首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of thyroid deficiency on the activity of phosphate-activated glutaminase (the marker for glutamatergic neurons) was studied in different parts of the rat brain at ages 5, 10, 15 and 25 days, and at day 130 following 102 days of rehabilitation. The brain regions investigated were the cerebral cortex, basal forebrain, hippocampus and cerebellum. During normal development, the activity of glutaminase increased relatively earlier in the cerebral cortex and hippocampus than in the cerebellum, while the absolute value reached a much higher level in the hippocampus than in other brain regions. In the basal forebrain, the developmental pattern of glutaminase was bimodal, and the rise in enzyme activity after 15 days coincided with the decrease in the cerebral cortex. These regional developmental changes in glutaminase activity correlated well with known information on the formation of glutamatergic cells and pathways in the brain. Neonatal thyroid deficiency had little effect on the developmental patterns of enzyme activity, the exception being a transient decrease in 10-day-old hypothyroid hippocampus. The present results, together with previous findings, indicate that the effect of thyroid hormone on neural maturation is cell-type specific and the glutamatergic neurons are not the main targets of thyroid hormone action.  相似文献   

2.
The effect of thyroid deficiency on the activity of choline acetyltransferase (ChAT; the marker for cholinergic neurons) was studied in different parts of the rat brain at ages 5, 10, 15 and 25 days, and at day 130 following 102 days of rehabilitation. During normal development, the activity of ChAT increased in the cerebral cortex, hippocampus and basal forebrain, and decreased in the cerebellum. Neonatal thyroid deficiency resulted in a marked retardation of the developmental patterns of the enzyme activity. In the hippocampus the effect diminished with age even during the period of thyroid hormone deprivation, while in the cerebral cortex and cerebellum the enzyme activity was restored to normal only after rehabilitation. In contrast, ChAT activity in the basal forebrain remained persistently reduced in comparison with controls. The results indicate that neonatal thyroid deficiency causes selective irreversible biological damage to subcortical cholinergic neurons.  相似文献   

3.
4.
The cholinergic system of the basal forebrain is affected in brains of dementia patients and during neuroinflammation. The aim of this study was to establish a method to cultivate basal forebrain cholinergic neurons in dissociated, pure neuronal cultures and to apply this method to study the effect of acute and chronic experimentally-induced inflammation using lipopolysaccharide. Purity of the cultures, degrees of neuronal dissociation, connectivity and neuronal survival were investigated by immunocytochemistry for microtubule-associated protein-2 (neurons), glial fibrillary acidic protein (astroglia), complement receptor 3 (microglia), choline acetyltransferase and the neurotrophin receptor p75 (cholinergic neurons). Neuronal cultures only contained <7% astrocytes and <1% microglia when using a "sandwich-technique". Acute (1, 10 microg/ml) as well as chronic (0.1, 1 microg/ml) treatment with lipopolysaccharide did neither affect total number of neurons, nor number of p75-positive neurons or enhance expression of major histocompatibility complex I or II. Our results suggest that lipopolysaccharide-induced degeneration of both microtubule-associated protein-2-like immunoreactive as well as specific killing of cholinergic forebrain neurons in vitro are mediated by glial cells.  相似文献   

5.
目的 观察海人藻酸 (KA)对大鼠基底前脑含乙酰胆碱能神经元 (包括其投射纤维投射部位 )毁损后的数目和形态改变 ,以探讨何首乌 (PMT)对胆碱能神经元及其纤维的保护作用及机制。方法 采用兴奋性神经毒素海人藻酸 (KA)损伤基底前脑 (BF)Meynert核团 ,内侧隔核 (MS)及斜角带核 (DB) ,建立毁损模型 ,用何首乌喂饲毁损实验组 ,使用组织化学方法显示乙酰胆碱能神经元及纤维的改变及可能的用药后保护和活化作用。结果 何首乌喂饲组 (A组 )比非何首乌喂饲组 (B组 )在基底前脑中的Meynert核数量多 ,且细胞完整无破坏 ,其投射到海马及大脑皮质的AChE纤维数目多 ,纤维形态无破坏 ,差异有显著性 (P <0 .0 1)。结论 何首乌对大鼠AChE神经元及其投射纤维有保护作用。  相似文献   

