首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of multijoint arm movements have demonstrated that the nervous system anticipates and plans for the mechanical effects that arise from motion of the linked limb segments. The general rules by which the nervous system selects appropriate muscle activities and torques to best deal with these intersegmental effects are largely unknown. In order to reveal possible rules, this study examined the relationship of muscle and interaction torques to joint acceleration at the shoulder, elbow and wrist during point-to-point arm movements to a range of targets in the horizontal plane. Results showed that, in general, dynamics differed between the joints. For most movements, shoulder muscle torque primarily determined net torque and joint acceleration, while interaction torque was minimal. In contrast, elbow and wrist net torque were determined by a combination of muscle and interaction torque that varied systematically with target direction and joint excursion. This "shoulder-centered pattern" occurred whether subjects reached targets using straight or curved finger paths. The prevalence of a shoulder-centered pattern extends findings from a range of arm movement studies including movement of healthy adults, neurological patients, and simulations with altered interaction effects. The shoulder-centered pattern occurred for most but not all movements. The majority of the remaining movements displayed an "elbow-centered pattern," in which muscle torque determined initial acceleration at the elbow and not at the shoulder. This occurred for movements when shoulder excursion was <50% of elbow excursion. Thus, both shoulder- and elbow-centered movements displayed a difference between joints but with reversed dynamics. Overall, these findings suggest that a difference in dynamics between joints is a general feature of horizontal plane arm movements, and this difference is most commonly reflected in a shoulder-centered pattern. This feature fits well with other general shoulder-elbow differences suggested in the literature on arm movements, namely that: (a) agonist muscle activity appears more closely related to certain joint kinematics at the shoulder than at the elbow, (b) adults with neurological damage display less disruption of shoulder motion than elbow motion, and (c) infants display adult-like motion first in the shoulder and last at the wrist.  相似文献   

2.
During multijoint limb movements such as reaching, rotational forces arise at one joint due to the motions of limb segments about other joints. We report the results of three experiments in which we assessed the extent to which control signals to muscles are adjusted to counteract these "interaction torques." Human subjects performed single- and multijoint pointing movements involving shoulder and elbow motion, and movement parameters related to the magnitude and direction of interaction torques were manipulated systematically. We examined electromyographic (EMG) activity of shoulder and elbow muscles and, specifically, the relationship between EMG activity and joint interaction torque. A first set of experiments examined single-joint movements. During both single-joint elbow (experiment 1) and shoulder (experiment 2) movements, phasic EMG activity was observed in muscles spanning the stationary joint (shoulder muscles in experiment 1 and elbow muscles in experiment 2). This muscle activity preceded movement and varied in amplitude with the magnitude of upcoming interaction torque (the load resulting from motion of the nonstationary limb segment). In a third experiment, subjects performed multijoint movements involving simultaneous motion at the shoulder and elbow. Movement amplitude and velocity at one joint were held constant, while the direction of movement about the other joint was varied. When the direction of elbow motion was varied (flexion vs. extension) and shoulder kinematics were held constant, EMG activity in shoulder muscles varied depending on the direction of elbow motion (and hence the sign of the interaction torque arising at the shoulder). Similarly, EMG activity in elbow muscles varied depending on the direction of shoulder motion for movements in which elbow kinematics were held constant. The results from all three experiments support the idea that central control signals to muscles are adjusted, in a predictive manner, to compensate for interaction torques-loads arising at one joint that depend on motion about other joints.  相似文献   

3.
Strategies used by the CNS to optimize arm movements in terms of speed, accuracy, and resistance to fatigue remain largely unknown. A hypothesis is studied that the CNS exploits biomechanical properties of multijoint limbs to increase efficiency of movement control. To test this notion, a novel free-stroke drawing task was used that instructs subjects to make straight strokes in as many different directions as possible in the horizontal plane through rotations of the elbow and shoulder joints. Despite explicit instructions to distribute strokes uniformly, subjects showed biases to move in specific directions. These biases were associated with a tendency to perform movements that included active motion at one joint and largely passive motion at the other joint, revealing a tendency to minimize intervention of muscle torque for regulation of the effect of interaction torque. Other biomechanical factors, such as inertial resistance and kinematic manipulability, were unable to adequately account for these significant biases. Also, minimizations of jerk, muscle torque change, and sum of squared muscle torque were analyzed; however, these cost functions failed to explain the observed directional biases. Collectively, these results suggest that knowledge of biomechanical cost functions regarding interaction torque (IT) regulation is available to the control system. This knowledge may be used to evaluate potential movements and to select movement of "low cost." The preference to reduce active regulation of interaction torque suggests that, in addition to muscle energy, the criterion for movement cost may include neural activity required for movement control.  相似文献   

