首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of oral creatine supplementation (20 g d?1 for 7 days) on metabolism during a 1‐h cycling performance trial. Twenty endurance‐trained cyclists participated in this double‐blind placebo controlled study. Five days after familiarization with the exercise test, the subjects underwent a baseline muscle biopsy. Thereafter, a cannula was inserted into a forearm vein before performing the baseline maximal 1‐h cycle (test 1 (T1)). Blood samples were drawn at regular intervals during exercise and recovery. After creatine (Cr) loading, the muscle biopsy, 1‐h cycling test (test 2 (T2)) and blood sampling were repeated. Resting muscle total creatine (TCr), measured by high performance liquid chromatography, was increased (P < 0.001) in the creatine group from 123.0 ± 3.8 ? 159.8 ± 7.9 mmol kg?1 dry wt, but was unchanged in the placebo group (126.7 ± 4.7 ? 127.5 ± 3.6 mmol kg?1 dry wt). The extent of Cr loading was unrelated to baseline Cr levels (r=0.33, not significant). Supplementation did not significantly improve exercise performance (Cr group: 39.1 ± 0.9 vs. 39.8 ± 0.8 km and placebo group: 39.3 ± 0.8 vs. 39.2 ± 1.1 km) or change plasma lactate concentrations. Plasma concentrations of ammonia (NH3) (P < 0.05) and hypoxanthine (Hx) (P < 0.01) were lower in the Cr group from T1 to T2. Our results indicate that Cr supplementation alters the metabolic response during sustained high‐intensity submaximal exercise. Plasma data suggest that nett intramuscular adenine nucleotide degradation may be decreased in the presence of enhanced intramuscular TCr concentration even during submaximal exercise.  相似文献   

2.
Summary The effects of 8 weeks' endurance training on muscle metabolism at rest and after a submaximal bicycle ergometer exercise were studied in 31 previously sedentary men, aged 56–70. Training consisted of 3–5 one hour exercise bouts per week including walking-jogging, swimming, gymnastics and ball games. The effects of training were similar to those previously reported for younger men. Mean maximal oxygen uptake increased (11%), as did the resting values for muscle glycogen concentration, the enzymes representing aerobic energy metabolism (malate dehydrogenase, succinate dehydrogenase), and also some of the anaerobic enzymes (creatine phosphokinase, lactate dehydrogenase). Lactate production during submaximal work decreased. The enzyme activities were lower following acute exercise both before and after training.  相似文献   

3.
4.
Both regular physical exercise and carnitine supplementation exert a role in energy metabolism and may improve endurance capacity. We investigated whether a combination of long-term carnitine ingestion and exercise training reveals any interactive effects on cytosolic fatty acid-binding protein (FABPc) expression and β-hydroxyacyl CoA dehydrogenase (β-HAD) activity in human skeletal muscle. Twenty-eight untrained healthy males randomly divided into four experimental groups: a placebo (CON; n = 7), exercise training (ET; n = 7, 40 min session−1, five times per week at 60% VO2max), carnitine supplementation (CS; n = 7, 4 g day−1), and exercise training and carnitine supplementation (CT; n = 7). Before and after 6-week treatment, muscle biopsy samples were taken from the vastus lateralis. Nonesterified carnitine and acid-soluble acylcarnitine concentrations were increased in CT (P < 0.05), and serum triacylglycerol concentration was elevated almost twofold in ET and CT (P < 0.05). No interactive effects in FABPc expression were shown from any of treatment groups. Although FABPc increased by 54% in ET compared to CON, it failed to reach statistical significance. In addition, there was no change in FABPc expression from any of experimental groups. Similar trends with FABPc contents were demonstrated in β-HAD activity. It is concluded that the combination of exercise training and l-carnitine supplementation does not augment in FABPc expression and β-HAD activity in human skeletal muscle indicating that combined treatment does not exert additive effect in fat metabolism. Thus l-carnitine supplementation would be unlikely to be associated with the enhanced exercise performance.  相似文献   