6.
7.
Nerve growth factor (NGF) is a neuronotrophic protein. Its effects on developing peripheral sensory and sympathetic neurons have been extensively characterized, but it is not clear whether NGF plays a role during the development of central nervous system neurons. To address this point, we examined the effect of NGF on the activity of neurotransmitter enzymes in several brain regions. Intracerebroventricular injections of highly purified mouse NGF had a marked effect on the activity of choline acetyltransferase (ChAT), a selective marker of cholinergic neurons. NGF elicited prominent increases in ChAT activity in the basal forebrain of neonatal rats, including the septum and a region which contains neurons of the nucleus basalis and substantia innominata. NGF also increased ChAT activity in the hippocampus and neocortex, terminal regions for the fibers of basal forebrain cholinergic neurons. In analogy with the response of developing peripheral neurons, the NGF effect was shown to be selective for basal forebrain cholinergic cells and to be dose-dependent. Furthermore, septal neurons closely resembled sympathetic neurons in the time course of their response to NGF. These observations suggest that endogenous NGF does play a role in the development of basal forebrain cholinergic neurons.  相似文献   

8.
It is currently believed that under normal conditions hippocampal neurons synthesize nerve growth factor (NGF) which may provide trophic support for cholinergic neurons projecting from the basal forebrain. The concept that glial cells are mobilized to increase the production of NGF following destruction of hippocampal neurons was examined. Excitotoxin-induced destruction of the dorsal hippocampal neurons resulted in a massive and prolonged increase in NGF-like immunoreactivity (LI). Immunostaining for NGF-LI and the glial marker, glial fibrillary acidic protein (GFAP), revealed that the source of increased NGF-LI production following the lesion were reactive astrocytes. Thus, glial cells assume the role of providing trophic support following loss of target neurons.  相似文献   

9.
Inflammatory processes may play a critical role in the pathogenesis of the degenerative changes and cognitive impairments associated with Alzheimer's disease (AD). In the present study, lipopolysaccharide (LPS) from the cell wall of gram-negative bacteria was used to produce chronic, global inflammation within the brain of young rats. Chronic infusion of LPS (0.25 μg/h) into the 4th ventricle for four weeks produced (1) an increase in the number of glial fibrillary acidic protein-positive activated astrocytes and OX-6-positive reactive microglia distributed throughout the brain, with the greatest increase occurring within the temporal lobe, particularly the hippocampus, (2) an induction in interleukin-1β, tumor necrosis factor- and β-amyloid precursor protein mRNA levels within the basal forebrain region and hippocampus, (3) the degeneration of hippocampal CA3 pyramidal neurons, and (4) a significant impairment in spatial memory as determined by decreased spontaneous alternation behavior on a T-maze.  相似文献   

10.
Androgen exposure during development and adulthood promotes cell-to-cell communication, modulates the size of specific brain nuclei, and influences hormone-dependent behavioral and neuroendocrine functions. Androgen action involves the activation of androgen receptors (AR). To elucidate the mechanisms involved in AR-mediated effects on forebrain development, double-label fluorescent immunohistochemistry and confocal microscopy were employed to identify the cellular phenotype of AR-immunoreactive (AR(+)) cells in the developing (embryonic day 20, postnatal days 0, 4, 10) and adult male rat forebrain. Sections were doubly labeled with antibodies directed against AR and one of the following: neurons (immature, nestin; mature, NeuN) or astrocytes [immature, vimentin; mature, glial fibrillary acidic protein (GFAP)] or mature oligodendrocytes (mGalC). In all brain regions examined, by far the majority of AR(+) cells were neurons. In addition, small subsets of AR(+) cells were identified as mature astrocytes (GFAP(+)) but only in specific brain regions at specific ages. AR(+)/GFAP(+) cells were observed in the cerebral cortex but only in postnatal day 10 rats and in the arcuate nucleus of the hypothalamus but only in adult rats. Immature neurons, immature astrocytes, and oligodendrocytes were not AR(+) at any age, in any region. Thus, both neurons and astrocytes in the male rat forebrain contain ARs, suggesting that androgens, via ARs, may exert effects on both cell types in an age- and region-dependent manner.  相似文献   

11.
It is well known that thyroid hormone plays a crucial role in the development and maturation of the nervous system. However, little is known about the role of thyroid hormone in the adult brain. In this short review we have dwelt on this point, with regard to the role of thyroid hormone on neuropeptide gene expression regulation in the paraventricular nucleus of the hypothalamus and in extrahypothalamic brain areas, on neurotrophin and neurotrophin receptor expression in the hippocampus and basal forebrain in basal conditions, and after neurotoxic challenges. Effects of hypothyroidism are discussed in view of a possible role of thyroid status in brain aging quality.  相似文献   