4.
We tested the hypothesis that in fast arm movements the CNS deliberately utilizes interaction torques to decelerate (brake) joint rotations. Twelve subjects performed fast 2-D overarm throws in which large elbow extension velocities occurred. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. After ball release, a large follow-through shoulder extension acceleration occurred that was initiated by shoulder extensor muscle torque. This shoulder acceleration produced a flexor interaction torque at the elbow that initiated elbow deceleration (braking). An instantaneous mechanical interaction of passive torques then occurred between elbow and shoulder, i.e., elbow extension deceleration produced a large shoulder extensor interaction torque that contributed to the shoulder extension acceleration which, simultaneously, produced a large elbow flexor interaction torque that contributed to elbow extension deceleration, and so on. Late elbow flexor muscle torque also contributed to elbow deceleration. The interaction of passive torques between shoulder and elbow was braked by shoulder flexor muscle torque. In this mechanism, shoulder musculature contributed to braking elbow extension in two ways: shoulder extensors initiated the mechanical interaction of passive torques between shoulder and elbow and shoulder flexors dissipated kinetic energy from elbow braking. It is concluded that, in fast 2-D throws, the CNS deliberately utilizes powerful interaction torques between shoulder and elbow to brake motion at the elbow.  相似文献   

5.
Impairments in control of multi-joint arm movements in Parkinsons Disease (PD) were investigated. The PD patients and age-matched elderly participants performed cyclical arm movements, tracking templates of a large circle and four differentially oriented ovals on a horizontal table. The wrist was immobilized and the movements were performed with shoulder and elbow rotations. The task was performed with and without vision at a cycling frequency of 1.5 Hz. Traces of the arm endpoint, joint-motion parameters represented by range of motion and relative phase, and joint-control characteristics represented by amplitude and timing of muscle torque were analyzed. The PD patients provided deformations of the template shapes that were not observed in movements of elderly controls. The deformations were consistent for each shape but differed across the shapes, making quantification of impairments in the endpoint movement difficult. In contrast, the characteristics of joint control and motion demonstrated systematic changes across all shapes in movements of PD patients, although some of these changes were observed only without vision. A specification of the PD influence was observed at the level of joint control and it was not distinguishable in joint and endpoint motion, because of the property of multi-joint movements during which control at each joint influences motion at the other joints. The results suggest that inability of PD patients to provide fine muscle torque regulation coordinated across the joints contributes to the altered endpoint trajectories during multi-joint movements. The study emphasizes the importance of the torque analysis when deficits in multi-joint movements are investigated, because specific impairments that can be detected in joint-control characteristics are difficult to trace in characteristics of joint and endpoint kinematics, because of interactions between joint motions.  相似文献   

6.
The relationship between wrist kinematics, dynamics and the pattern of muscle activation were examined during a two-joint planar movement in which the two joints moved in opposite directions, i.e. elbow flexion/wrist extension and elbow extension/wrist flexion. Elbow movements (ranging from 10 to 70 deg) and wrist movements (ranging from 10 to 50 deg) were performed during a visual, step-tracking task in which subjects were required to attend to the initial and final angles at each joint. As the elbow amplitude increased, wrist movement duration increased and the wrist movement trajectories became quite variable. Analysis of the torques acting at the wrist joint showed that elbow movements produced reaction torques acting in the same direction as the intended wrist movement. Distinct patterns of muscle activation were observed at the wrist joint that were dependent on the relative magnitude of the elbow reaction torque in relation to the net wrist torque. When the magnitude of the elbow reaction torque was quite small, the wrist agonist was activated first. As the magnitude of the elbow reaction torque increased, activity in the wrist agonist decreased significantly. In conditions where the elbow reaction torque was much larger than the net wrist torque, the wrist muscle torque reversed direction to oppose the intended movement. This reversal of wrist muscle torque was directly associated with a change in the pattern of muscle activation where the wrist antagonist was activated prior to the wrist agonist. Our findings indicate that motion of the elbow joint is an important consideration in planning wrist movement. Specifically, the selection of muscle activation patterns at the wrist is dependent on the relative magnitude and direction of the elbow reaction torque in relation to the direction of wrist motion.  相似文献   