5.
The purpose of the present study was to clarify the following: (1) whether steady state oxygen uptake (O2) during exercise decreases after short-term intermittent hypoxia during a resting state in trained athletes and (2) whether the change in O2 during submaximal exercise is correlated to the change in endurance performance after intermittent hypoxia. Fifteen trained male endurance runners volunteered to participate in this study. Each subject was assigned to either a hypoxic group (n=8) or a control group (n=7). The hypoxic group spent 3 h per day for 14 consecutive days in normobaric hypoxia [12.3 (0.2)% inspired oxygen]. The maximal and submaximal exercise tests, a 3,000-m time trial, and resting hematology assessments at sea level were conducted before and after intermittent normobaric hypoxia. The athletes in both groups continued their normal training in normoxia throughout the experiment. O2 during submaximal exercise in the hypoxic group decreased significantly (P<0.05) following intermittent hypoxia. In the hypoxic group, the 3,000-m running time tended to improve (P=0.06) after intermittent hypoxia, but not in the control group. Neither peak O2 nor resting hematological parameters were changed in either group. There were significant (P<0.05) relationships between the change in the 3,000-m running time and the change in O2 during submaximal exercise after intermittent hypoxia. The results from the present study suggest that the enhanced running economy resulting from intermittent hypoxia could, in part, contribute to improved endurance performance in trained athletes.  相似文献   

6.
The present study investigated the effect of repeated biopsy sampling on muscle adenosine 5-triphosphate (ATP) and glycogen resynthesis following prolonged submaximal exercise. In one group of subjects (Ia, n = 7), biopsy specimens were obtained from the vastus lateralis immediately and 48 h after exhaustive one-legged cycling from both the non-exercised (control) and exercised legs. Additional samples were obtained from the exercised leg at 3, 10 and 24 h post-exercise. In a second group of subjects (Ib, n = 6), biopsy specimens were obtained immediately after exercise from both the control and exercised legs and at 48 h post-exercise from the exercised leg. All muscle biopsies were separated by a distance of 2.5 cm. In group Ia, ATP in the exercised leg was still lower after 48 h of recovery compared with the control leg (P < 0.05), but complete restoration had occurred in group Ib (P > 0.05). Glycogen super compensation was not observed in group Ia. However, at the end of recovery, in group Ib glycogen in the exercised leg was 42% greater than in the control leg (tP < 0.01) . Thus, following exhaustive dynamic exercise, repeated muscle biopsy sampling impaired ATP and glycogen resynthesis for several days, which may have been a result of the distance separating each biopsy site. The inhibition of ATP resynthesis appeared to be associated mainly with type II muscle fibres. The finding that, in contrast to muscle glycogen, ATP did not return to the basal level during the 48 h of recovery, suggests that the measurement of ATP may be a more sensitive measure of muscle damage than that of glycogen.  相似文献   

7.
The biochemical, histochemical, and structural changes induced by endurance training and long-term exposure to high altitude were studied in the diaphragm muscle of rats exposed to simulated altitude (HA: n = 16; P b = 62 kPa, 463 Torr; 4000 m) and compared to animals maintained at sea-level (SL: n = 16). Half of the animals in each group were trained (T) by swimming for 12 weeks, the other half were kept sedentary (S). Except for a small decrease in type I fibres in the HA-S group (–7%, P<0.05), in favour of type IIab and type IIb fibres, neither high-altitude exposure nor endurance training had an overall effect on fibre type distribution. The mean fibre cross-sectional area was found to be unaffected by altitude and/or chronic exercise. Capillary density was shown to be increased by both high-altitude exposure (P<0.02) and training (P<0.001), whereas capillary growth, estimated by the capillary/fibre ratio, was unaffected in both cases. Following endurance training, a modest increase in citrate synthase was shown to occur to the same extent in the HA-T and SL-T groups (+15% and + 16% respectively, NS). Hexokinase increased following training (P<0.05) and high-altitude exposure (P<0.001). In normoxic and hypoxic animals, endurance training enhanced the ratio of the heart-specific lactate dehydrogenase isozyme LDH1 to total LDH activity (+59%, P<0.01; +92%, P<0.05 respectively). It may be hypothesized that the increased glucose phosphorylation capacity observed in diaphragm muscle contributes to the reduction of glycogen utilization during exercise.  相似文献   