12.
Administration of the neuroactive steroid hormone estrogen has been shown to effect cholinergic basal forebrain neuronal function. Antibodies directed against the estrogen receptor alpha (ERalpha) revealed dark (type 1) and light (type 2) nuclear positive neurons within the islands of Calleja, endopiriform nucleus, lateral septum, subfields of the cholinergic basal forebrain, bed nucleus of the stria terminalis, striohypothalamic region, medial preoptic region, periventricular, ventromedial, arcuate and tuberal mammillary nuclei of the hypothalamus, reuniens and anterior medial thalamic nuclei, amygdaloid complex, piriform cortex and subfornical organ. In contrast, only a few scattered ERalpha labeled neurons were found in cortex and hippocampus. ERalpha stained cell bodies were not seen in the striatum. Counts of ERalpha labeled neurons in intact female rats revealed significantly more type 2 neurons within the basal forebrain subfields. Quantitation of ERalpha immunoreactive neurons revealed a significant decrease in the relative number of type 1 neurons within the medial septum (MS), horizontal limb of the diagonal band (HDB) and substantia innominata/nucleus basalis (SI/NB) following ovariectomy. Quantitation following choline acetyltransferease (ChAT) immunohistochemistry revealed a significant decrease in the number of ChAT positive neurons within the MS, HDB and SI/NB, but not VDB following ovariectomy. Following ovx, the percentage of double labeled cholinergic basal forebrain neurons also declined significantly within the MS, VDB, HDB and SI/NB. These observations suggest that estrogen effects a subpopulation of cholinergic basal forebrain neurons and may provide insight into the biologic actions of this steroid in Alzheimer's disease.  相似文献   

13.
This study examined the expression of glial cell line-derived neurotrophic factor (GDNF) mRNA and the cellular localization of GDNF production in rats subjected to transient forebrain ischemia induced by four-vessel occlusion. Transient forebrain ischemia induced GDNF mRNA expression in the hippocampus from 3 h to 3 days after the ischemic episode, with peak expression at 6 h. The GDNF mRNA increase in the cerebral cortex was similar to that in the hippocampus, whereas no increase in GDNF mRNA was observed in the striatum and brainstem. Western blot analysis showed that GDNF in the hippocampal CA1 region was increased slightly from 3 to 24 h after the ischemia, and then subsequently declined to below the baseline level. In the hippocampus, GDNF was evenly produced in pyramidal neurons of both sham-operated rats and normal rats, as determined by immunohistochemistry. Interestingly, we found that ischemia-induced reactive astrocytes, as well as surviving neurons, produced GDNF in 3-7 days after the ischemia. On the other hand, in other regions, such as the cerebral cortex, striatum, and brainstem, there was no change in GDNF-positive cells secondary to ischemia. These findings suggest that expression of GDNF mRNA is regulated in part via ischemia-induced neuronal degeneration. They also suggest that ischemia-induced reactive astrocytes may produce GDNF to protect against neuronal death. Therefore, GDNF may play an important role in ischemia-induced neuronal death in the brain.  相似文献   

14.
We studied the distribution and change of striatal enriched phosphatase (STEP) in the gerbil hippocampus after transient forebrain ischemia. STEP was expressed in the perikarya and in neuronal processes; it was not detected in non-neuronal cells of control animals. After 5-min forebrain ischemia, STEP immunoreactivity (STEP-IR) was preserved for 2 days; it disappeared 4 and more days after ischemia with completion of delayed neuronal death (DND) in the CA1 subfield. Furthermore, only in the CA1 after ischemia, STEP was expressed in reactive astrocytes for 4 to 28 days, showing different patterns of glial fibrillary acidic protein (GFAP)-positive reactive astrocytes. After non-or less-than lethal ischemia, STEP expression in reactive astrocytes corresponded with the degree of neuronal degeneration. Immunoblot analysis of the CA1 subfield revealed the expression of three isoforms, STEP45, -56 and -61; their expression patterns changed with time after ischemia. These data suggest that neuronal STEP is preserved until cell degeneration after ischemia and that STEP is expressed in reactive astrocytes only after lethal ischemia, with different expression patterns for its isoforms. Of STEP45, -56 and -61, STEP61 was the most strongly expressed in the reactive astrocytes; both STEP45 and -61 were expressed in neurons and the expression of STEP56 was weak. STEP may play an important role not only in neurons but also in reactive astrocytes after ischemia, depending on neuronal degeneration.  相似文献   