7.
The leading joint hypothesis (LJH), developed for planar arm reaching, proposes that the interaction torques experienced by the proximal joint are low compared to the corresponding muscle torques. The human central nervous system could potentially ignore these interaction torques at the proximal (leading) joint with little effect on the wrist trajectory, simplifying joint-level control. This paper investigates the extension of the LJH to spatial reaching. In spatial motion, a number of terms in the governing equation (Euler’s angular momentum balance) that vanish for planar movements are non-trivial, so their contributions to the joint torque must be classified as net, interaction or muscle torque. This paper applies definitions from the literature to these torque components to establish a general classification for all terms in Euler’s equation. This classification is equally applicable to planar and spatial motion. Additionally, a rationale for excluding gravity torques from the torque analysis is provided. Subjects performed point-to-point reaching movements between targets whose locations ensured that the wrist paths lay in various portions of the arm’s spatial workspace. Movement kinematics were recorded using electromagnetic sensors located on the subject’s arm segments and thorax. The arm was modeled as a three-link kinematic chain with idealized spherical and revolute joints at the shoulder and elbow. Joint torque components were computed using inverse dynamics. Most movements were ‘shoulder-led’ in that the interaction torque impulse was significantly lower than the muscle torque impulse for the shoulder, but not the elbow. For the few elbow-led movements, the interaction impulse at the elbow was low, while that at the shoulder was high, and these typically involved large elbow and small shoulder displacements. These results support the LJH and extend it to spatial reaching motion.  相似文献   

8.
We examined the systematic variation in shoulder and elbow torque, as well as movement kinematics, for horizontal-plane arm movements with direction reversals performed by normal individuals and individuals with Down syndrome. Eight neurologically normal individuals and eight individuals with Down syndrome performed horizontal, planar reversal movements to four different target locations. The four locations of the targets were chosen such that there is a systematic increase in elbow interaction torque for each of the four different target locations. This systematic increase in interaction torque has previously been shown to lead to progressively larger movement reversal errors, and trajectories that do not show a sharp reversal of direction, for movements to and from the target in patients who have proprioceptive abnormalities. We computed joint torques at the elbow and shoulder and found a high correlation between elbow and shoulder torque for the neurologically normal subjects. The ratio of joint torques varied systematically with target location. These findings extend previously reported findings of a linear synergy between shoulder and elbow joints for a variety of point-to-point movements. There was also a correlation between elbow and shoulder torque in individuals with Down syndrome, but the magnitude of the correlation was less. The ratio of joint torques changed systematically with target direction in individuals with Down syndrome but was slightly different from the ratio observed for neurologically normal individuals. The difference in the ratio was caused by the generation of proportionately more elbow torque than shoulder torque. The fingertip path of individuals with Down syndrome showed a sharp reversal in moving toward and then away from the target. In this respect, they were similar to neurologically normal individuals but dissimilar to individuals with proprioceptive deficits. Finally, we observed that individuals with Down syndrome spend proportionately more time in the vicinity of the target than normal individuals. Collectively these results show that there is a systematic relationship between joint torques at the elbow and shoulder. This relationship is present for reversal movements and is also present in individuals with Down syndrome.  相似文献   

9.
It has been proposed that unconstrained upper limb movements are coordinated via a kinetic constraint that produces dynamic muscle torques at each moving joint that are a linear function of a single torque command. This constraint has been termed linear synergy (Gottlieb et al. J Neurophysiol 75:1760–1764, 1996). The current study tested two hypotheses: (1) that the extent of covariation between dynamic muscle torques at the shoulder and elbow varied with the direction of movement and (2) that the extent to which muscle torques deviated from linear synergy would be reproduced by a simulation of pointing movements in which the path of the hand was constrained to be straight. Dynamic muscle torques were calculated from sagittal plane pointing movements performed by 12 participants to targets in eight different directions. The results of principal component analyses performed on the muscle torque data demonstrated direction-dependent variation in the extent to which dynamic muscle torques covaried at the shoulder and elbow. Linear synergy was deviated from substantially in movement directions for which the magnitude of muscle torque was low at one joint. A simulation of movements with straight hand paths was able to accurately estimate the amount of covariation between muscle torques at the two joints in many directions. These results support the idea that a kinematic constraint is imposed by the central nervous system during unconstrained pointing movements. Linear synergy may also be applied as a coordinating constraint in circumstances where its application allows the path of the moving endpoint to remain close to a straight line.  相似文献   

