) during a 12-week period. The patients were studied using functional magnetic resonance imaging during performance of a simple tapping and a complex tapping task, 1 week before the administration of the first rTMS session and just after the last session. rTMS improved bradykinesia, while functional magnetic resonance imaging showed different cortical patterns in prefrontal cortex when patients performed the complex tapping test. Furthermore, the improvement in bradykinesia is associated with caudate nucleus activity increases in simple tapping. Finally, we observed a relative change in functional connectivity between the prefrontal areas and the supplementary motor area after rTMS. These results show a potential beneficial effect of repetitive transcranial magnetic stimulation on bradykinesia in Parkinson’s disease which is substantiated by neural changes observed in functional magnetic resonance imaging.  相似文献   

18.
《Clinical neurophysiology》2010,121(4):464-473
Repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex can produce long-lasting changes in the excitability of the motor cortex to single pulse transcranial magnetic stimulation (TMS). rTMS may increase or decrease motor cortical excitability depending critically on the characteristics of the stimulation protocol. However, it is still poorly defined which mechanisms and central motor circuits contribute to these rTMS induced long-lasting excitability changes. We have had the opportunity to perform a series of direct recordings of the corticospinal volley evoked by single pulse TMS from the epidural space of conscious patients with chronically implanted spinal electrodes before and after several protocols of rTMS that increase or decrease brain excitability. These recordings provided insight into the physiological basis of the effects of rTMS and the specific motor cortical circuits involved.  相似文献   

19.
Previous studies in patients with Parkinson's disease have reported that a single session of repetitive transcranial magnetic stimulation (rTMS) can improve some or all of the motor symptoms for 30 to 60 minutes. A recent study suggested that repeated sessions of rTMS lead to effects that can last for at least 1 month. Here we report data that both confirm and extend this work. Fifty-five unmedicated PD patients were classified into four groups: two groups (early and late PD) received 25 Hz rTMS bilaterally on the motor arm and leg areas; other groups acted as control for frequency (10 Hz) and for site of stimulation (occipital stimulation). All patients received six consecutive daily sessions (3,000 pulses for each session). The first two groups then received a further three booster sessions (3 consecutive days of rTMS) after 1, 2, and 3 months, while the third group had only one additional session after the first month. Unified Parkinson's Disease Rating Scale (UPDRS), walking time, key-tapping speed, and self-assessment scale were measured for each patient before and after each rTMS session and before and after the monthly sessions. Compared to occipital stimulation, 25 Hz rTMS over motor areas improved all measures in both early and late groups; the group that received 10 Hz rTMS improved more than the occipital group but less than the 25 Hz groups. The effect built up gradually during the sessions and was maintained for 1 month after, with a slight reduction in efficacy. Interestingly, the effect was restored and maintained for the next month by the booster sessions. We conclude that 25 Hz rTMS can lead to cumulative and long-lasting effects on motor performance.  相似文献   

20.
Dystonia is associated with excessive corticospinal motor output. Motor cortex excitability may be reduced by low-frequency repetitive transcranial magnetic stimulation (rTMS) of premotor cortical areas. We report the effects of 1 Hz rTMS applied at 90% of resting motor threshold over the left premotor cortex in an open pilot study of three patients with severe, generalized, secondary dystonia including painful spasms in the proximal and axial musculature. A 20-min session of premotor rTMS was daily performed during 5 consecutive days. The series of rTMS sessions dramatically reduced the painful spasms, for 3-8 days after the last session, without any other significant beneficial effects. However, a slight reduction of the Movement score of the Burke, Fahn and Marsden rating scale was observed for two patients, and of the Disability score for the third one. Low-frequency rTMS of the premotor cortex may improve some specific motor symptoms in severe, generalized dystonia. These results should prompt confirmation in a larger placebo-controlled study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号