15.
Hypothermia is known to be the most effective method to protect the neuronal damage induced by ischemia. In the present study, we investigated the histopathological consequences of hippocampal CA1 pyramidal neurons as well as the glial reactions in the hippocampus, after diverse periods of ischemic insult at graded intra-ischemic hypothermia ranging from 32 to 20°C. Gerbils were exposed to forebrain ischemia by clamping the bilateral common carotid arteries for 5–120 min depending upon the temperatures. The morphological study was performed 7 days after ischemia or sham-operation. Histopathological evaluation of delayed neuronal death (DND) was performed by Cresyl violet (CV) staining and MAP2 immunoreactivity. Glial reactions were examined by GFAP immunostaining and isolectin B4 histochemistry, corresponding to astrocytes and microglia, respectively. The forebrain ischemia at 32°C for 10 min and at 28°C for 20 min did not induce DND in the CA1 region. However, the ischemia at 32°C for 20 min and at 28°C for 30 min caused extensive degeneration of CA1 pyramidal neurons as observed in normothermic ischemic animals. Under the condition of deep hypothermia, the ischemia for 60 min at 24°C and for 120 min at 20°C which were the longest durations of each temperature within the limitation of the animal survival following 7 days, induced no DND in CA1 pyramidal neurons. The reactive changes of astrocytes were observed not only in ischemic animals with DND, but also in ischemic animals without DND. Computer image analysis showed that the area fraction of GFAP-positive structures in the CA1 region was significantly increased in both ischemic cases with and without DND compared with each sham group. In contrast, the distribution of activated microglia was much more restricted to the CA1 region and they were always accompanied by DND at 7 days postischemia. The present results demonstrate the remarkable neuroprotective effect of deep hypothermia that has been widely used in cardiovascular surgeries as the cerebroprotective strategy during total circulatory cessation. The findings also suggest that even under the condition of hypothermia, glial reactions may play an important role in neuronal survival and death after ischemia.  相似文献   

16.
In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin‐4‐sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core‐protein content and inhibited neurite outgrowth in neurons cocultured with ethanol‐treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte‐mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte‐mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects. GLIA 2014;62:259–271  相似文献   

17.
Thyroid hormone is an important epigenetic factor in brain development, acting by modulating rates of gene expression. The active form of thyroid hormone, 3,5,3'-triiodothyronine (T3) is produced in part by the thyroid gland but also after 5'-deiodination of thyroxine (T4) in target tissues. In brain, approximately 80% of T3 is formed locally from T4 through the activity of the 5'-deiodinase type 2 (D2), an enzyme that is expressed mostly by glial cells, tanycytes in the third ventricle, and astrocytes throughout the brain. D2 activity is an important point of control of thyroid hormone action because it increases in situations of low T4, thus preserving brain T3 concentrations. In this work, we have studied the expression of D2 by quantitative in situ hybridization in hypothyroid animals during postnatal development. Our hypothesis was that those regions that are most dependent on thyroid hormone should present selective increases of D2 as a protection against hypothyroidism. D2 mRNA concentration was increased severalfold over normal levels in relay nuclei and cortical targets of the primary somatosensory and auditory pathways. The results suggest that these pathways are specifically protected against thyroid failure and that T3 has a role in the development of these structures. At the cellular level, expression was observed mainly in glial cells, although some interneurons of the cerebral cortex were also labeled. Therefore, the T3 target cells, mostly neurons, are dependent on local astrocytes for T3 supply.  相似文献   