10.
In cerebellar ataxia, kinematic aberrations of multijoint movements are thought to originate from deficiencies in generating muscular torques that are adequate to control the mechanical consequences of dynamic interaction forces. At this point the exact mechanisms that lead to an abnormal control of interaction torques are not known. In principle, the generation of inadequate muscular torques may result from an impairment in generating sufficient levels of torques or from an inaccurate assessment and prediction of the mechanical consequences of movements of one limb segment on adjacent joints. We sought to differentiate the relative contribution of these two mechanisms and, therefore, analyzed intersegmental dynamics of multijoint pointing movements in healthy subjects and in patients with cerebellar degeneration. Unrestrained vertical arm movements were performed at three different target movement velocities and recorded using an optoelectronic tracking system. An inverse dynamics approach was employed to compute net joint torques, muscular torques, dynamic interaction torques and gravitational torques acting at the elbow and shoulder joint. In both groups, peak dynamic interaction forces and peak muscular forces were largest during fast movements. In contrast to normal subjects, patients produced hypermetric movements when executing fast movements. Hypermetric movements were associated with smaller peak muscular torques and smaller rates of torque change at elbow and shoulder joints. The patients’ deficit in generating appropriate levels of muscular force were prominent during two different phases of the pointing movement. Peak muscular forces at the elbow were reduced during the initial phase of the movement when simultaneous shoulder joint flexion generated an extensor influence upon the elbow joint. When attempting to terminate the movement, gravitational and dynamic interaction forces caused overshooting extension at the elbow joint. In normal subjects, muscular torque patterns at shoulder and elbow joint were synchronized in that peak flexor and extensor muscular torques occurred simultaneously at both joints. This temporal pattern of muscular torque generation at shoulder and elbow joint was preserved in patients. Our data suggest that an impairment in generating sufficient levels of phasic muscular torques significantly contributes to the patients’ difficulties in controlling the mechanical consequences of dynamic interaction forces during multijoint movements. Received: 28 October 1996 / Accepted: 30 September 1997  相似文献   

11.
Kinematic abnormalities of fast multijoint movements in cerebellar ataxia include abnormally increased curvature of hand trajectories and an increased hand path and are thought to originate from an impairment in generating appropriate levels of muscle torques to support normal coordination between shoulder and elbow joints. Such a mechanism predicts that kinematic abnormalities are pronounced when fast movements are performed and large muscular torques are required. Experimental evidence that systematically explores the effects of increasing movement velocities on movement kinematics in cerebellar multijoint movements is limited and to some extent contradictory. We, therefore, investigated angular and hand kinematics of natural multijoint pointing movements in patients with cerebellar degenerative disorders and healthy controls. Subjects performed self-paced vertical pointing movements with their right arms at three different target velocities. Limb movements were recorded in three-dimensional space using a two-camera infrared tracking system. Differences between patients and healthy subjects were most prominent when the subjects performed fast movements. Peak hand acceleration and deceleration were similar to normals during slow and moderate velocity movements but were smaller for fast movements. While altering movement velocities had little or no effect on the length of the hand path and angular motion of elbow and shoulder joints in normal subjects, the patients exhibited overshooting motions (hypermetria) of the hand and at both joints as movement velocity increased. Hypermetria at one joint always accompanied hypermetria at the neighboring joint. Peak elbow angular deceleration was markedly delayed in patients compared with normals. Other temporal movement variables such as the relative timing of shoulder and elbow joint motion onsets were normal in patients. Kinematic abnormalities of multijoint arm movements in cerebellar ataxia include hypermetria at both the elbow and the shoulder joint and, as a consequence, irregular and enlarged paths of the hand, and they are marked with fast but not with slow movements. Our findings suggest that kinematic movement abnormalities that characterize cerebellar limb ataxia are related to an impairment in scaling movement variables such as joint acceleration and deceleration normally with movement speed. Most likely, increased hand paths and decomposition of movement during slow movements, as described earlier, result from compensatory mechanisms the patients may employ if maximum movement accuracy is required.  相似文献   