8.
Anabolic androgenic steroids (AAS) are doping agents that are mostly used for improvement of strength and muscle hypertrophy. In some sports, athletes reported that the intake of AAS is associated with a better recovery, a higher training load capacity and therefore an increase in physical and mental performances. The purpose of this study was to evaluate, the effect of multiple doses of AAS on different physiological parameters that could indirectly relate the physical state of athletes during a hard endurance training program. In a double blind settings, three groups (n = 9, 8 and 8) were orally administered placebo, testosterone undecanoate or 19-norandrostenedione, 12 times during 1 month. Serum biomarkers (creatine kinase, ASAT and urea), serum hormone profiles (testosterone, cortisol and LH) and urinary catecholamines (noradrenalin, adrenalin and dopamine) were evaluated during the treatment. Running performance was assessed before and after the intervention phase by means of a standardized treadmill test. None of the measured biochemical variables showed significant impact of AAS on physical stress level. Data from exercise testing on submaximal and maximal level did not reveal any performance differences between the three groups or their response to the treatment. In the present study, no effect of multiple oral doses of AAS on endurance performance or bioserum recovery markers was found.  相似文献   

9.
Summary The influence of tapering on the metabolic and performance parameters in endurance cyclists was investigated. Cyclists (n = 25) trained 5 days · week–1, 60 min·day–1, at 75–85% maximal oxygen consumption (VO2max) for 8 weeks and were then randomly assigned to a taper group: 4D (4 days;n = 7), 8D (8 days;n = 6), CON (control, 4 days rest;n = 6), NOTAPER (non-taper, continued training;n = 6). Muscle biopsy specimens taken before and after training and tapering were analysed for carnitine palmityltransferase (CPT), citrate synthase, ß-hydroxyacyl CoA dehydrogenase (HOAD), cytochrome oxidase (CYTOX), lactate dehydrogenase, glycogen and protein. Significant increases inVO2max (6%), a 60-min endurance cycle test (34.5%), oxidative enzymes (77–178%), glycogen (35%) and protein (34%) occurred following training. After the taper, HOAD and CPT decreased 25 % (P<0.05) and 26% respectively, in the CON. Post-taper CYTOX values were different (P<0.05) for 4D and 8D compared with CON. Muscle glycogen levels were increased (P<0.05) after tapering in the 4D, 8D and CON, but decreased in NOTAPER. Similarly, power output at ventilation threshold was significantly increased in the 4D (27.4 W) and 8D (27 W) groups, but decreased (22 W) in the NOTAPER. These findings suggest that tapering elicited a physiological adaptation by altering oxidative enzymes and muscle glycogen levels. Such an adaptation may influence endurance cycling during a laboratory performance test.  相似文献   