18.
Thyroid hormone deficiency has long been considered to affect profoundly such cognitive functions as learning and memory, which are known to depend on the structural integrity of the hippocampal formation. Since we previously found that the number of granule cells of the dentate gyrus is reduced in hypothyroid animals, we decided to extend our observations to the pyramidal cells of the hippocampus in order to gain further insight into the effects of hypothyroidism upon the other neuronal links of the hippocampal trisynaptic circuitry, inasmuch as CA1 neurons are known to be particularly vulnerable to aggressive agents. Groups of 6 male and 6 female rats aged 30 and 180 days were analysed separately after being treated as follows: (1) hypothyroid from day 0 until day 30 (30-day-old hypothyroid group); (2) respective 30-day-old control; (3) hypothyroid from day 0 until day 180 (180-day-old hypothyroid group); (4) hypothyroid until day 30 and thenceforth maintained euthyroid (recovery group); (5) hypothyroid since day 30 (adult hypothyroid group); and (6) respective 180-day-old control. The volume of the pyramidal cell layer of the CA1 and CA3 regions and the numerical density of the respective neurons were evaluated, thereby allowing us to estimate the total number of pyramidal cells in each hippocampal region. The areal density and the mean nuclear volume of CA1 and CA3 pyramidal cells were also estimated. In the CA3 region, we found that hypothyroidism, whatever its duration and time of onset, induces a reduction in the volume of the pyramidal cell layer and a parallel increase in the numerical density of its neurons, without interfering with the total number of pyramidal cells. Conversely, in the CA1 region, thyroid hormone deficiency started either neonatally or during maturity was found to lead to a decrease in the total number of pyramidal cells. Reductions ranging between 14.2 and 22.5% were found in 30 and 180-day-old hypothyroid groups. The reestablishment of a euthyroid state did not ameliorate the referred neuronal loss. The present results support the view that hypothyroidism induces small alterations in the structural organization of the hippocampal CA3 region, contrary to what happens in CA1 in which neuronal death occurs. Furthermore, the data presented herein demonstrate that the total number of CA1 pyramidal cells displays sexual dimorphism that is not affected by thyroid hormone manipulations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Although it is well known that magnocellular cholinergic basal forebrain neurons are trophically responsive to nerve growth factor (NGF) and contain NGF receptors (NGFr), the exact distribution of forebrain NGFr-immunoreactive neurons and the degree to which cholinergic neurons are colocalized with them have remained in question. In this study we employed a very sensitive double-labelling method and examined in the same tissue section the distribution and cellular features of NGFr-positive and choline acetyltransferase (ChAT)-immunolabelled neurons within the rat basal forebrain. Throughout this region the majority of magnocellular basal forebrain neurons were immunoreactive for both NGFr and ChAT. However, a small percentage of neurons in the ventral portion of the vertical limb of the diagonal band of Broca were immunoreactive only for NGFr, whereas a larger population of magnocellular neurons in the substantia innominata exhibited only ChAT immunoreactivity. No NGFr-immunoreactive cells were found associated with ChAT-positive neurons in the striatum, neocortex, or hippocampus, and no single-labelled NGFr-immunoreactive neurons were found outside the basal forebrain area, except for a large number of positive-labelled cells along the ventricular walls of the third ventricle. In addition to its function in maintaining the normal integrity of the basal forebrain and cholinergic, peripheral sympathetic, and neural-crest-derived sensory neurons, NGF may also have a role in the growth of these neurons after damage to the nervous system. To examine this postulate the hippocampus was denervated of its septal input and examined 8 weeks later. Two populations of neurons were found to have undergone collateral sprouting--namely, the midline magnocellular cholinergic neurons of the dorsal hippocampus and the sympathetic noradrenergic neurons of the superior cervical ganglion. Both of these neuronal populations also stained strongly for NGFr. In contrast, the small intrinsic cholinergic neurons of the hippocampus exhibited neither sprouting response nor staining for NGFr. In view of these results, we suggest that the differing sprouting responses demonstrated by these three neuronal populations may be due to their responsiveness to NGF, as indicated by the presence or absence of NGF receptors.  相似文献   

20.
Influence of thyroid hormones on maturation of rat cerebellar astrocytes   总被引:1,自引:0,他引:1  
Thyroid hormone influences brain maturation through interaction with nuclear receptors and regulation of gene expression. Their role on astrocyte maturation remains unclear. We have analyzed the role of thyroid hormone in rat cerebellar astrocyte maturation by comparing the sequential patterns of intermediate filament expression in normal and hypothyroid animals. During normal development astroglial cells sequentially express nestin, vimentin, and glial fibrillary acidic protein. Differentiated astrocytes appeared in the superior medullary vellum by postnatal day 2 and reached the white mater and internal granular layer by postnatal day 4. Intermediate filament marker expression was transiently lost from postnatal days 6 to 8 in anterior lobes, without an increased apoptosis. Vimentin expression was replaced by glial fibrillary acidic protein between postnatal days 10 and 32. The differentiated astrocytes were evenly distributed throughout the cerebellar slices, including the internal granular layer. Differences between normal and hypothyroid rats were observed starting from postnatal day 4, with lack of differentiated astrocytes in the internal granular layer. The transient decrease of astrocyte markers immunoreactivity in the anterior lobe did not take place in hypothyroid rats. The vimentin-glial fibrillary acidic protein transition was delayed and most differentiated astrocytes remained confined to the white matter. The results indicate that thyroid hormone deficiency induces a delay and a partial arrest of astrocyte differentiation. Astrocytes express thyroid hormone receptor alpha and beta subtypes suggesting that astrocytes are direct target cells of thyroid hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号