12.
This study investigated how the human CNS organizes complex three-dimensional (3D) ball-throwing movements that require both speed and accuracy. Skilled baseball players threw a baseball to a target at three different speeds. Kinematic analysis revealed that the fingertip speed at ball release was mainly produced by trunk leftward rotation, shoulder internal rotation, elbow extension, and wrist flexion in all speed conditions. The study participants adjusted the angular velocities of these four motions to throw the balls at three different speeds. We also analyzed the dynamics of the 3D multijoint movements using a recently developed method called "nonorthogonal torque decomposition" that can clarify how angular acceleration about a joint coordinate axis (e.g., shoulder internal rotation) is generated by the muscle, gravity, and interaction torques. We found that the study participants utilized the interaction torque to generate larger angular velocities of the shoulder internal rotation, elbow extension, and wrist flexion. To increase the interaction torque acting at these joints, the ball throwers increased muscle torque at the shoulder and trunk but not at the elbow and wrist. These results indicates that skilled ball throwers adopted a hierarchical control in which the proximal muscle torques created a dynamic foundation for the entire limb motion and beneficial interaction torques for distal joint rotations.  相似文献   

13.
The speed of arm movements is normally increased by increasing agonist muscle activity, but in overarm throwing, an additional effect on speed may come from exploitation of interaction torques (a passive torque associated with motion at adjacent joints). We investigated how the central nervous system (CNS) controls interaction torques at the shoulder and elbow to increase speed in 2-D overarm throwing. Twelve experienced throwers made slow, medium, and fast 2-D throws in a parasagittal plane. Joint motions were computed from recordings made with search coils; joint torques were calculated using inverse dynamics. For slow and medium-speed throws, elbow extension was primarily produced by elbow muscle torque. For fast throws, there was an additional late-occurring elbow extensor interaction torque. Parceling out this elbow extension interaction torque revealed that it primarily arose from shoulder extension deceleration. Surprisingly, shoulder deceleration before ball release was not caused by shoulder flexor (antagonist) muscle torque. Rather, shoulder deceleration was produced by passive elbow-to-shoulder interaction torques that were primarily associated with elbow extension acceleration and velocity. It is concluded that when generating fast 2-D throws, the CNS utilized the arm’s biomechanical properties to increase ball speed. It did this by coordinating shoulder and elbow motions such that an instantaneous mechanical positive feedback occurred of interaction torques between shoulder and elbow before ball release. To what extent this mechanism is utilized in other fast multijoint arm movements remains to be determined.  相似文献   

14.
Prior work has shown that cerebellar subjects have difficulty adjusting for interaction torques that occur during multi-jointed movements. The purpose of this study was to determine whether this deficit is due to a general inability to generate sufficient levels of phasic torque inability or due to an inability to generate muscle torques that predict and compensate for interaction torques. A second purpose was to determine whether reducing the number of moving joints by external mechanical fixation could improve cerebellar subjects' targeted limb movements. We studied control and cerebellar subjects making elbow flexion movements to touch a target under two conditions: 1) a shoulder free condition, which required only elbow flexion, although the shoulder joint was unconstrained and 2) a shoulder fixed condition, where the shoulder joint was mechanically stabilized so it could not move. We measured joint positions of the arm in the sagittal plane and electromyograms (EMGs) of shoulder and elbow muscles. Elbow and shoulder torques were estimated using inverse dynamics equations. In the shoulder free condition, cerebellar subjects made greater endpoint errors (primarily overshoots) than did controls. Cerebellar subjects' overshoot errors were largely due to unwanted flexion at the shoulder. The excessive shoulder flexion resulted from a torque mismatch, where larger shoulder muscle torques were produced at higher rates than would be appropriate for a given elbow movement. In the shoulder fixed condition, endpoint errors of cerebellar subjects and controls were comparable. The improved accuracy of cerebellar subjects was accompanied by reduced shoulder flexor muscle activity. Most of the correct cerebellar trials in the shoulder fixed condition were movements made using only muscles that flex the elbow. Our findings suggest that cerebellar subjects' poor shoulder control is due to an inability to generate muscle torques that predict and compensate for interaction torques, and not due to a general inability to generate sufficient levels of phasic torque. In addition, reducing the number of muscles to be controlled improved cerebellar ataxia.  相似文献   