10.
Dehydroepiandrosterone (DHEA), the most abundant sex steroid, is primarily secreted by the adrenal gland and a precursor hormone used by athletes for performance enhancement. Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential effects of DHEA supplementation combined with WBV training on to body composition, exercise performance, and hormone regulation are currently unclear. The objective of the study is to investigate the effects of DHEA supplementation combined with WBV training on body composition, exercise performance, and physical fatigue-related biochemical responses and testosterone content in young-adult C57BL/6 mice. In this study, male C57BL/6 mice were divided into four groups (n = 8 per group) for 6-weeks treatment: sedentary controls with vehicle (SC), DHEA supplementation (DHEA, 10.2 mg/kg), WBV training (WBV; 5.6 Hz, 2 mm, 0.13 g), and WBV training with DHEA supplementation (WBV+DHEA; WBV: 5.6 Hz, 2 mm, 0.13 g and DHEA: 10.2 mg/kg). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as changes in body composition and anti-fatigue levels of serum lactate, ammonia, glucose, creatine kinase (CK), and blood urea nitrogen (BUN) after a 15-min swimming exercise. In addition, the biochemical parameters and the testosterone content were measured at the end of the experiment. Six-week DHEA supplementation alone significantly increased mice body weight (BW), muscle weight, testosterone level, and glycogen contents (liver and muscle) when compared with SC group. DHEA supplementation alone had no negative impact on all tissue and biochemical profiles, but could not improve exercise performance. However, WBV+DHEA supplementation also significantly decreased BW, testosterone level and glycogen content of liver, as well as serum lactate and ammonia levels after the 15-min swimming exercise when compared with DHEA supplementation alone. Although DHEA supplementation alone had no beneficial effect in the exercise performance of mice, the BW, testosterone level and glycogen content significantly increased. On the other hand, WBV training combined with DHEA decreased the BW gain, testosterone level and glycogen content caused by DHEA supplementation. Therefore, WBV training could inhibit DHEA supplementation to synthesis the testosterone level or may decrease the DHEA supplement absorptive capacity in young-adult mice.  相似文献   

11.
Aim: Increases in the number of satellite cells are necessary for the maintenance of normal muscle function. Endurance training enhances the satellite cell pool. However, it remains unclear whether exercise intensity or exercise duration is more important to enhance the satellite cell pool. This study examined the effects of different intensity and duration of endurance training on the satellite cell pool in rat skeletal muscle. Methods: Forty‐one 17‐week‐old female Sprague–Dawley rats were assigned to control (n = 8), high intensity and high duration (n = 7), high intensity and low duration (n = 8), low intensity and high duration (n = 9) and low intensity and low duration (n = 9) groups. Training groups exercised 5 days per week on a motor driven treadmill for 10 weeks. After the training period, animals were anaesthetized and the plantaris muscles were removed, weighed and analysed for immunohistochemical and histochemical properties. Results: Although no significant differences were found in muscle mass, mean fibre area and myonuclei per muscle fibre between all groups, the percentage of satellite cells was significantly higher in the high‐intensity groups than in the other groups (P < 0.05). Conclusion: Increases in the satellite cell pool of skeletal muscle following endurance training depend on the intensity rather than duration of exercise.  相似文献   

12.
Seven male subjects performed repeated bouts of high-intensity exercise, on a cycle ergometer, before and after 6 d of creatine supplementation (20 g Cr H2O day-1). The exercise protocol consisted of five 6-s exercise periods performed at a fixed exercise intensity, interspersed with 30-s recovery periods (Part I), followed (40 s later) by one 10 s exercise period (Part II) where the ability to maintain power output was evaluated. Muscle biopsies were taken from m. vastus lateralis at rest, and immediately after (i) the fifth 6 s exercise period in Part I and (ii) the 10 s exercise period in Part II. In addition, a series of counter movement (CMJ) and squat (SJ) jumps were performed before and after the administration period. As a result of the creatine supplementation, total muscle creatine [creatine (Cr) + phosphocreatine (PCr)] concentration at rest increased from (mean + SEM) 128.7 (4.3) to 151.5 (5.5)mmolkg_1 dry wt (P < 0.05). This was accompanied by a 1.1 (0.5) kg increase in body mass (P < 0.05). After the fifth exercise bout in Part I of the exercise protocol, PCr concentration was higher [69.7 (2.3) vs. 45.6 (7.5) mmol kg“‘ dry wt, P < 0.05], and muscle lactate was lower [26.2 (5.5) vs. 44.3 (9.9) mmol kg”1 dry wt, P < 0.05] after vs. before supplementation. In Part II, after creatine supplementation, subjects were better able to maintain power output during the 10-s exercise period (P < 0.05). There was no change in jump performance as a result of the creatine supplementation (P > 0.05). These findings show that enhanced fatigue resistance during short duration high-intensity exercise following creatine supplementation is associated with a greater availability of PCr and a lower accumulation of lactate in the muscle. The finding that jump performance was not enhanced suggests that short-term creatine feeding does not influence peak power output.  相似文献   

13.
Well-trained subjects (n=6) were studied before and after losing a mean 3.0%–4.3% of body mass to determine whether muscle performance could be maintained or even enhanced by dietary creatine supplementation. During a 5-day period of loss of mass the subjects were randomly assigned to a creatine or placebo supplemented diet. All the subjects were measured before and after loss of mass on both supplements for isokinetic peak torque (PT) and work at peak torque (W PT) of knee extensors, also for intermittent high intensity working capacity of the same muscle group. The latter test consisted of submaximal isokinetic knee extensions at an angular velocity of 1.57 rad?·?s?1 for 45 s at the rate of 30 contractions each min (submaximal work, W s max ) followed by 15-s maximal effort (maximal work, W max ). Total duration of the test was 3 min. Haematocrit was measured and haemoglobin, ammonia, lactate, glucose and urea concentrations were analysed in blood samples obtained at rest and after cessation of muscle performance tests. The results indicated that creatine supplementation in comparison with placebo treatment during rapid body mass reduction may help to maintain muscle PT and W PT at high angular velocities, not influencing W max and the rate of fatigue development during W max , but affecting adversely W s max . Within the limitations of the present study the reasons for the partially detrimental effect of creatine administration remain obscure, but it is suggested that impaired creatine uptake in muscle during body mass loss as well as creatine induced changes in muscle glucose and glycogen metabolism may be involved.  相似文献   

14.
We investigated the effect of oral creatine supplementation (20 g d(-1) for 7 days) on metabolism during a 1-h cycling performance trial. Twenty endurance-trained cyclists participated in this double-blind placebo controlled study. Five days after familiarization with the exercise test, the subjects underwent a baseline muscle biopsy. Thereafter, a cannula was inserted into a forearm vein before performing the baseline maximal 1-h cycle (test 1 (T1)). Blood samples were drawn at regular intervals during exercise and recovery. After creatine (Cr) loading, the muscle biopsy, 1-h cycling test (test 2 (T2)) and blood sampling were repeated. Resting muscle total creatine (TCr), measured by high performance liquid chromatography, was increased (P < 0.001) in the creatine group from 123.0 +/- 3.8 - 159.8 +/- 7.9 mmol kg(-1) dry wt, but was unchanged in the placebo group (126.7 +/- 4.7 - 127.5 +/- 3.6 mmol kg(-1) dry wt). The extent of Cr loading was unrelated to baseline Cr levels (r=0.33, not significant). Supplementation did not significantly improve exercise performance (Cr group: 39.1 +/- 0.9 vs. 39.8 +/- 0.8 km and placebo group: 39.3 +/- 0.8 vs. 39.2 +/- 1.1 km) or change plasma lactate concentrations. Plasma concentrations of ammonia (NH(3)) (P < 0.05) and hypoxanthine (Hx) (P < 0.01) were lower in the Cr group from T1 to T2. Our results indicate that Cr supplementation alters the metabolic response during sustained high-intensity submaximal exercise. Plasma data suggest that nett intramuscular adenine nucleotide degradation may be decreased in the presence of enhanced intramuscular TCr concentration even during submaximal exercise.  相似文献   