15.
Independent coactivation of shoulder and elbow muscles   总被引:1,自引:0,他引:1  
 The aim of this study was to examine the possibility of independent muscle coactivation at the shoulder and elbow. Subjects performed rapid point-to-point movements in a horizontal plane from different initial limb configurations to a single target. EMG activity was measured from flexor and extensor muscles acting at the shoulder (pectoralis clavicular head and posterior deltoid) and elbow (biceps long head and triceps lateral head) and flexor and extensor muscles acting at both joints (biceps short head and triceps long head). Muscle coactivation was assessed by measuring tonic levels of electromyographic (EMG) activity after limb position stabilized following the end of the movements. It was observed that tonic EMG levels following movements to the same target varied as a function of the amplitude of shoulder and elbow motion. Moreover, for the movements tested here, the coactivation of shoulder and elbow muscles was found to be independent – tonic EMG activity of shoulder muscles increased in proportion to shoulder movement, but was unrelated to elbow motion, whereas elbow and double-joint muscle coactivation varied with the amplitude of elbow movement and were not correlated with shoulder motion. In addition, tonic EMG levels were higher for movements in which the shoulder and elbow rotated in the same direction than for those in which the joints rotated in opposite directions. In this respect, muscle coactivation may reflect a simple strategy to compensate for forces introduced by multijoint limb dynamics. Received: 7 July 1998 / Accepted: 28 July 1998  相似文献   

16.
Single-joint elbow flexions are associated with muscle activity at the shoulder that opposes interaction torques arising from rotation of the elbow. We have previously shown that this activity is linearly related to elbow muscle torque and is robust in the presence of novel dynamic loads. Here we examined this relationship in the context of shoulder joint fixation. We tested the hypothesis that after mechanically fixing the shoulder the relationship between shoulder muscle activity and elbow muscle torque will be preserved. In contrast, proposals in which energetic variables are optimized predict that shoulder muscle activity should cease. Subjects performed single-joint elbow flexions in a horizontal plane while interacting with the KINARM robotic exoskeleton. After repeated movements with the shoulder joint fixed we observed a slight and gradual decrease in the activity of pectoralis major relative to movements in which the shoulder was free to rotate. However the strength of the coupling between the shoulder and elbow did not change after shoulder fixation. This is consistent with our previous findings and suggests that the nervous system maintains this inter-joint coupling relationship even when activity at the fixed joint is no longer needed for movement accuracy.  相似文献   

17.
The present study addresses the influence of aging on the ability to regulate mechanical effects arising during arm movements due to the multi-joint structure of the arm. Two mechanical factors were considered, interaction torque (IT) and inertial resistance (IR). Regulation of these two factors can be demanding in terms of the timing and magnitude of the required muscle torque (MT), specifically during fast movements. We hypothesized that aging exacerbates the challenge regarding the regulation of these effects with muscular control due to declines in the motor system. This hypothesis was tested by comparing performance of a cyclic line-drawing task in two age groups, young and older adults. Only two joints, the shoulder and elbow, participated in motion. Four orientations of the lines were used to provide variations in the requirements for regulation of IT and IR. Cyclic frequency was manipulated to emphasize the dependence of the mechanical factors on movement speed. Various characteristics of fingertip motion showed that there were no age-related deteriorations in accuracy of line drawing. However, older adults were systematically slower, particularly in the directions of high IR. A detailed analysis of the magnitude of MT and the contribution of this torque to production of net torque at each joint demonstrated that older adults modified joint control and decreased the demands for MT by skillful exploitation of IT in a way specific for each particular line orientation. The results point to a tendency in older adults to decrease the production of muscle force. Nevertheless, older adults also demonstrated an ability to partially compensate for declines in the force production by developing sophisticated strategies of joint control that exploit the multi-joint mechanical structure of the arm. This ability suggests that the internal representation of inter-segmental dynamics and the capability to use it for movement control does not decay with age. The study emphasizes the importance of analysis of joint motion and control characteristics for the investigation of arm movements and for comparison of these movements between different subject populations.  相似文献   