15.
To determine the effects of creatine supplementation during short-term resistance training overreaching on performance, body composition, and resting hormone concentrations, 17 men were randomly assigned to supplement with 0.3 g/kg per day of creatine monohydrate (CrM: n=9) or placebo (P: n=8) while performing resistance exercise (5 days/week for 4 weeks) followed by a 2-week taper phase. Maximal squat and bench press and explosive power in the bench press were reduced during the initial weeks of training in P but not CrM. Explosive power in the bench press, body mass, and lean body mass (LBM) in the legs were augmented to a greater extent in CrM (P0.05) by the end of the 6-week period. A tendency for greater 1-RM squat improvement (P=0.09) was also observed in CrM. Total testosterone (TT) and the free androgen index (TT/SHBG) decreased in CrM and P, reaching a nadir at week 3, whereas sex hormone binding globulin (SHBG) responded in an opposite direction. Cortisol significantly increased after week 1 in CrM (+29%), and returned to baseline at week 2. Insulin was significantly depressed at week 1 (–24%) and drifted back toward baseline during weeks 2–4. Growth hormone and IGF-I levels were not affected. Therefore, some measures of muscular performance and body composition are enhanced to a greater extent following the rebound phase of short-term resistance training overreaching with creatine supplementation and these changes are not related to changes in circulating hormone concentrations obtained in the resting, postabsorptive state. In addition, creatine supplementation appears to be effective for maintaining muscular performance during the initial phase of high-volume resistance training overreaching that otherwise results in small performance decrements.  相似文献   

16.
Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35°C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24°C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8°C). Pre-cooling did not alter oxygen uptake during exercise (P>0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05< P<0.10). When averaged over the exercise period, muscle and oesophageal temperatures after pre-cooling were reduced by 1.5 and 0.6°C respectively, compared with control (P<0.05). Pre-cooling had a limited effect on muscle metabolism, with no differences between the two conditions in muscle glycogen, triglyceride, adenosine triphosphate, creatine phosphate, creatine or lactate contents at rest, or following exercise. These data indicate that whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures. Electronic Publication  相似文献   

17.
To study the effect of temperature on muscle metabolism during submaximal exercise, six endurance-trained men had one thigh warmed and the other cooled for 40 min prior to exercise using water-perfused cuffs. One cuff was perfused with water at 50-55 degrees C (HL) with the other being perfused with water at 0 degree C (CL). With the cuffs still in position, subjects performed cycling exercise for 20 min at a work load corresponding to 70% VO2,peak (where VO2,peak is peak pulmonary oxygen uptake) in comfortable ambient conditions (20-22 degrees C). Muscle biopsies were obtained prior to and following exercise and forearm venous blood was collected prior to and throughout the exercise period. Muscle temperature (Tmus) was not different prior to treatment, but treatment resulted in a large difference in pre-exercise Tmus (difference = 6.9 +/- 0.9 degrees C; P < 0.01). Although this difference was reduced following exercise; it was nonetheless significant (difference = 0.4 +/- 0.1 degree C; P < 0.05). Intramuscular [ATP] was not affected by either exercise or muscle temperature. [Phosphocreatine] decreased (P < 0.01) and [creatine] increased (P < 0.01) with exercise but were not different when comparing HL with CL. Muscle lactate concentration was not different prior to treatment nor following exercise when comparing HL with CL. Muscle glycogen concentration was not different when comparing the trials before treatment, but the post-exercise value was lower (P < 0.05) in HL compared with CL. Thus, net muscle glycogen use was greater during exercise with heating (208 +/- 23 vs. 118 +/- 22 mmol kg-1 for HL and CL, respectively; P < 0.05). These data demonstrate that muscle glycogen use is augmented by increases in intramuscular temperature despite no differences in high energy phosphagen metabolism being observed when comparing treatments. This suggests that the increase in carbohydrate utilization occurred as a direct effect of an elevated muscle temperature and was not secondary to allosteric activation of enzymes mediated by a reduced ATP content.  相似文献   

18.
The influence of training status on the maximal accumulated oxygen deficit (MAOD) was used to assess the validity of the MAOD method during supramaximal all-out cycle exercise. Sprint trained (ST; n = 6), endurance trained (ET; n = 8), and active untrained controls (UT; n = 8) completed a 90 s all-out variable resistance test on a modified Monark cycle ergometer. Pretests included the determination of peak oxygen uptake ( O2peak) and a series (5–8) of 5-min discontinuous rides at submaximal exercise intensities. The regression of steady-state oxygen uptake on power output to establish individual efficiency relationships was extrapolated to determine the theoretical oxygen cost of the supramaximal power output achieved in the 90 s all-out test. Total work output in 90 s was significantly greater in the trained groups (P<0.05), although no differences existed between ET and ST. Anaerobic capacity, as assessed by MAOD, was larger in ST compared to ET and UT. While the relative contributions of the aerobic and anaerobic energy systems were not significantly different among the groups, ET were able to achieve significantly more aerobic work than the other two groups, while ST were able to achieve significantly more anaerobic work. Peak power and peak pedalling rate were significantly higher in ST. The results suggested that MAOD determined during all-out exercise was sensitive to training status and provided a useful assessment of anaerobic capacity. In our study sprint training, compared with endurance training, appeared to enhance significantly power output and high intensity performance over brief periods (up to 60 s), yet few overall differences in performance (i.e. total work) existed during 90 s of all-out exercise.  相似文献   

19.
The relationship of glycogen availability to performance and blood metabolite accumulation during repeated bouts of maximal exercise was examined in 11 healthy males. Subjects performed four bouts of 30 s maximal, isokinetic cycling exercise at 100 rev · min–1, each bout being separated by 4 min of recovery. Four days later, all subjects cycled intermittently to exhaustion [mean (SEM) 106 (6) min] at 75% maximum oxygen uptake Subjects were then randomly assigned to an isoenergetic low-carbohydrate (CHO) diet [7.8 (0.6)% total energy intake,n = 6] or an isoenergetic high-CHO diet [81.5 (0.4)%,n = 5], for 3 days. On the following day, all subjects performed 30 min cycling at 75% and, after an interval of 2 h, repeated the four bouts of 30 s maximal exercise. No difference was seen when comparing total work production during each bout of exercise before and after a high-CHO diet. After a low-CHO diet, total work decreased from 449 (20) to 408 (31) J · kg–1 body mass in bout 1 (P < 0.05), from 372 (15) to 340 (18) J · kg–1 body mass in bout 2 (P < 0.05), and from 319 (12) to 306 (16) J · kgt-1 body mass in bout 3 (P < 0.05), but was unchanged in bout 4. Blood lactate and plasma ammonia accumulation during maximal exercise was lower after a low-CHO diet (P < 0.001), but unchanged after a high-CHO diet. In conclusion, muscle glycogen depletion impaired performance during the initial three, but not a fourth bout of maximal, isokinetic cycling exercise. Irrespective of glycogen availability, prolonged submaximal exercise appeared to have no direct effect on subsequent maximal exercise performance.  相似文献   

20.
Females show a lower respiratory exchange ratio (RER) than males during submaximal endurance exercise, which translates into a proportionately lower carbohydrate and higher fat oxidation. Data from rodents show that 17-beta-estradiol may mediate these metabolic differences. 17-beta-estradiol supplementation in humans is less convincing; however, two studies found a reduction in glucose rate of appearance during exercise. No difference is found between genders in muscle glycogen content; however, lipid content in muscle is higher in females. Evidence shows that short chain OH-acyl CoA-dehydrogenase (SCHAD) maximal enzyme activity is higher in females. The rate of leucine oxidation is lower in females at rest and during endurance exercise. This is not apparently related to gender differences in branched chain-2-oxo-dehydrogenase (BCOAD) activity in skeletal muscle, which may implicate hepatic control. Important muscle proteins to examine in future research are hormone sensitive lipase, the enzymes of beta-oxidation, and fatty acid transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号