18.
Different investigators have proposed that multi-joint arm movements are planned with respect to either the path of the hand or the forces and torques acting about the moving joints. In this experiment, we examined the kinematic and kinetic response of the motor system when a load was applied to the forearm, which reduced the natural anisotropy of the arm. We asked two questions: (1) when the movement path changes upon the introduction of the novel load, do muscle torques at the shoulder and elbow remain the same as they were before the load was applied? and (2) when the path is restored partially as the novel load is learned, do changes in muscle torque occur preferentially at one or the other joint? Participants performed rapid arm movements to a target with and without the novel load attached to their arm. Changes in hand path and muscle torque profiles were examined immediately after the application of the load and again following 30 practice trials. The introduction of the load increased the curvature of hand paths for each participant and resulted in changes in the magnitude and time course of muscle torque at both joints, although to a greater extent at the shoulder. After practice with the load, hand paths and elbow muscle torques resembled those produced with no load. Muscle torques produced at the shoulder, however, did not return to pre-load patterns. These observations provide support for the idea that movements are initiated by planned muscle torques and that as the movement proceeds muscle torques are regulated in order to produce hand paths that conform approximately to a kinematic plan.  相似文献   

19.
Summary Rapid pointing movements (no accuracy or reaction time requirements) were performed under three conditions which limited motion to the shoulder, elbow or a combination of these two joints. Velocity profiles of the hand's trajectory differed during single and multijoint movements. For the same magnitude of displacement, the hand always had a higher peak velocity, shorter rise time (time to peak velocity) and shorter movement time during single joint movements. However, when the profiles were normalized with respect to amplitude and movement time, no significant differences were observed between these three movement conditions. The velocity profiles of the elbow and/or shoulder were also compared under single and multijoint movement conditions. Analysis of these profiles revealed that the relationships between peak velocity and displacement and between movement time and displacement remained the same at the shoulder joint during single and multijoint movements. In contrast, the elbow joint velocity profiles were significantly affected by movement conditions. These relationships (peak velocity/ displacement and movement time/displacement) changed during multijoint movements and became the same as those observed at the shoulder joint. The shape of the hand velocity profile and its invariance across movement conditions can best be explained by dynamic optimization theory and supports the notion that movement of the hand is of primary importance during rapid pointing. However, the consistency of the shoulder velocity profile and the highly significant relationships between the movement of the elbow and shoulder joints indicates that a subordinate joint planning strategy is also used. The purpose of this strategy is to functionally decrease the available degrees of freedom and to simplify coordination between the moving joints. Thus, the organization of arm movements is hierarchically structured with important, but different contributions being made on both the hand planning and joint planning levels.  相似文献   

20.
In the present study, we investigated the influence of external force manipulations on movements in different directions, while keeping the amplitude invariant. Subjects (n=10) performed a series of cyclical anteroposterior, mediolateral, and oblique line-drawing movements (star drawing task) with their dominant limb in the horizontal plane. To dissociate kinematics from the underlying patterns of muscle activation, spring loading was applied to the forearm of the moving limb. Whereas spring loading of the arm resulted in considerable changes in the overall amount of muscle activation in the elbow and shoulder muscles, invariance was largely maintained at the kinematic level. Subjects produced the required movement directions and amplitudes of the star drawing largely successfully, irrespective of the force bias induced by the spring. These observations demonstrate motor equivalence and strengthen the notion that the spatial representation of drawing movements is encoded in the higher brain regions in a rather abstract form that is dissociated from the concrete muscle activation patterns underlying a particular movement direction. To achieve this goal, the central nervous system shifted between two or more muscle grouping strategies to overcome modulations in the interaction among posture-dependent (joint stiffness), dynamic (inertial), and elastic (spring) torque components in the joints. Spring loading induced general changes in the overall amount of EMG activity, which was largely muscle but not direction specific, presumably to represent the posture-dependent biasing force of the spring. Loading was mainly shown to increase muscle coactivation in the elbow joint. This indicates that the subjects tended to increase stiffness in the elbow to compensate for changes in the spring bias forces in order to minimize trajectory errors. Changes in muscle grouping of the shoulder antagonists were mainly a consequence of movement direction but were also affected partly by loading, presumably reflecting the influence of dynamic force components. Taken together, the results confirmed the hypothesis that changes of movement direction and direction of force in the end-effector generated specific sets of muscle grouping to overcome the dynamic requirements in the joints while keeping the kinematics largely unchanged. This suggests that directional tuning in muscle activity and changes in muscle grouping reflects the formation of appropriate internal models in the CNS that give rise to motor equivalence. Electronic Publication  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号